Magnetic Field Control Patents (Class 327/370)
  • Patent number: 10566516
    Abstract: The various implementations described herein include methods, devices, and systems for detecting light. In one aspect, a photodetector device includes: a superconducting wire, and a transistor that includes a semiconducting component and a superconducting component. The superconducting wire is electrically coupled to the superconducting component. The semiconducting component is located adjacent to the superconducting component. The superconducting component is configured to, in response to receiving an input current exceeding a current threshold, transition from a superconducting state to a non-superconducting state and generate heat sufficient to increase a temperature of the semiconducting component from a temperature below a semiconducting threshold temperature to a temperature above the semiconducting threshold temperature.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: February 18, 2020
    Assignee: PSIQUANTUM CORP.
    Inventor: Faraz Najafi
  • Patent number: 9721708
    Abstract: There is provided a high-temperature superconducting (HTS) coil and a method of manufacturing the same, allowing simple and excellent affixation between side panels for cooling the superconducting coil and the HTS coil while inhibiting delamination of an HTS wire. The method of manufacturing the HTS coil including the rare-earth-based HTS wire of the superconducting coil and side panels for cooling the superconducting coil which are affixed thereto, windings of the rare-earth-based HTS wire of the superconducting coil being separated between turns, includes: utilizing a tape-like polytetrafluoroethylene (PTFE) film 3 as an insulator between the windings of the rare-earth-based HTS wire 2 to form a PTFE-film co-wound superconducting coil; impregnating the PTFE-film co-wound superconducting coil 4 with epoxy resin 6; and affixing the side panels 5 to the PTFE film co-wound superconducting coil 4.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: August 1, 2017
    Assignee: RAILWAY TECHNICAL RESEARCH INSTITUTE
    Inventors: Katsutoshi Mizuno, Masafumi Ogata, Tomohisa Yamashita
  • Patent number: 8432163
    Abstract: The method for cancellation of low frequency noise in a magneto-resistive mixed sensor (1) comprising at least a superconducting loop with at least one constriction and at least one magneto-resistive element (6) comprises a set of measuring steps with at least one measuring step being conducted with the normal running of the mixed sensor and at least another measuring step being conducted whilst an additional super-current is temporarily injected in the at least one constriction of the at least one superconducting loop of the mixed sensor (1) up to a critical super-current of the constriction so that the result of the at least another measuring step is used as a reference level of the at least one magneto-resistive element (6).
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: April 30, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Claude Fermon, Hedwige Polovy, Myriam Pannetier-Lecoeur
  • Patent number: 7106124
    Abstract: A field emission RF amplifier. The field emission RF amplifier includes one or more RF amplification units on a substrate and held in a vacuum state and facing a reflection electrode. The RF amplification unit includes a cathode electrode, gate electrode, and an anode electrode all formed on the same substrate. The cathode electrode has a CNT emitter. A DC voltages are applied to the cathode and anode electrodes. An RF signal is input at the cathode electrode and is amplified and output at the anode electrode. Capacitors and inductors are arranged to filter out AC and DC components where needed. An improved amplification of RF signals with high electron mobility and good impedance matching abilities result.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: September 12, 2006
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Andrei Zoulkarneev, Jun-Hee Choi
  • Patent number: 6183859
    Abstract: A low resistance magnetic tunnel junction with low resistance barrier layer and method of fabrication is disclosed. A first magnetic layer of material with a surface is provided and a continuous layer of material, e.g. aluminum, is formed on the surface of the first magnetic layer. The continuous layer of material is treated to produce a low resistance barrier layer of oxynitride material and a second magnetic layer is formed on the barrier layer of oxynitride material to complete the low resistance magnetic tunnel junction.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: February 6, 2001
    Assignee: Motorola, Inc
    Inventors: Eugene Chen, Jon Slaughter, Renu Whig
  • Patent number: 5479131
    Abstract: A Josephson junction voltage standard based on rf controlled dc SQUID's is proposed. A microwave signal is injected using rf control lines. A D/A converter based on series-connected rf controlled SQUID's is described.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: December 26, 1995
    Assignee: Hewlett-Packard Company
    Inventor: Gregory S. Lee
  • Patent number: 5376626
    Abstract: A superconducting switch is composed of anisotropic magnetic material. The switch has a first superconducting section, a variable resistive section and a second superconducting section. An external magnetic field is applied so that the first and second superconducting sections remain superconducting and the resistive section changes resistance when the magnetic field applied exceeds the critical field of the variable resistance section. The different critical field regions are achieved by exploiting the natural critical field anisotropy of the ceramic superconductors (a previously unobserved phenomena in metal superconductors). By making the different sections with different orientations they will exhibit different critical field valves for a given direction of applied fields. The state of the switch is changed by either increasing or decreasing the external magnetic field about the critical field value of the resistive section of the switch.
    Type: Grant
    Filed: October 2, 1992
    Date of Patent: December 27, 1994
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Alvin J. Drehman, Stephen Bachowski