"reset" Systems (p.i.) Patents (Class 318/609)
  • Patent number: 9274201
    Abstract: A system is provided for calibrating a device. The system includes a reference component, a sampling component, a calibration component, a comparing component and a proportional integral component. The reference component provides a reference power signal based on a voltage instruction and a current instruction. The sampling component samples a voltage signal to obtain a sampled voltage value and samples a current signal to obtain a sampled current value. The calibration component generates a calibrated power signal based on the sampled voltage value and the sampled current. The comparing component generates an error signal based on the reference power signal and the calibrated power signal. The proportional integral component and the calibration component are a feedback system that is operable to calibrate the gain of the sampled voltage and the sample current based on the error signal.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 1, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kaichien Tsai, Minghua Fu, Anand Dabak
  • Patent number: 9264041
    Abstract: A digital control device for a parallel PMOS transistor board, includes: an operative memory for digitally storing error data between a target voltage and a setpoint voltage as well as control data, each datum being provided with a time marker, a digital selected order filter (36) for computing setpoint incrementation data from error data in the operative memory selected based on input error data, and for storing the input error data with a corresponding time marker in the operative memory, and a control computer (38) for computing new control data from the control incrementation data and control data in the operative memory selected based on input error data and for storing the new control data in the operative memory.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 16, 2016
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S), INSTITUT POLYTECHNIQUE DE GRENOBLE
    Inventors: Carlos Canudas De Wit, Carolina Albea Sanchez
  • Patent number: 9219431
    Abstract: The present invention relates to a motor control device provided with the function of detecting the rotor position of a synchronous motor in a sensor-less fashion. The motor control device previously stores a current phase ? defined by the two parameters that are an induced voltage peak value Ep and the subtracted value (?e??i) obtained by subtracting an induced voltage electrical angle ?e from a current electrical angle ?i, and based on the actual detected Ep, ?i, and ?e, selects ? by referring to the ? previously stored, and calculates the rotor position ?m by subtracting the selected ? from the actual detected ?i. Then, in case of selecting ?, the actual detected Ep and ?e are corrected according to changes in the current flowing through the coil. As a result, a detection accuracy for the rotor position during a transition period is enhanced.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 22, 2015
    Assignee: SANDEN CORPORATION
    Inventor: Daisuke Hirono
  • Patent number: 9190946
    Abstract: An acceleration command calculator calculates an acceleration command “as” based on an output torque Tmb of the spindle motor applied when the rotational speed is less than or equal to a base rotational speed and an inertia Jm+Jl of the overall spindle. A switching speed calculator calculates a control mode switching speed Vs based on the acceleration command “as”. A control mode switching switch switches from a speed control mode to a position control mode when the motor speed Vm becomes less than or equal to the control mode switching speed Vs, to stop the spindle at a desired rotational position. The control mode switching speed Vs may be a value calculated using the following equation: Vs=60×(amax×0.5)1/2, where a maximum acceleration that can be achieved at this time is represented by a max.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: November 17, 2015
    Assignee: OKUMA Corporation
    Inventors: Tomohiro Shibata, Tomohisa Kameyama
  • Patent number: 9122262
    Abstract: A reference model unit calculates a model position, with which a model of a controlled object follows a position command, and a model torque for the model of the controlled object to operate to coincide with the model position. A gain changing unit changes, during the operation of the controlled object, at least a value of one control gain of first-order and second-order control gains used for calculation of a variable compensation value output to an integral compensator by a variable-compensation calculating unit based on at least one of the model position, a position detection value, and a torque command output to the controlled object by a torque adder, and reflects the value on calculation of the variable compensation value.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: September 1, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hidetoshi Ikeda, Akio Saito, Yuji Igarashi
  • Patent number: 9024566
    Abstract: A motor control device includes a feedback filter that has filter characteristics that a frequency response gain is substantially one at frequencies equal to or lower than a filter cutoff frequency, a frequency response gain decreases with increase in frequency in a range from the filter cutoff frequency ?fL to a filter upper limit frequency ?fH higher than the filter cutoff frequency ?fL, and a frequency response gain is substantially constant at frequencies equal to or higher than the filter upper limit frequency ?fH, and performs computing to apply the filter characteristics to a feedback transfer function, wherein a control-constant set unit sets a speed gain Kv and at least one of the filter cutoff frequency ?fL and the filter upper limit frequency ?fH to reduce a ratio of the filter upper limit frequency ?fH to the filter cutoff frequency ?fL with increase in the speed gain Kv.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: May 5, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hidetoshi Ikeda, Hiroyuki Sekiguchi, Yuji Igarashi, Shuya Sano, Takashi Isoda
  • Patent number: 9007004
    Abstract: A controller for an AC electric motor, includes a Feed Forward Torque Controller and a load model. The Torque controller directly derives a torque related component of applied motor voltages from a signal representing a torque command input T* and at least one motor parameter. The load model derives a motor speed value including a model of motor speed behavior of the AC electric motor to provide an output signal which represents the motor speed of the AC electric motor. This motor speed output signal is used in determining a frequency of rotation of an applied motor voltage vector. Where an input to the load model is the signal representing the torque command input T*, the load model uses the signal representing the torque command T*, at least over a part of an operating speed range of the AC motor which includes zero speed, to determine the motor speed output signal.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: April 14, 2015
    Assignee: University of Technology, Sydney
    Inventor: Gregory Peter Hunter
  • Patent number: 8983730
    Abstract: An electric motor has a stator and a rotor that are used in common between two systems. An ECU controls the motor torque by supplying drive electric power to the motor coils independently of each other. When the ECU determines that the vehicle is traveling on a uneven road, the ECU causes the electric motor to perform a braking operation by short-circuiting at least two phases of the electric motor of one of the two systems that is other than the system that is executing a torque control of controlling the assist torque according to the steering torque and the vehicle speed.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: March 17, 2015
    Assignee: JTEKT Corporation
    Inventor: Hiroshi Suzuki
  • Patent number: 8970157
    Abstract: A motor control device includes a feedback filter that has filter characteristics that a frequency response gain is substantially one at frequencies equal to or lower than a filter cutoff frequency, a frequency response gain decreases with increase in frequency in a range from the filter cutoff frequency ?fL to a filter upper limit frequency ?fH higher than the filter cutoff frequency ?fL, and a frequency response gain is substantially constant at frequencies equal to or higher than the filter upper limit frequency ?fH, and performs computing to apply the filter characteristics to a feedback transfer function, wherein a control-constant set unit sets a speed gain Kv and at least one of the filter cutoff frequency ?fL and the filter upper limit frequency ?fH to reduce a ratio of the filter upper limit frequency ?fH to the filter cutoff frequency ?fL with increase in the speed gain Kv.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 3, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hidetoshi Ikeda, Hiroyuki Sekiguchi, Yuji Igarashi, Shuya Sano, Takashi Isoda
  • Patent number: 8970145
    Abstract: A controller for a conventional synchronous motor is configured to produce desired output characteristics. The controller generates a drive current for based on a current command, has a motor correcting section and a gain adjusting section which output a compensated current command based on the current command according to a compensating transfer function for cancelling a first transfer function showing a first torque response characteristic of the synchronous motor and replacing it with a second transfer function showing a second torque response characteristic, and a current controller which generates a drive current corresponding to the compensated current command.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: March 3, 2015
    Assignee: DMG Mori Seiki Co., Ltd.
    Inventors: Shinji Ishii, Masakazu Soshi, Kazuo Yamazaki
  • Patent number: 8933655
    Abstract: An apparatus for measuring an error in a resolver includes a first calculator that perform an inverse Park transform based on voltages Uq and Ud at an output of PI current regulators, and delivers voltage setpoint signals PWMA, PWMB, PWMC to a power stage via a line on which a DC voltage Ubus-dc is available. The power stage generates a three-phase system of voltages UA, UB, UC for energizing an electric machine. The apparatus also includes a signal processor that provides an angle measurement ?m. Based on currents MesIA, MesIB, MesIC of the three phases, and on a rotor angle ?r, a second calculator of the device delivers values MesId, MesIq used by the first calculator. A PI voltage regulator delivers an angle ?c for correcting the error by regulating a setpoint value for the voltage Ud.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: January 13, 2015
    Assignees: Compagnie Generale des Establissements Michelin, Michelin Recherche et Technique S.A.
    Inventors: Cédric Savio, Jean-Louis Linda, Bertrand Vedy
  • Patent number: 8928270
    Abstract: An electric motor system includes a brushless direct-current motor, a driver circuit, a position sensor, and a control circuit. The motor has an output shaft for transmitting torque. The driver circuit supplies power to the motor according to a control signal input thereto. The position sensor measures an angular, rotational position of the motor shaft. The control circuit controls operation of the motor. The control circuit includes a position sensor terminal, a reference terminal, a differential calculator, a controller, and a gain adjuster. The position sensor terminal receives a feedback signal. The reference terminal receives a reference signal. The differential calculator generates an error signal representing a difference between the measured and targeted rotational positions. The controller generates the control signal based on the error signal through a combination of control actions. The gain adjuster is connected to the controller to adjust a gain of each control action.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: January 6, 2015
    Assignee: Ricoh Company, Ltd.
    Inventors: Shogo Sakamoto, Takuya Murata, Takeo Seki, Hiroyuki Kiguchi
  • Patent number: 8896249
    Abstract: A position sensorless control methodology for an electrical machine is provided. In particular, one aspect provides a method for position sensorless operation of an electrical machine using direct position error computation from stator flux observation results and stator current measurement.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 25, 2014
    Assignee: Vestas Wind Systems A/S
    Inventors: Shu Yu Cao, Bing Li, Anshuman Tripathi
  • Patent number: 8892280
    Abstract: A sprung mass damping control system of a vehicle, which aims to suppress sprung mass vibration generated in a vehicle body of a vehicle provided with at least a motor-generator (first and second motor-generators) as a drive source, includes a sprung mass damping control amount calculating device that sets a sprung mass damping control amount for suppressing the sprung mass vibration, and a drive source control device (a motor-generator control device) that executes sprung mass damping control by controlling a motor-generator control amount of the motor-generator to realize the sprung mass damping control amount.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Gohki Kinoshita, Koichiro Muta, Toshiya Hashimoto, Eiji Fukushiro, Takanori Aoki, Akihiro Kimura, Shunsuke Oyama, Masaya Yamamoto, Kaiji Itabashi, Yoshitaka Oikawa, Takashi Saito
  • Patent number: 8878479
    Abstract: A motor control device main unit includes a pressure command signal generation module, a pressure control module, a speed control module, and a current control module. The pressure command signal generation module of the motor control device main unit generates a pressure command value so that a derivative of the pressure command value is equal to or less than a product of an elastic constant of the pressurized target and a maximum motor speed. The pressure control module carries out pressure control calculation to calculate a motor speed command value based on a deviation between the pressure command value and an actual pressure value, and generates a motor speed command signal, which is a signal of the motor speed command value.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: November 4, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Koichiro Ueda
  • Patent number: 8872462
    Abstract: A motor control device includes a vibration-damping-control setting unit to designate one of a plurality of candidate frequencies of a vibration-damping frequency, a signal-for-estimation computing unit to output, based on an operation signal related to a controlled object, a signal for estimation in which signal components of the other candidate frequencies excluding the designated one candidate frequency are reduced from a vibration component of a control system, and a resonance-characteristic estimating unit to estimate one resonance frequency from the output signal for estimation. The vibration-damping-control setting unit designates each of the candidate frequencies individually as one candidate frequency and sets, in a feedforward control unit, each of resonance frequencies estimated by the resonance-characteristic estimating unit related to the individually designated each one candidate frequency.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: October 28, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroyuki Sekiguchi, Hidetoshi Ikeda, Takashi Isoda, Shuya Sano
  • Patent number: 8860355
    Abstract: A motor-control-device main unit includes a pressure-command-signal generating section, a pressure control section, a speed control section, a current control section, and a parameter-adjusting section. With respect to a parameter for a control computation by the pressure control section, the parameter-adjusting section includes an information-acquiring section and a parameter-calculating section. The information-acquiring section acquires, from an exterior, each of pieces of information including an elastic constant of a pressurized target, a reaction-force constant indicating information of a reaction force, a transfer characteristic from a motor torque to a motor speed, and parameters of the speed control section. The information-acquiring section previously acquires information of a control law of the speed control unit. The parameter-calculating section calculates a parameter for the pressure control section based on the information acquired by the information-acquiring section.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 14, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koichiro Ueda, Hidetoshi Ikeda
  • Patent number: 8829830
    Abstract: A control command generator that generates an armature interlinkage flux command and a torque current command by a torque command, a rotation speed, and an operation target command, includes a first flux command generator generating a first flux command by the toque command or the torque current command, a second flux generator generating a second flux command by the torque command or the torque current command and the rotation speed of the synchronous machine, a command allocation setting unit setting an allocation coefficient equivalent to an allocation ratio of the two first and second flux commands by the operation target command, a flux command adjuster outputting an armature interlinkage flux command by the two flux commands and the allocation coefficient, and a torque current command generator generating the torque current command by the torque command and the armature interlinkage flux command.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takahiko Kobayashi, Kiyoharu Anzai, Noriyuki Wada, Daiki Matsuura
  • Patent number: 8796980
    Abstract: A fault detection system for an over-speed protection system of a rotating machine includes a first speed sensor, second speed sensor, and third speed sensor sensing a speed of a shaft of the rotating machine. The system includes a first input configured to receive a first pulse train from the first speed sensor, a second input configured to receive a second pulse train from the second speed sensor, a third input configured to receive a third pulse train from the third speed sensor, and a processor configured to generate a shutdown signal for the rotating machine based on the first pulse train, the second pulse train, and the third pulse train.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: August 5, 2014
    Assignee: General Electric Company
    Inventors: Michael Glynn Wise, Fred Henry Boettner, John Robert Booth
  • Patent number: 8786245
    Abstract: A motor control device main unit includes a pressure command signal generation module, a simulated pressure control module, a simulated position calculation module, a simulated pressure signal generation module, a pressure control module, a speed control module, and a current control module. The speed control module receives a motor speed command signal, which is a signal of a sum of an actual motor speed command value of an actual motor speed command signal from the pressure control module and a simulated speed calculated value of a simulated motor speed signal. The speed control module carries out speed control calculation based on a motor speed command value of the motor speed command signal and an actual motor speed of an actual motor speed signal.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: July 22, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koichiro Ueda, Hidetoshi Ikeda
  • Patent number: 8779703
    Abstract: A method for operating a polyphase machine having a pulse-width-modulated inverter includes: determining a setpoint current value respectively for a current in the longitudinal direction and/or the transverse direction based on a specified torque, ascertaining a setpoint voltage value respectively for a voltage in the longitudinal direction and/or the transverse direction with the aid of the setpoint current value and/or of an actual current value determined at the pulse-width-modulated inverter, controlling and/or regulating the polyphase machine corresponding to the ascertained setpoint voltage value. In this context it is provided that, in addition, using a model, a model value is determined respectively for the voltage in the longitudinal direction and/or the transverse direction, the difference between the setpoint voltage value and the model value is ascertained, and in response to the exceeding of a specifiable maximum difference, an error signal is triggered.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: July 15, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Daniel Raichle, Gunther Goetting, Martin Eisenhardt
  • Patent number: 8723472
    Abstract: Improved precision is realized in positioning control. Provided is a servo control device that is applied to a numerical control equipment provided with a screw-feeding section that converts rotational movement of a motor to linear movement, a driven section that is linearly moved by the screw-feeding section, and a support member by which the screw-feeding section and the driven section are supported and that controls the motor so as to match a position of the driven section to a positioning instruction, including a support-member-reaction-force compensating section 311 that compensates for vibrations of the driven section due to a vibrational reaction force of the support member, wherein a transfer function provided in the support-member-reaction-force compensating section 311 includes a stiffness term for the driven section.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsuyoshi Takeuchi, Hideaki Yamamoto
  • Patent number: 8680804
    Abstract: A method according to an example of the present invention is a servo control method to be applied to a feed drive mechanism configured to drive an object to be driven by using a plurality of motors, in which velocity control of the object to be driven is carried out by using a signal obtained by mixing velocity feedback signals of the motors with each other, and a torque instruction obtained by the velocity control is used for drive of all the motors. By this example, there is provided a servo control system capable of preventing a phenomenon in which a transfer function changes depending on the position of the object to be driven, and the phase abruptly lags to make the operation unstable, thereby making it difficult to increase the gain, from occurring.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 25, 2014
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Jun Fujita
  • Patent number: 8669731
    Abstract: When failure of an inverter or a coil set of one system of a motor drive apparatus having two systems, is detected, a power supply relay of the failing system is interrupted. At the same time, a control circuit sets a same maximum current limitation value as set before detection of failure. When an IG switch is in an ON-state and a steering toque detection value exceeds a predetermined threshold value thereafter, a vibration component, which has a predetermined amplitude and frequency, is added to a current command value so that a steering wheel is vibrated in a direction of rotation so that a driver is cautioned to notice the failure surely.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 11, 2014
    Assignee: Denso Corporation
    Inventor: Nobuhiko Uryu
  • Patent number: 8670866
    Abstract: An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: March 11, 2014
    Assignee: iRobot Corporation
    Inventors: Andrew Ziegler, Duane Gilbert, Christopher John Morse, Scott Pratt, Paul Sandin, Nancy Dussault, Andrew Jones
  • Patent number: 8604745
    Abstract: A method for the identification without shaft encoder of magnetomechanical characteristic quantities of a three-phase asynchronous comprising: —constant voltage impression U1? in ? axial direction in order to generate a constant magnetic flux; —test signal voltage supply U1? in ? axial direction of the asynchronous motor, whereby the ? axial direction remains supplied with constant current; —measuring signal current measurement I1? in ? stator axial direction of the asynchronous motor; —identification of mechanical characteristic quantities of the asynchronous motor based on the test signal voltage U1? and on the measuring signal current I1?, whereby the rotor can execute deflection movements. Method can also be used for control of electrical drives. An identification apparatus for the determination of mechanical characteristic quantities of an asynchronous motor and for motor control, whereby the identified characteristic quantities can be used to determine, optimize and monitor a motor control.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 10, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Patent number: 8558534
    Abstract: An ECU detects a steering angle that is an absolute angle based on a sine signal and a cosine signal that are output from a steering sensor. The ECU includes a three-phase pulse generator that generates, based on the sine signal and the cosine signal, three-phase pulse signals that have edges corresponding to predetermined rotational angles and that are set in such a manner that the predetermined rotational angles corresponding to the respective edges do not overlap each other and are at regular intervals. A microcomputer has a function as a second rotational angle detector that calculates a steering angle based on the pulse signals.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 15, 2013
    Assignee: JTEKT Corporation
    Inventor: Akihiro Tomita
  • Patent number: 8541972
    Abstract: Disclosed is a method for suppressing a speed ripple occurring during an operation of an AC motor by using a torque compensator based on an activation function. The method includes the steps of calculating a speed error ?err based on a reference speed ?ref and an actual speed ?act; calculating a controller output Trm by using the speed error ?err as an input of a PI control and an operation of a compensated torque Tcom; and determining a torque variation based on the controller output Trm and a reference torque Tref and operating the torque variation in relation to an anti-windup gain Ka to use torque variation as an input of an integral (I) control. The method suppresses the speed ripple by compensating for the torque ripple through a controller which calculates the compensated torque by taking the signs of the speed error and the differential speed error into consideration.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 24, 2013
    Assignee: Kyungsung University Industry Cooperation Foundation
    Inventors: Dong Hee Lee, Jin Woo Ahn
  • Publication number: 20130241461
    Abstract: Disclosed herein are sinusoidal modulation control methods and circuits for PMSM. In one embodiment, a method can include: detecting rotor position information of the PMSM to obtain a rotor position signal and a rotor rotating speed measured value; comparing the rotating speed measured value against a reference rotating speed value to generate an error signal, and generating a first regulating voltage signal based on the error signal using a PI regulator; receiving the rotor position signal and the first regulating voltage signal, and generating a full-wave U-shaped modulation wave by using the rotor position signal as a time reference; generating a second U-shaped modulation wave by multiplying the full-wave U-shaped modulation wave with the first regulating voltage signal; comparing the second U-shaped modulation wave against a triangular wave to generate a PWM control signal that controls a switch of an inverter to regulate a current of the PMSM.
    Type: Application
    Filed: February 25, 2013
    Publication date: September 19, 2013
    Applicant: SILERGY SEMICONDUCTOR TECHNOLOGY (Hangzhou) LTD
    Inventor: SILERGY SEMICONDUCTOR TECHNOLOGY (Hangzhou) LTD
  • Patent number: 8519648
    Abstract: Methods and apparatus are provided for rotor and stator temperature compensation for field weakening current. The method comprises generating a phase voltage feed back signal Vph based in part on pre-defined optimal current commands (ID* and IQ*) received by the IPM, generating a phase voltage command (Vphcmd) based in part on a temperature of a magnetic rotor and stator of the IPM, and generating a phase voltage error (Verror) by subtracting the phase voltage feed back signal (Vph) from the phase voltage command (Vphcmd). The method further comprises generating a d-axis command current correction value (?Id) and a q-axis command current correction value (?Iq) from the phase voltage error (Verror); and adjusting the pre-defined optimal current commands (ID* and IQ*) by the d-axis and the q-axis command current correction values (?Id and ?Iq).
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: August 27, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Gabriel Gallegos-Lopez, Min Dai, Brian A. Welchko
  • Publication number: 20130214718
    Abstract: A motor control device includes a feedback filter that has filter characteristics that a frequency response gain is substantially one at frequencies equal to or lower than a filter cutoff frequency, a frequency response gain decreases with increase in frequency in a range from the filter cutoff frequency ?fL to a filter upper limit frequency ?fH higher than the filter cutoff frequency ?fL, and a frequency response gain is substantially constant at frequencies equal to or higher than the filter upper limit frequency ?fH, and performs computing to apply the filter characteristics to a feedback transfer function, wherein a control-constant set unit sets a speed gain Kv and at least one of the filter cutoff frequency ?fL and the filter upper limit frequency ?fH to reduce a ratio of the filter upper limit frequency ?fH to the filter cutoff frequency ?fL with increase in the speed gain Kv.
    Type: Application
    Filed: October 7, 2011
    Publication date: August 22, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hidetoshi Ikeda, Hiroyuki Sekiguchi, Yuji Igarashi, Shuya Sano, Takashi Isoda
  • Patent number: 8508160
    Abstract: Provided is a technique to suppress hunting in a range of a minimum resolution of a pulse encoder when a servo motor has reached a target position and stopped, thereby maintaining a stable stop state. A servo motor position control device uses a cascade configuration having a position control loop as a main loop and a velocity and current control loop as a minor loop. A proportion control is performed for a position control while a proportion integration control is performed for a velocity control and a current control. When the servo motor position has reached the target position and stopped (S201), a current instruction value for the current control is maintained at a value upon stop (S202) and the current control is switched to the proportion control (S204).
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: August 13, 2013
    Assignee: THK Co., Ltd.
    Inventors: Kazuo Shoda, Yuki Nomura
  • Patent number: 8471517
    Abstract: A motor controlling apparatus includes a control unit which sets a motor on standby for a predetermined time if an enable signal is applied and sets the motor to a default state by rotating the motor at least once for the next predetermined time. The apparatus includes a driver unit which generates a drive signal to control the motor and outputs the drive signal to the motor. Accordingly, a stepping out of the motor may be prevented.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: June 25, 2013
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Tae-young Kim, Hyoung-il Kim
  • Patent number: 8461789
    Abstract: In response to the determination or estimation of a back EMF zero crossing event for the phase, a time T1 is calculated, T1 being representative of the desired absolute maximum value of the phase current. Current samples are taken by the current sampling unit symmetrically centered around T1. The values of the samples CS[1] to CS[10] are then input into the error function to calculate an error function value. The calculated error function value is input to the lead angle control unit which calculates a value for lead_angle. The value of lead_angle is calculated to be the adjustment in phase angle of the driving voltage profile that will minimize the absolute value of the error function. In generating and adjusting the driving voltage profile the driving voltage generation unit takes into account both lead_angle and the output of the position and speed estimation unit.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: June 11, 2013
    Assignee: Melexis Technologies NV
    Inventors: Christian Paintz, Thomas Freitag
  • Patent number: 8450962
    Abstract: A control system for a motor includes a current regulation controller for generating a terminal voltage command. The terminal voltage command is used for converting a supply voltage to a three phase voltage to power a motor. The control system also includes a terminal voltage command feedback module for controlling the terminal voltage command. The terminal voltage command feedback module compares the terminal voltage command to a determined voltage limit of the supply voltage and generates a d-axis current adjustment command in accordance with the comparison. The d-axis current adjustment command is used for reducing the terminal voltage command below the determined voltage limit. The control system also includes a summer coupled with the terminal voltage command feedback module. The summer adds the d-axis current adjustment command to a d-axis current command received from a lookup table.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: May 28, 2013
    Assignee: Deere & Company
    Inventors: Long Wu, Robert Shaw
  • Patent number: 8384321
    Abstract: When it is determined that a rotor is initially in a stationary state, a current vector is applied to a coil by a vector control method so as to rotate the rotor in a forward direction from a present position of the rotor regardless of a predetermined start position of the rotor. Therefore, a motor can be stably started with less power consumption and noise/vibration.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: February 26, 2013
    Assignee: LG Electronics Inc.
    Inventor: Ji-Youn Jeong
  • Patent number: 8384331
    Abstract: This invention aims to achieve safety without interchanging an entire existing servo system to a servo system having the safety function. In a servo system including a servo motor, and a servo amplifier for controlling the drive of the servo motor based on the output of an encoder attached to the servo motor, a safety control device for monitoring presence of abnormality based on the output of the encoder, and shielding the supply of drive power to the servo motor if abnormality is present is arranged, and the monitoring content is set as setting information.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: February 26, 2013
    Assignee: Omron Corporation
    Inventors: Teruyuki Nakayama, Minoru Hashimoto
  • Patent number: 8362727
    Abstract: A control technology for a synchronous motor for suppressing rotational pulsation caused by variation in individuals without making a control algorithm complex is provided. In a motor drive system which is a control device for a synchronous motor, in order to suppress the pulsation component of N times as high as the AC frequency for driving the synchronous motor, a controller in which the phase property of the disturbance response of the controller with respect to the pulsation frequency is within ±45° is arranged. Therefore, the torque pulsation component generated from distortion in induction voltage or variation between phases is suppressed.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: January 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshitaka Iwaji, Yasuhiko Kokami, Minoru Kurosawa, Junnosuke Nakatsugawa
  • Patent number: 8344671
    Abstract: The invention relates to a speed control method of a magnetic motor and is capable of providing a speed controller of the magnetic motor realizing highly stable, highly efficient and highly responsive control characteristics even around critical torque of the motor. When an excessive torque command value (or a q-axis commanded current value) greater than a torque maximum value (or a q-axis current) that can be outputted by the motor is required, an input of speed control is limited so that the q-axis commanded current value does not increase up to a limit value.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: January 1, 2013
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Kazuaki Tobari, Yasuo Notohara, Wataru Hatsuse, Dongsheng Li, Kentaro Oi, Yuuji Funayama
  • Publication number: 20120306426
    Abstract: A motor control device includes: a feedforward computing section for computing a motion reference value and a feedforward driving force based on a motion command; a deviation compensation computing section for outputting a deviation compensation driving force by a control computation for reducing a control deviation; a driving-force command synthesizing section for outputting a driving-force command based on the feedforward driving force and the deviation compensation driving force; a reaction-force compensation computing section for computing a motion correction value based on a predetermined reaction-force reference value and the deviation compensation driving force; and a control-deviation computing section for computing the control deviation based on a deviation between the motion reference value and a motor motion detection value, and the motion correction value.
    Type: Application
    Filed: January 25, 2011
    Publication date: December 6, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hidetoshi Ikeda, Yoshihiro Marushita, Koichiro Ueda, Yuji Igarashi, Kiyoshi Maekawa
  • Patent number: 8294410
    Abstract: A method and an apparatus for the failsafe monitoring of an electromotive drive without additional sensors, including a drive having a three-phase control of an electric motor, detection of the current and voltage profiles of each of the three phases, as they are forwarded to the motor by drive electronics, determination of the load speed while using the detected current and voltage values, where the determination of the load speed takes place by calculating an observer model with reference to the detected current, to the detected voltage, to the frequency preset by the control and to the characteristic data of the motor and generation of a failsafe switch signal for the motor when the calculated load speed does not correspond to a preset desired speed within the framework of preset tolerances. The load torque can also be determined and monitored with reference to the observer model.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: October 23, 2012
    Assignee: Sick AG
    Inventor: Mathias Ams
  • Patent number: 8274252
    Abstract: A motor control apparatus includes a sub-controller including a two-degree-of-freedom repetitive compensator and a shaping filter. The two-degree-of-freedom repetitive compensator includes a forward delay placed in a forward route of a loop and a feedback delay placed in a feedback route thereof and is configured so that a total delay time provided by the forward delay and the feedback delay is equal to the cycle of a target command or a disturbance. The shaping filter is configured so that the product of the pulse transfer function of the two-degree-of-freedom repetitive compensator and the complementary sensitivity function of a general-purpose control system has a low-pass characteristic.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 25, 2012
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Wennong Zhang, Hiroshi Nakamura
  • Patent number: 8248012
    Abstract: A method for determining gain of a back-electromotive force amplifier may include setting an electric motor into a tri-state function mode and storing a first quasi steady-state value for back-electromotive force from the difference signal, and forcing a reference current through the electric motor and determining a first value of the gain of the amplifier for equaling a difference signal to the first quasi steady-state value. The method may further include setting the electric motor into a tri-state function mode a second time and storing a second quasi steady-state value for back-electromotive force from the difference signal, and increasing the first value of the gain by an amount proportional to a difference between the second quasi steady-state value and the first quasi steady-state value.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 21, 2012
    Assignee: STMicroelectronics S.R.L.
    Inventors: Davide Betta, Diego Armaroli, Roberto Trabattoni, Marco Ferrari
  • Patent number: 8247923
    Abstract: A photovoltaic system having a plurality of photovoltaic modules producing electric energy and method for operating such photovoltaic system are disclosed. With the method, the photovoltaic modules are connected to a first DC motor having a motor shaft, and a generator shaft of a three-phase generator is coupled to the motor shaft. The three-phase generator can be connected to a power grid. The motor shaft of a second DC motor can be connected to the generator shaft, with only one of the two DC motors being initially driven with the electric energy produced by the photovoltaic modules. The electric energy is subsequently divided among both the first and the second DC motor. This process significantly shortens the startup process of the photovoltaic system compared to conventional systems.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: August 21, 2012
    Assignee: Adensis GmbH
    Inventor: Bernhard Beck
  • Patent number: 8228016
    Abstract: Systems and methods are disclosed to improve torque linearity of an electric machine when operating in a field-weakening region. The systems and methods adjust the q-axis and the d-axis components of the stator current commands of the electric machine using a flux weakening control loop and a torque linearity control loop such that torque linearity is maintained when the machine operates in a field weakening region of operation.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Gabriel Gallegos-Lopez, Milun Perisic, Silva Hiti
  • Patent number: 8222851
    Abstract: A machine control device has a position regulator configured to enable modification of the proportional gain during regulation operations, and has proportional gain setting unit, which sends an instruction to modify the proportional gain to the position regulator based on a position instruction value which is an output of a position instruction unit. In the proportional gain setting unit, when the movement velocity based on the position instruction value from the position instruction unit decreases, that is, when the position instruction value is a value at which the movement distance is short, the proportional gain of the position regulator is set high, and when the movement velocity based on the position instruction value increases, that is, when the position instruction value is a value at which the movement distance is long, the proportional gain is set low.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 17, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Hirokazu Tajima, Takayuki Kaneko
  • Patent number: 8203294
    Abstract: An apparatus for use with a flight control actuator and method for assembling the same is provided. The apparatus includes a motor drive system and a control unit. The motor drive system includes a capacitor-based energy storage configured to store and provide energy within or proximate to the actuator. The control unit is coupled to the motor drive system and is configured to facilitate managing power within or proximate to the actuator.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 19, 2012
    Assignee: GE Aviations Systems LLC
    Inventors: Hao Huang, David Dimitri Karipides, Arthur Vorwerk Radun
  • Publication number: 20120069316
    Abstract: An exemplary stage assembly has movable stage mass and counter-mass. A stage motor is coupled to the stage mass and counter-mass such that stage-mass motion imparted by the stage motor causes a reactive motion of the counter-mass counter to the motion of the stage mass. At least one trim-motor is coupled to the counter-mass. A control system commands the trim-motor to regulate movement of the counter-mass in reaction to stage-mass motion. A PI feedback controller receives the following-error of the counter-mass and generates corresponding center-of-gravity (CG) force commands and trim-motor force commands to the trim-motor(s) to produce corrective counter-mass motion. A trim-motor force limiter receives trim-motor force commands and produces corresponding limited trim-motor force commands that are fed back as actual CG force commands to the feedback controller to modify integral terms of the feedback controller according to the limited trim-motor force commands.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 22, 2012
    Inventors: Pai-Hsueh Yang, Michael B. Binnard, Scott Coakley
  • Patent number: 8138706
    Abstract: A safety drive unit (1) with a safety circuit (12) that resets a flap or a valve into a specified safety position for controlling a gas or liquid volumetric flow, in particular in the field of heating, ventilation, and monitoring systems. The safety drive unit (1) comprises an actuator (14) with a controllable electric motor (28), a capacitive energy storage unit (20), and energy converter (22) with a power module, and a power supply (18). During normal operation, the electric current in the power module of the energy converter (22) is converted to a lower voltage and stored in the capacitive energy storage unit. If the voltage drops below a predetermined value or if there is a power failure, the stored electrical charge is converted back to a higher voltage by the same power module, and the electric motor (28) is activated until the specified safety position is reached.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: March 20, 2012
    Assignee: Belimo Holding AG
    Inventors: Martin Ochsenbein, Curdin Stäheli, Roman Furrer
  • Patent number: 8120302
    Abstract: A servo control apparatus capable of suppressing adverse effects of disturbance, load variation and the like, and realizing robust and high-performance speed control. The apparatus includes both of the following observers: a disturbance observer for adding a disturbance compensation torque Tf, calculated from a torque command T* and an electric motor rotational speed ?m, to a torque command basic signal T0*, calculated on the basis of a deviation between a speed command ?* and a feedback speed ?f by a PI control section, thus outputting the torque command T*; and a phase advance compensation observer for generating, from the torque command basic signal T0* and the electric motor rotational speed ?m, an output of a nominal plant serving as an element in which no delay occurs, thus outputting the output as the feedback speed ?f.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: February 21, 2012
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Wennong Zhang, Mitsujiro Sawamura, Yasuyuki Takei