Where Energy Is Transmitted Through A Test Substance Patents (Class 324/639)
  • Patent number: 11892490
    Abstract: Disclosed herein is a system for measuring a microwave dielectric property of a solid material under force. The system measures the microwave dielectric property of the solid material under a horizontal pressure. A shield case for microwave electromagnetic shielding is provided outside the system. The shield case includes a layer of pure aluminum and a layer of pyramids made of a microwave absorbing material. A manual hydraulic pump controls loading and unloading of a pressure loading device.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: February 6, 2024
    Assignee: CENTRAL SOUTH UNIVERSITY
    Inventors: Lixin Wu, Wenfei Mao, Yuan Qi
  • Patent number: 11733079
    Abstract: A method for estimating a flow rate of a material (e.g., a multiphase fluid) may include: flowing the material through one or more of a plurality of receptacles of a dielectric contrast analysis structure that includes: a bulk dielectric substance and the plurality of receptacles in the bulk dielectric substance; exposing the dielectric contrast analysis structure to incident electromagnetic radiation; detecting and analyzing a resultant electromagnetic radiation from the exposed dielectric contrast analysis structure to yield a phase fraction in the material and a phase distribution in the material; measuring a differential pressure across the dielectric contrast analysis structure; and estimating the flow rate of the material using the differential pressure, the phase fraction, and the phase distribution in the material.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: August 22, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Lang Feng, John J. Valenza
  • Patent number: 11585764
    Abstract: Methods and systems for multi-level RF pulse monitoring and RF pulsing parameter optimization at a manufacturing system are provided. A radio frequency (RF) signal is pulsed within a processing chamber in accordance with a set of RF pulsing parameters. Sensor data is received from one or more sensors that indicates a multi-level RF pulse waveform detected within the processing chamber based on the RF signal pulsing. One or more peaks are identified in the detected multi-level RF pulse waveform. Each identified peak corresponds to at least one RF signal pulse of the RF signal pulsing within the processing chamber. A determination is made, based on the identified one or more peaks, whether the detected multi-level RF pulse waveform corresponds to the target multi-level RF pulse waveform. An indication of whether the detected multi-level RF pulse waveform corresponds to the target multi-level RF pulse waveform is provided to a client device.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: February 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Dermot Cantwell, Quentin Ernie Walker, Serghei Malkov, Jatinder Kumar
  • Patent number: 11397228
    Abstract: The present invention discloses imaging antenna and array by designing the system in the Ultra-high frequency (UHF) band 300 MHz-3 GHz with resolution comparable to high-frequency microwave imagers (i.e., super-resolution). To obtain high resolution at relatively low system cost and complexity, a novel modulated antenna array element design is disclosed. The antenna is basically small loop loaded with spiral resonator. The selection of the SR as a resonator provides for adequate miniaturization rate at the lower end of the microwave frequency range. A non-modulated version of this antenna has been conceived and yielded a resolution comparable to the 24 GHz antennas while operating at 426 MHz. The disclosed antenna element operating at 426 MHz produced images with very comparable attributes to the one obtained at 24 GHz.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: July 26, 2022
    Assignee: Khalifa University of Science and Technology
    Inventor: Mohamed Abou-Khousa
  • Patent number: 11395380
    Abstract: A method of heating a load in a cavity using microwaves wherein the microwaves provide mode fields in the cavity includes obtaining a desired temperature pattern within said cavity based on information about regions of the load. A heating pattern in the cavity is determined and comprises zones of different intensities corresponding to the desired temperature pattern. A zone of higher intensity in the determined heating pattern corresponds to a region of higher temperature in the desired temperature pattern. The method also includes controlling one or more independently controllable microwave generators or feeding ports so the mode fields form the determined heating pattern and thereby heat the load according to the desired temperature pattern.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 19, 2022
    Assignee: Whirlpool Corporation
    Inventors: Fredrik Hallgren, Davide Parachini, Gianpiero Santacatterina, Daniele Devito
  • Patent number: 11378107
    Abstract: A piston and cylinder unit (1) of a working machine, for example a wheel loader, excavator, tipper, crane or stacker or a lifting platform serves to steer, support, extend, pivot, lift or other movements of the working machine or of a tool or a different part of the working machine. The piston and cylinder unit (1) includes a cylinder (2), a piston (7) being arranged in the cylinder (2) to be axially movable and a piston position detection unit (28) detecting the axial position of the piston (7) in the cylinder (2) by high frequency technology. The piston position detection unit (28) includes a housing (3) and an electronic unit being arranged in the housing is arranged in a mounting bore (27) extending radially in the cylinder (2). The piston position detection unit (28) is arranged in the mounting bore (27) such that the interior (3) of the cylinder (2) is sealed from the surroundings of the piston and cylinder unit (1) by the housing (29).
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: July 5, 2022
    Assignee: Precision Nanosensors, Inc.
    Inventors: Karl-Wilhelm Herwig, Alexander Pik
  • Patent number: 11209478
    Abstract: A system for verifying the operation of RF generators and resulting pulse waveforms in semiconductor processes includes a process chamber, a profile sensor, an optical sensor and a controller. A process implemented by the controller of the system for verifying the operation of RF generators and resulting pulse waveforms in semiconductor processes includes generating a pulse profile of a pulse shape of an RF generator under test, selecting a stored, representative profile of an RF generator known to be operating correctly to compare to the profile generated for the RF generator for a same pulse mode, defining a quantitative metric/control limit to identify similarities and/or differences between pulses of same pulse modes between the generated profile of the RF generator and the stored profile, comparing the generated profile and the selected stored profile, and determining if the RF generator under test is operating properly based on the comparison.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: December 28, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sathyendra Ghantasala, Hyun-Ho Doh
  • Patent number: 11131230
    Abstract: There is provided an exhaust treatment device for a diesel engine capable of accurately estimating an amount of ash deposition. In the exhaust treatment device, an ash deposition estimation device estimates an amount of ash deposition on a DPF after ending of regenerating treatment for the DPF, based on data regarding differential pressure and exhaust flow rate stored in a memory device over a period immediately before the end of regeneration, the period ranging from the end point of regenerating treatment for the DPF to a point in time going back a predetermined duration. An electronic control device preferably makes an alarm device issue an alarm, upon arrival of an estimated value of ash deposition at a predetermined alarm request value.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: September 28, 2021
    Assignee: KUBOTA CORPORATION
    Inventors: Katsushi Inoue, Masanori Fujiwara, Hiroaki Okano
  • Patent number: 11118518
    Abstract: A method for controlling an internal combustion engine system including a particulate filter includes receiving a desired output for an internal combustion engine and receiving sensor information including information indicative of a quantity of soot in the particulate filter. The method includes calculating a plurality of sets of engine performance values based on respective sets of candidate control points, each set of engine performance values including a soot change rate at which the quantity of soot changes over time and determining whether the soot change rate satisfies a soot change rate limit that requires an increase in the quantity of soot in the particulate filter. The method also includes controlling the internal combustion engine based on a set of candidate control points that satisfies the soot change rate limit.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: September 14, 2021
    Assignee: Caterpillar Inc.
    Inventor: Sylvain J. Charbonnel
  • Patent number: 11035710
    Abstract: Disclosed herein are a method and apparatus for measuring flow using an electromagnetic resonance phenomenon. The flowmeter includes an RF resonator in the form of a cylinder into which a transmission antenna for forming a magnetic field in a preset frequency range and a reception antenna for measuring a response signal are inserted, the RF resonator being shielded from an external magnetic field; and a processor for measuring the flow in a pipe that passes through the RF resonator based on the response signal. The RF resonator includes circular holes in the two bases of the cylinder so as to enable the pipe to pass through the RF resonator, and is formed with a first body and a second body, which are split in the height direction of the cylinder and are coupled using a coupling member so as to wrap the outer circumferential surface of the pipe.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: June 15, 2021
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyo-Bong Hong, Jae-Chan Jong, Seung-Min Choi
  • Patent number: 11035951
    Abstract: Embodiments herein describe a scanning station for identifying an air gap between one or more items stored in a container (e.g., a cardboard box) and a surface of the container (e.g., a top lid of the cardboard box). After identifying the air gap, in one embodiment, the scanning station provides instructions to a downstream cutting station where the container is cut opened. In one embodiment, the scanning station includes one or more articulating arms that each includes a scanner (e.g., a radar sensor) attached on an end of the articulating arm facing the container. Moving the articulating arms along the boundaries of the container provides a 3D image of the inside of the container. By processing this image, the scanning station can identify an air gap along a desired cut line as well as a thickness of the sides of the container.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: June 15, 2021
    Assignee: Amazon Technologies, Inc.
    Inventors: Sean Murphy, Sachin R. Kothari, Jungtao Liu, Durgaprasad Kashinath Shamain, Celalettin Umit Bas
  • Patent number: 10969512
    Abstract: A metal detector detects when a target that is a desirable metal object is located within a medium. A signal is transmitted into the medium. A response signal is received from the medium. The response signal includes a secondary medium response signal from the medium and includes a secondary target response signal from the target when the target is located within the medium. The response signal is amplified to produce an amplified signal. Compensation circuitry perform transmit coil transfer function compensation on the amplified signal to produce a compensated signal. A notch module removes a resistive component of the secondary medium response signal from the compensated signal. A signal vector resistive component demodulator produces a vector resistive component output signal from output of the notch module. A vector reactive component demodulator produces a vector reactive component output signal from the output of the notch module.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: April 6, 2021
    Assignee: Tarsacci LLC
    Inventor: Dimitar Gargov
  • Patent number: 10926192
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: February 23, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Patent number: 10926194
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: February 23, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Patent number: 10926196
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: February 23, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Patent number: 10926193
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: February 23, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Patent number: 10926195
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: February 23, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Patent number: 10909467
    Abstract: An electromagnetic (EM) sensor includes a front-end module, a memory, and a microcontroller unit. The front-end module generates an electromagnetic signal using externally introduced electromagnetic waves. The memory stores a first reference signal and a second reference signal generated from multiple probability models required to recognize the electromagnetic signal. The microcontroller unit compares the electromagnetic signal with the first reference signal and the second reference signal, to determine whether the electromagnetic signal is a valid signal.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: February 2, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Jae Lee, Myoung Oh Ki, Long Yan
  • Patent number: 10877001
    Abstract: Embodiments of the invention provide a “tool-kit” of processing techniques which can be employed in different combinations depending on the circumstances. For example, flow speed can be found using eddy tracking techniques, or by using speed of sound measurements. Moreover, composition can be found by using speed of sound measurements and also by looking for turning points in the k-? curves, particularly in stratified multi-phase flows. Different combinations of the embodiments can therefore be put together to provide further embodiments, to meet particular flow sensing requirements, both on the surface and downhole. Once the flow speed is known, then at least in the case of a single phase flow, the flow speed can be multiplied by the interior cross-sectional area of the pipe to obtain the flow rate. The mass flow rate can then be obtained if the density of the fluid is known, once the composition has been determined.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: December 29, 2020
    Assignees: CHEVRON U.S.A. INC., SILIXA LTD.
    Inventors: Mohammad Amir, Mahmoud Farhadiroushan, Daniel Finfer, Veronique Mahue, Tom Parker
  • Patent number: 10845400
    Abstract: The present invention relates to a processing of digitally measured signals. When sampling a measurement signal with a predetermined sampling rate, aliasing effects may occur, if a Nyquist condition is violated. For this purpose, the present invention suggests to analyze a frequency spectrum of a signal and to compare the frequency components of the spectrum with the setting of a measurement apparatus, in particular a sampling rate of the measurement apparatus. If a measurement signal comprises frequency components which may violate the Nyquist condition, an alert may be generated to adapt the set of the measurement arrangement.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: November 24, 2020
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventors: Markus Freidhof, Andreas Maier
  • Patent number: 10808353
    Abstract: A defect detection system comprises a movement assembly and a sensor assembly. The movement assembly is configured and positioned to hold and move a substantially non-conductive structure. The sensor assembly comprises at least one radar device configured and positioned to detect conductive debris in the substantially non-conductive structure as portions of the substantially non-conductive structure move therepast. A defect detection method and a processing a composite structure are also described.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: October 20, 2020
    Assignee: Northrop Grumman Innovation Systems, Inc.
    Inventors: Nathan T. Green, James Scott, Cameron D. Gould
  • Patent number: 10799217
    Abstract: A sinogram is corrected in a form that can use a straight-ray type reconstruction method while considering trajectory of refracted waves. Specifically, based on the sequentially estimated path information of the virtual waves, an arrival time difference sinogram is corrected by a difference or a ratio between “shortest arrival time of wave” and “arrival time of the wave through the shortest path” to each detection element.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: October 13, 2020
    Assignee: Hitachi, Ltd.
    Inventors: Yushi Tsubota, Kenichi Kawabata, Atsurou Suzuki, Takahide Terada, Wenjing Wu, Kazuhiro Yamanaka
  • Patent number: 10746076
    Abstract: A particulate matter detection circuit includes, a negative resistance circuit that couples to a first antenna inserted in a housing accommodating a first filter that filters an exhaust gas, couples to a second antenna inserted in the housing via a matching circuit that performs an impedance matching and a second filter that narrows the frequency band of a passing signal, and oscillates at a resonance frequency of the housing, and a detection circuit that outputs a voltage value corresponding to a signal strength of a radio wave received by a third antenna or the second antenna inserted in the housing. The resonance frequency of the housing varies depending on an amount of matter adhered to the first filter.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 18, 2020
    Assignee: FUJITSU LIMITED
    Inventor: Tatsuya Hirose
  • Patent number: 10695057
    Abstract: A surgical tool assembly that has a first jaw and a second jaw that is movable relative to the first jaw. A firing member assembly is configured to move distally from a starting position. The firing member assembly includes a first firing element and a second firing element that is configured to move between a locked position wherein the second firing element is in locking engagement with a lockout portion of the first jaw to prevent the firing member assembly from moving distally from the starting position upon application of a firing motion thereto and an unlocked position. The firing member assembly is configured to prevent an unlocking load from being applied to an attachment portion of the second firing element upon application of the firing motion thereto when the second firing element is in the locked position.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: June 30, 2020
    Assignee: Ethicon LLC
    Inventors: Frederick E. Shelton, IV, Gregory J. Bakos, Jason L. Harris
  • Patent number: 10444056
    Abstract: The present disclosure relates to an apparatus and method for liquid level detection. The method may include providing a circuit board including a plurality of horizontally mounted emitter/receiver pairs arranged vertically along the circuit board within a liquid containment area. The method may further include determining, using one or more processors associated with the circuit board, if liquid is present between each of the plurality of emitter/receiver pairs based upon, at least in part, data received from one or more of the plurality of emitter/receiver pairs.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 15, 2019
    Assignee: Lat-Lon LLC
    Inventor: David Baker
  • Patent number: 10401464
    Abstract: A ferromagnetic resonance (FMR) measurement system is disclosed with a waveguide transmission line (WGTL) connected at both ends to a mounting plate having an opening through which the WGTL is suspended. While the WGTL bottom surface contacts a portion of magnetic film on a whole wafer, a plurality of microwave frequencies is sequentially transmitted through the WGTL. Simultaneously, a magnetic field is applied to the contacted region thereby causing a FMR condition in the magnetic film. After RF output is transmitted through or reflected from the WGTL to a RF detector and converted to a voltage signal, effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening are determined based on magnetic field intensity, microwave frequency and voltage output. A plurality of measurements is performed by controllably moving the WGTL or wafer and repeating the simultaneous application of microwave frequencies and magnetic field at additional preprogrammed locations on the magnetic film.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: September 3, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Son Le, Guenole Jan
  • Patent number: 10386397
    Abstract: A digital receiver comprising at least two reception pathways, the method carries out a digital inter-correlation of the signals obtained as output from at least two filters of different central frequencies and different ranks, the rank and the central frequency of the filters being chosen as a function of a determined frequency-wise search domain. For a determined search domain, the various sampling frequencies of the reception pathways are chosen so that the ambiguous frequencies resulting from the spectral aliasings vary as a monotonic function of the true frequency of the signals.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: August 20, 2019
    Assignee: THALES
    Inventors: Pascal Cornic, Patrick Le Bihan, Joël Fillatre
  • Patent number: 10309910
    Abstract: A method of determining salinity of multi-phase fluids in a conduit includes exciting a sensing device to cause emission of electromagnetic waves of one or more frequencies into the multi-phase fluid. The method includes receiving transmitted or reflected electromagnetic waves from the multi-phase fluid. Furthermore, the method includes determining an intermediate parameter from the received electromagnetic waves. The method also includes obtaining estimated values of a plurality of parameters from the intermediate parameter. The estimated values comprise at least one of an estimated value of conductance, an estimated value of susceptance, an estimated value of differential conductance, an estimated value of differential susceptance, an estimated value of a real part of complex permittivity, and an estimated value of an imaginary part of complex permittivity. Salinity of the fluid is determined based, at least in part, on the estimated values of the plurality of parameters.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: June 4, 2019
    Assignee: General Electric Company
    Inventors: Prafull Sharma, Aparna Chakrapani Sheila-Vadde
  • Patent number: 10309953
    Abstract: A filter retentate analysis system and method is disclosed, which provides information to diagnose the current and historical state of a system generating the retentate or through which the retentate has passed. The disclosure describes the analysis of retentate characteristics which may include the composition, amount, distribution, and physical or chemical properties of the retentate useful to monitor or diagnose the state, health, or operating history of a system or sub-system. The analysis is broadly applicable to wide range of systems and process ranging from engines and exhaust systems to production plants and equipment.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: June 4, 2019
    Assignee: CTS CORPORATION
    Inventors: Alexander Sappok, Leslie Bromberg, Paul Ragaller
  • Patent number: 10309911
    Abstract: A device and method for the radioscopic examination of a continuous strip-shaped material of rubber which runs continuously in particular. During the movement, the strip-shaped material is x-rayed by a radioscopic measurer and the entire cross-sectional surface is detected so that foreign bodies or defects present in the material are detected according to their position and orientation. An elimination device removes the previously identified foreign body during the feed movement of the material in that a tool, configured as a punching tool, of the elimination device is moved synchronously with the material.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: June 4, 2019
    Assignee: TROESTER GMBH & CO. KG
    Inventors: Kurt Schoppmann, Bernd Pielsticker
  • Patent number: 10288661
    Abstract: A method for testing the transmission and reflection properties of an automotive radome body is described. An automotive radome body is placed at an installation location. A first signal is sent via at least one transmission antenna of an antenna system facing a first side of the radome body wherein the reflected part of the first signal is received by several receiving antennas of the antenna system facing the first side in order to determine the reflection properties of the radome body. A second signal is sent via a remote transmission antenna facing a second side of the radome body being opposite to the first side wherein the transmitted part of the second signal is received by the several receiving antennas of the antenna system in order to determine the transmission properties of the radome body. Further, an apparatus is described.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: May 14, 2019
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Sherif Ahmed, Tobias Koeppel
  • Patent number: 10271388
    Abstract: A microwave heating apparatus and a method of heating a load using microwaves is disclosed. The microwave heating apparatus comprises a cavity arranged to receive a load, a plurality of feeding ports for feeding microwaves from a plurality of microwave generators to the cavity, and a control unit. The control unit is configured to obtain a desired temperature pattern within the cavity based on information about a plurality of regions of the load. The control unit is also configured to determine a heating pattern comprising zones of different intensities corresponding to the desired temperature pattern, and control at least one of the plurality of microwave generators for providing the heating pattern within the cavity. The apparatus and method may provide heating of a load according to different desired temperatures in various parts of the load.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: April 23, 2019
    Assignee: Whirlpool Corporation
    Inventors: Fredrik Hallgren, Davide Parachini, Gianpiero Santacatterina, Daniele Devito
  • Patent number: 10191177
    Abstract: An apparatus comprising at least one first signal loop configured to receive a first signal; at least one second signal loop magnetically coupled with the first signal loop configured to generate a second signal; a signal processor configured to monitor the second signal and determine the presence of at least one metal object dependent on the second signal.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: January 29, 2019
    Assignee: Nokia Technologies Oy
    Inventors: Jean-Baptiste Greuet, Cieslak Lars, Koray Ozcan
  • Patent number: 9970748
    Abstract: A tire tread depth measurement system includes a scanner and smart phone that fit into the palm of a user either directly or attached to a glove. The technician obtains tread depth data by moving her hand holding the scanner over a tire profile. The scanner communicates with a nearby control box that uploads the data to a server for determination of tread depth, tire wear pattern and wheel alignment. The tire tread analysis is downloaded to the control box and reported to the technician via the smart phone. The smart phone is programmed to identify the vehicle and related information about it based on the license plate or vehicle identification number by interpreting the license number or VIN and interrogating various data bases via the internet. Wear and analysis results are forwarded for printing the entire report.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 15, 2018
    Assignee: Tire Profiles LLC
    Inventors: David Boyle, Roger H. Tracy
  • Patent number: 9934180
    Abstract: The present invention discloses a system and a method for communication and control between incompatible devices that operate in accordance with different protocols without hardware modification and without requirement of a dedicated hardware.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 3, 2018
    Inventors: Quan Gan, Jiali Xu, Jun Dong
  • Patent number: 9891092
    Abstract: A method for determining the fill level of a medium (2) in a container (3) that is advantageous as compared to the prior art is achieved in that several emitting devices (6) are supplied with electromagnetic signals and that an emitting behavior of at least a portion of the emitting devices (6) is evaluated in view of the fill level of the medium (2).
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: February 13, 2018
    Assignee: KROHNE Messtechnik GmbH
    Inventors: Christoph Baer, Thomas Musch, Michael Deilmann, Attila Bilgic, Stephan Neuburger
  • Patent number: 9856731
    Abstract: A wellhead test system comprising: i) a Coriolis mass flow meter configured to receive a flow of a liquid; ii) a water analyzer configured to receive the flow of the liquid; and iii) a controller coupled to the Coriolis mass flow meter and the water analyzer. The controller receives from the Coriolis mass flow meter at least one of: mass flow measurement data, mass density measurement data, and drive gain and also receives from the water analyzer at least one of water frequency measurement data, oil frequency measurement data, and insertion loss measurement data. The controller determines a gas volume fraction (GVF) value and modifies the operation of the Coriolis mass flow meter and the water analyzer based on the GVF value.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: January 2, 2018
    Assignee: Phase Dynamics, Inc.
    Inventor: Bentley N. Scott
  • Patent number: 9851236
    Abstract: A device for determining the fill level of a medium in a container having at least one electronic device and at least one signal conductor arrangement. The electronic device supplies the signal conductor arrangement 5 with electromagnetic signals. To provide a device for determining the fill level, the signal conductor arrangement has several emitting devices and the electronic device provides at least one measure for an emitting behavior of at least one emitting device.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: December 26, 2017
    Assignee: KROHNE Messtechnik GmbH
    Inventors: Christoph Baer, Thomas Musch, Michael Deilmann, Attila Bilgic, Stephan Neuburger
  • Patent number: 9792750
    Abstract: There is described a method for checking a value document of a specified type for the suspected presence of a forgery, in particular of a pieced-together forgery, wherein at least one ultrasonic property of the value document is captured in a spatially resolved manner so as to form location-dependent measuring data, wherein while employing the location-dependent measuring data it is checked whether there are present in a specified checking region of the value document two areal regions whose ultrasonic properties deviate from each other according to a specified difference criterion, and wherein there is formed an authenticity signal which represents the result of the check. Further, a corresponding checking device is described.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: October 17, 2017
    Assignee: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH
    Inventors: Jan Domke, Ingo Scholz
  • Patent number: 9719964
    Abstract: A system, method, and apparatus for detecting at least one condition of interest relating to a tube, e.g. the presence of an air bubble. In some embodiments, the sensor includes antennas, a split-ring resonator, a frequency generator capable of generating frequencies in the microwave range, and a detection component. The detection component may estimate at least one parameter of received microwave energy in order to determine if a condition of interest exists.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 1, 2017
    Assignee: DEKA Products Limited Partnership
    Inventor: David Blumberg, Jr.
  • Patent number: 9638127
    Abstract: A method for verifying the validity of an output of a particulate matter sensor mounted in an engine exhaust system downstream of a diesel particulate filter, the particulate matter sensor including a pair of electrodes spaced apart from each other, includes initiating regeneration of the diesel particulate filter, applying and maintaining a higher than nominal voltage across the electrodes following the step of initiating regeneration of the diesel particulate filter, and measuring an electrical parameter across the electrodes while the higher voltage is applied across the electrodes, where the electrical parameter is indicative of an amount of soot accumulated on the sensor. The reading of accumulated soot is evaluated to determine whether the sensor is indicating that the amount of accumulated soot is within an expected range based on a clean diesel particulate filter and the elevated applied voltage.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: May 2, 2017
    Assignee: Delphi Technologies, Inc.
    Inventors: Lary R. Hocken, Robert J. A. Van Der Poel
  • Patent number: 9600952
    Abstract: A method for checking a value document of a specified value-document type has a window which has a foil region. The measurement values for an ultrasound transmission of the value document are established in a spatially resolved manner, and it is checked while employing the measurement values whether for a specified number of locations in a specified checking region the ultrasound transmission according to a specified criterion is greater than a specified minimum ultrasound transmission that is characteristic of a specified portion, lying outside the checking region, of at least one value document of the specified value-document type.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: March 21, 2017
    Assignee: GIESECKE & DEVRIENT GMBH
    Inventors: Jan Domke, Ingo Scholz
  • Patent number: 9588071
    Abstract: A multiphase meter system including: transmitting and receiving antennas in the flow pipe, wherein the receiving antennas are at different distances from the transmitting antenna, and a control system configured to: apply an electromagnetic field to the transmitting antenna and receive signals from the receiving antenna induced in the fluid or the pipe by the transmission of the electromagnetic field; calculate a resonance quality of the signals received by at least one of the first and second receiver antennas; calculate composition or salinity of the fluid based on the resonance quality if the resonance quality is greater than a threshold value, and calculate composition or salinity of the fluid based on a transmission time difference of the signals received from the first receiver antenna and the signals received by the second receiver antenna if the resonance quality is below the threshold value.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: March 7, 2017
    Assignee: ROXAR FLOW MEASUREMENT AS
    Inventor: Ebbe Gustaf Nyfors
  • Patent number: 9575045
    Abstract: In some aspects, the disclosure is directed to signal processing methods and systems for identifying a material on a body of a person using electromagnetic radiation. A radar system may measure a first reflection of radiation incident on a body of a person. The first reflection may be from a surface of the body. The radar system may measure a second reflection of the radiation. The second reflection may be from a first material residing on or proximate to the surface of the body. An analyzer may determine, relative to the first reflection, a delay in the second reflection due to propagation of a portion of the radiation through the first material. The analyzer may determine, based on the delay, at least one of: the first material and a dielectric constant of the first material.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: February 21, 2017
    Assignee: Northeastern University
    Inventors: Carey Rappaport, Jose Angel Martinez-Lorenzo
  • Patent number: 9547066
    Abstract: An antenna system including at least one antenna connected to a captured signal processing receiver, an antenna protection radome; and a plurality of electro-optical probes distributed on or inside of the radome.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: January 17, 2017
    Assignee: Commissariat à l'Energie Atomique et aux Energies Alternatives
    Inventors: Serge Bories, Lama Ghattas, Dominique Picard
  • Patent number: 9476843
    Abstract: A device for measuring at least one of dielectric and magnetic properties of a sample by means of a microwave transmission measurement includes a transmitting antenna and a receiving antenna defining a transmission measuring section in which the sample to be measured is located, and transmitting and receiving modules. The transmitting and receiving modules include one or more transmission-side and receiving side synthesizers, a clock, one or more transmission side or receiving side mixers to generate intermediate-frequency signals based on high-frequency signals received from the synthesizers, and at least one evaluation unit to perform an evaluation based on the intermediate-frequency signals.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: October 25, 2016
    Inventor: Elisabeth Katz
  • Patent number: 9404952
    Abstract: A product is provided into a first end of a conduit so that the product flows toward a second end of the conduit. The conduit may include a first pair of probes attached at a first location and a second pair of probes at a second location. The product's conductivity in the conduit at the first location is monitored using the first set of probes, and the product's conductivity at the second location is monitored using the second set of probes. An marker material is introduced into an entry port of the conduit so that the marker material flows with the product. The marker material's conductivity is different than the product's conductivity. At a first time, the first set of probes detects the conductivity of the product has changed due to the introduction of the marker material, and at a second time, the second set of probes also detects such change.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: August 2, 2016
    Assignee: Aseptia, Inc.
    Inventors: Michael Druga, John Alan Duff, Josip Simunovic
  • Patent number: 9383737
    Abstract: An energy management system within a building obtains energy usage data over several cycles to determine a minimum feasible load. The minimum feasible load corresponds to operational conditions of the building, such as occupied or unoccupied. The energy usage data is binned according to the operational condition under which it was obtained. A threshold based on the minimum feasible load is used to monitor energy usage within the building and to identify anomalies in energy demand for possible action.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 5, 2016
    Assignee: TRANE U.S. INC.
    Inventors: Alberto Fonts Zaragoza, Frank Carl Altamura, Jr., Mohan Ram Dattatreya, Himanshu Monty Joshi
  • Patent number: 9178258
    Abstract: A radar system in an autonomous vehicle may be operated in various modes and with various configurations. The autonomous vehicle features a radar system having a waveguide with a first waveguide section, a second waveguide section, and a seam between the first and the second waveguide sections. The first waveguide section and the second waveguide section form a waveguide cavity. Additionally, the seam corresponds to a low surface current location of a propagation mode of the waveguide and is formed where the first waveguide section is coupled to the second waveguide section. The height of the first waveguide section may be equal to the height of the second waveguide section. The waveguide also may include a feed configured to introduce a wave with the propagation mode into the waveguide. Moreover, the waveguide may also include more than one cavity. Each cavity may lie on a plane defined by the seam.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: November 3, 2015
    Assignee: Google Inc.
    Inventor: Adam Brown
  • Patent number: 9111334
    Abstract: Microwave imaging apparatus and method for completely imaging the human body (or portions thereof) in sufficient detail to render a timely and accurate medical diagnosis by trained medical professionals. The data conversion processes presented will not require physicians and radiologists to learn to use image data in a format they are not familiar with. Hounsfield encoded and/or MRI intensity encoded medical images in the DICOM format are provided from reconstructed dielectric images obtained from raw scattering data. This allows for the exchange of information created from microwave imaging techniques to be implemented with existing diagnostic tools and analysis techniques. Furthermore, methods are presented for converting image data with Hounsfield encoded units to an image with dielectric encoded units.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: August 18, 2015
    Assignee: ELLUMEN, INC.
    Inventors: Todd R. McCollough, William J. McCollough