Including Discrete Semiconductor Device Having Three Or More Electrodes Patents (Class 332/113)
  • Patent number: 10911004
    Abstract: A chopper-stabilized amplifier includes a first transconductance amplifier and a first chopper circuit coupled to an input of the first transconductance amplifier. A second chopper circuit is coupled to an output of the first transconductance amplifier. The chopper-stabilized amplifier also includes second and third transconductance amplifiers having inputs coupled to the output of the first transconductance amplifier. The second transconductance amplifier produces an output responsive to a first notch clock signal having a first phase relative to the chopping of the second chopper circuit. The third transconductance amplifier produces an output responsive to a second notch clock signal having a second phase relative to the first phase. The output signals produced by the second and third transconductance amplifiers are added to filter ripple noise at the outputs of the second and third transconductance amplifiers.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: February 2, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Anand Subramanian, Anand Kannan
  • Patent number: 10862481
    Abstract: A power control device comprises the following elements. An input assembly has a switch and is electrically connected to a first actuator, and generates a trigger signal according to a state of the switch or a control signal inputted from the first actuator. A calculating assembly is electrically connected to the input assembly and outputs a first signal from a control output terminal and a second signal from a feedback output terminal when the calculating assembly receives the trigger signal. An output assembly is electrically connected to the control output terminal of the calculating assembly for receiving the first signal and changes a power-on/off state of a controlled device when a voltage level of the first signal changes. A feedback assembly is electrically connected to the feedback output terminal of the calculating assembly and outputs a feedback signal to the first actuator according to the second signal.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: December 8, 2020
    Assignees: INVENTEC (PUDONG) TECHNOLOGY CORPORATION, INVENTEC CORPORATION
    Inventors: Fang-Jie Chu, Peng Zhan
  • Patent number: 10704150
    Abstract: A system for monitoring thin film deposition is described. The system includes a quartz crystal and a synthesizer to generate a modulated signal. The modulated signal is to be grounded through the quartz crystal. The system also includes a phase detector to determine a phase of the modulated signal from the quartz crystal in order to monitor thin film deposition. A modulation index can be selected so that, at resonance, high frequency of the signal matches the crystal frequency.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: July 7, 2020
    Assignee: INFICON, Inc.
    Inventor: Mohamed Buhary Rinzan
  • Patent number: 10581422
    Abstract: A PWM modulator according to an embodiment includes a first comparator configured to compare a first input signal with a first carrier and output a comparison result, a second comparator configured to compare a second input signal with a second carrier and output a comparison result, and a selector configured to output the comparison result while switching between the comparison result of the first comparator and the comparison result of the second comparator in a cycle according to a cycle of the first or the second carrier.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: March 3, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Yamauchi, Toshikazu Fujii
  • Patent number: 10263607
    Abstract: The present disclosure provides a pulse filtering circuit with two input ports and two output ports, including: a first signal path with a first buffer unit, a first comparison unit, and a first shaping unit; and a second signal path with a second buffer unit, a second comparison unit, and a second shaping unit; each of the first comparison unit and the second comparison unit has four ports, which are a first port, a second port, a third port and a fourth port; the first port of each comparison unit serves as an input control port, the second port of each comparison unit serves as an output port, the third port serves as a fixed potential port, and the fourth port serves as a floating potential input port.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: April 16, 2019
    Assignee: Mosway Technologies Limited
    Inventors: On Bon Peter Chan, Jing Zhu, Yunwu Zhang
  • Patent number: 9099960
    Abstract: An apparatus for PLL bandwidth expansion including a compensation filter and a phase locked loop, where the compensation filter is programmed with a compensation function derived based on programmable coefficients and parameters of a transmitting device, a frequency response of the phase locked loop, and a wanted frequency response.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: August 4, 2015
    Assignee: Hughes Network Systems, LLC
    Inventors: Thomas Jackson, George Eapen
  • Patent number: 8982933
    Abstract: A communications system includes a target receiver having a passband and configured to receive an intended signal within the passband. The communications system also includes a jammer configured to jam the target receiver from receiving the intended signal. The jammer has at least one antenna, a jammer receiver coupled to the at least one antenna, a jammer transmitter coupled to the at least one antenna, and a controller configured to cooperate with the jammer receiver. The controller is configured to detect the intended signal and to generate an interfering signal comprising a continuous phase modulation (CPM) waveform having a constant envelope so that the interfering signal at least partially overlaps the passband of the target receiver.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: March 17, 2015
    Assignee: Harris Corporation
    Inventor: James A. Norris
  • Patent number: 8350636
    Abstract: A modulation arrangement comprises an input (E) for supplying a data signal (DS), a pre-modulator (VMod) that is coupled to the input (E) and features a clock pulse input (TEV) for supplying a pre-clock pulse (VT), a main modulator (HMod) that is coupled to the pre-modulator (VMod) on the input side and comprises a clock pulse input (TEH) for supplying a main clock pulse (HT), as well as an output for providing a modulated control signal (ST), and a switchable current source (Q, S) for providing a current (IS) that is controlled by the modulated control signal (ST) at an output (A) of the modulation arrangement. Furthermore, a method for providing a modulated control signal is disclosed.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: January 8, 2013
    Assignee: Austriamicrosystems AG
    Inventors: Peter Trattler, Franz Stelzl
  • Patent number: 7283012
    Abstract: A tri-state pulse density modulator includes a first switch device coupled to a high voltage, and a second switch device coupled to a low voltage. An adder receives a pulse density modulation (PDM) input signal and a latched input signal to generate an output sum signal and a carry signal. A latch module coupled with the adder latches the output sum signal with a clock signal to generate the latched input signal. A control circuit module responsive to the carry signal for selectively turns off the first and second switch devices to generate the PDM output signal at a tri-state voltage between the first and second voltages, or turns on the first or second switch device to generate the PDM output signal at the first or second voltage, respectively. Thus, the PDM output signal only switches between the tri-state voltage and either the first voltage or the second voltage.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: October 16, 2007
    Assignee: Via Telecom., Ltd.
    Inventor: Meoung-Jin Lim
  • Patent number: 6242988
    Abstract: A spiking neuron circuit providing a spiking output signal in response to an input current that causes a first capacitor to charge to a threshold voltage. In response to achieving such threshold, an output terminal is connected to a voltage, illustratively VDD, for a period determined by an applied voltage, Vpw. Rapid switching of the output to its spiking level is achieved using a positive feedback path, and deactivation of such feedback rapidly terminates the spiking period.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: June 5, 2001
    Assignee: Lucent Technologies Inc.
    Inventor: Rahul Sarpeshkar
  • Patent number: 5623233
    Abstract: An optically controlled MESFET semiconductor oscillator assembly having a MESFET semiconductor which, when voltage biased by a pulsed dc voltage, oscillates at a free running frequency; an optical signal delivery system, such as a light intensity modulator connected to optical fibers; and other oscillator circuitry including a pulse generator. In operation, the pulsed free running oscillation of the MESFET semiconductor can be injection locked to the intensity modulated optical signal delivered via the optical signal delivery system.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: April 22, 1997
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Thomas P. Higgins, Dana J. Sturzebecher, Vladimir G. Gelnovatch
  • Patent number: 5410276
    Abstract: Circuits for modulating an RF input signal applied to an RF high power amplifier to produce a modulated RF output signal. The present invention employs a VHF power supply or converter with a modulation control circuit that enables the power supply to be pulsed at frequencies commensurate with a radar in which it is employed, for example. Modulation of the high power amplifier is accomplished by applying a pulsed voltage output signal to a DC bias input of the high power amplifier. More particularly, the modulation control circuit receives a logic control signal, generates a pulse control signal in response thereto, and modulates a DC input signal processed by the converter. The VHF converter receives and modulates the DC input signal in response to the pulse control signal to cause the pulsed voltage output signal from the converter to pulse at a rate and duty cycle determined by the logic control signal. The output signal modulates the RF input signal amplified by the RF high power amplifier.
    Type: Grant
    Filed: December 28, 1993
    Date of Patent: April 25, 1995
    Assignee: Hughes Aircraft Company
    Inventors: William B. Hwang, Michael Brand, Ronnie B. Chan, Robert S. Boiles
  • Patent number: 5038051
    Abstract: A switching modulator for a microwave radar transmitter is presented. In embodiment, a string of series connected transistors is controlled from an external source for pulse modulating the cathodes of transmitter microwave tubes. The individual components of the series string can be individually switched ON or OFF in order to maintain regulation of the modulation pulse. In a second embodiment, a pulse transformer has a plurality of individual primary windings and a single secondary winding wherein the primary windings are specially wound to provide isolation between the primary windings with the flux in the secondary winding and the voltage generated in the secondary winding being proportional to the sum of the excitation of the primary windings. Each of the primary windings are individually switchable for regulating the generated output voltage at the secondary winding.
    Type: Grant
    Filed: May 8, 1984
    Date of Patent: August 6, 1991
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jeffrey C. Firman, Richard E. Rouse, William H. Zinger