Using Test Material Desorption Patents (Class 324/467)
  • Patent number: 8928329
    Abstract: A fast response output signal circuit (10) for a cold cathode gauge is provided to produce a fast response output signal (48) in addition to a voltage output signal (40) that is representative of the pressure in the cold cathode gauge. The fast response output signal (48) is either on or off, thus can be used to trigger a closing of an isolation valve or other responsive action upon a change in pressure that attains or exceeds a certain set point threshold. The fast response output signal is produced and processed with analog circuits, but the set point is produced with a microprocessor. The voltage output signal can be produced as a logarithmic function of the pressure.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: January 6, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Bert Downing, Donghua Gu, Neil T. Peacock
  • Patent number: 8854048
    Abstract: In a particle beam therapy system which scans a particle beam and irradiates the particle beam to an irradiation position of an irradiation subject and has a dose monitoring device for measuring a dose of the particle beam and an ionization chamber smaller than the dose monitoring device, the ionization chamber measuring a dose of a particle beam passing through the dose monitoring device, the dose of the particle beam irradiated by the dose monitoring device is measured; the dose of the particle beam passing through the dose monitoring device is measured by the small ionization chamber; and a correction coefficient of the dose measured by the dose monitoring device corresponding to the irradiation position is found based on the dose of the particle beam measured by the small ionization chamber.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: October 7, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Toshihiro Otani, Hisashi Harada, Masahiro Ikeda, Kazushi Hanakawa, Taizo Honda
  • Patent number: 8829913
    Abstract: A technique for reducing an electromagnetic noise entering an electrode or a drift of a signal due to a fluctuation in the ambient temperature is provided to improve the S/N ratio of a signal originating from a component of interest. A dummy electrode having the same structure as an ion-collecting electrode is provided within a lower gas passage at a position where dilution gas with no sample gas mixed therein flows. A differential amplifier is provided to perform differential detection between output A of a current amplifier connected to the ion-collecting electrode and output B of a current amplifier connected to the dummy electrode. The differential signal is free from a common mode noise or drift and hence accurately reflects the amount of the component of interest.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: September 9, 2014
    Assignees: Shimadzu Corporation, Osaka University
    Inventors: Kei Shinada, Shigeyoshi Horiike, Takahiro Nishimoto, Katsuhisa Kitano
  • Patent number: 7508216
    Abstract: A method for measuring work function includes the steps of: (a) providing a field emission electron source having a carbon nanotube tip as a cathode electrode and a spaced anode electrode, having a predetermined spaced distance therebetween; (b) applying a voltage between the cathode electrode and the anode electrode and measuring a first current-voltage curve of the field emission electron source in a vacuum environment; (c) forming a layer of field emission material at least on the surface of the carbon nanotube tip; (d) measuring a second current-voltage curve of the now-treated field emission electron source in the same conditions as that in the step (b); (e) achieving two Fowler-Nordheim curves calculated from the two current-voltage curves according to the Fowler-Nordheim equation; and (f) comparing the two Fowler-Nordheim curves and calculating the work function of the field emission material therefrom.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: March 24, 2009
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Wei Wei Wei, Kai-Li Jiang Jiang, Shou-Shan Fan Fan
  • Patent number: 6642723
    Abstract: An apparatus for monitoring deposition of a liquid-to-pasty medium on a substrate has a sensor fitted with two electrodes and an electronic circuit connected to the sensor for generating a signal which is characteristic of the substrate and the medium. The electronic circuit measures the imaginary component of the electrical permittivity of the substrate moving, together with the medium, between the two electrodes, and uses the measured value to determine the characteristic signal.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: November 4, 2003
    Assignee: ITW Industrie GmbH
    Inventor: Andreas Blank
  • Patent number: 5028544
    Abstract: The objects of the invention are attained in an apparatus for performing a method of analysis of organic compounds in chromatography, comprising a chromatographic column sealingly connected with the housing of a surface ionization detector having coaxially arranged inside, a collector and a thermoemitter with current leads, the housing of the surface ionization detector being provided with an opening for an auxiliary gas feed line and an opening for delivering the spent gases. The thermoemitter includes a closed-end sleeve with a heating element in contact with the external non-working surface of the thermoemitter. The collector includes a hollow cylinder spaced from the inner ionizing surface of the thermoemitter, and the outlet portion of the chromatographic column being received inside and throughout the length of the collector.
    Type: Grant
    Filed: October 14, 1988
    Date of Patent: July 2, 1991
    Inventors: Utkur K. Rasulev, Erkinzhan G. Nazarov, Valery O. Sidelnikov, Rustam N. Evtukhov, Shavkat S. Alimkhodzhaev, Bakhtiyar M. Tashpulatov, Gulsara B. Khudaeva