Coils Having Different Axis Or On Different Core Legs Patents (Class 336/184)
  • Patent number: 8354910
    Abstract: A coil block and an electronic device using the same are provided. The coil block includes a first coil, a second coil, a core having an intermediate layer for separating the first coil and the second coil from each other, and a shield for shielding the first coil, the second coil, and the intermediate layer, wherein the first coil and the second coil have the same winding direction. According to the coil block and the electronic device, the filtering can be performed without any inductance offset even if the PWM signal having the inversed phase or the same phase is inputted. Also, since two windings can be wound on to one core using a common coil, the cost and the size of the coil block can be reduced.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: January 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyu-eun Park, Dae-kyoung Noh, Sung-woo Kim
  • Patent number: 8307534
    Abstract: A method of forming an encapsulated coupled coil arrangement. The method includes coupling a first lead of a first coil to a second lead of an electrical circuit device, by soldering or infusion, using a superconductive jointing alloy; and encapsulating the first coil, the electrical circuit device and the jointed leads of the first coil and the electrical circuit device in an encapsulation material. The jointing alloy has a melting point higher than a highest temperature experienced by the encapsulation material having the encapsulation process.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 13, 2012
    Assignee: Siemens Plc
    Inventors: Graham Hutton, M'Hamed Lakrimi, Adrian Mark Thomas
  • Patent number: 8310330
    Abstract: A dry-type transformer includes at least one high-voltage winding and one low-voltage winding. The windings are operatively connected to one another by an electromagnetic field, and each winding is constructed from winding conductors, wherein the high-voltage winding and the low-voltage winding have a defined distance from one another, and spacers are arranged between the windings and maintain the defined distance.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: November 13, 2012
    Assignee: ABB Technology AG
    Inventors: Charles W. Johnson, Jan Leander, Karel Bilek, Benjamin Weber
  • Patent number: 8305183
    Abstract: This invention relates to a transformer (1) for multi-output power supplies such as those commonly found in electronic equipment. The transformer comprises a magnetic core (3) and a plurality of windings (5, 7, 9) at least some of which are fractional windings, arranged about the magnetic core. The transformer comprises a dual transformer structure with a pair of transformers, a main transformer (11) and an auxiliary transformer (13). In a preferred embodiment, the main transformer and the auxiliary transformer are connected together. In this way, readily available magnetic components may be used in the construction of the transformer and the simple construction allows for a large cross-sectional area of transformer to be deployed so that reduced turn counts of windings may be used.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments (Cork) Limited
    Inventor: George Young
  • Patent number: 8302287
    Abstract: A multilayer inductor includes a bottom magnetic layer having an external conductive pattern formed on a bottom surface thereof for connection to a substrate such as a printed circuit board. The bottom external conductive pattern includes signal/power contacts and first and second inductor electrodes. A top magnetic layer includes a top external conductive pattern having signal/power contacts and inductor electrode contacts. An inductor conductive pattern formed on the top surfaces of intermediate magnetic layers disposed between the top and bottom magnetic layers are electrically coupled to each other by means of through holes to form a spiral inductor element.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: November 6, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Jun Lu, François Hébert
  • Patent number: 8294544
    Abstract: An M-phase coupled inductor including a magnetic core and M windings, where M is an integer greater than one. The magnetic core is formed of a core material, and the magnetic core includes a first outer leg forming a first gap. The first gap includes a first gap material having lower magnetic permeability than the core material. Each winding is wound at least partially around at least a portion of the magnetic core, and each winding has a respective leakage inductance. The first gap causes the leakage inductances to be greater than if the first outer leg did not form the first gap. The coupled inductor may be used in a power supply, and the power supply may be used in a computing apparatus.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: October 23, 2012
    Assignee: Volterra Semiconductor Corporation
    Inventors: Alexandr Ikriannikov, Anthony Stratakos
  • Patent number: 8215003
    Abstract: A method of fabricating a reactor composed of a coil, a core, and a container, capable of suppressing the core to break when a current flows in the coil to generate magnetic flux. In the method, the coil is formed by spirally winding a conductive wire. The coil is immersed in an insulating film in liquid with electrical insulation. The coil is placed in a furnace. Annealing for the coil and thermosetting for the insulating film are performed at a temperature within 250 to 320° C. for a period of time within 30 minutes to one hour before forming the core in the container. The coil is then disposed in the container. Inside and outside areas of the coil in the container is filled with a resin mixture composed of magnetic powder and resin. The resin mixture in the container is hardened to form the core.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: July 10, 2012
    Assignees: Denso Corporation, NEC Tokin Corporation
    Inventors: Kenji Saka, Yousuke Setaka, Hiroyuki Katsuta, Takashi Yanbe
  • Patent number: 8209849
    Abstract: A method of A production method including interdiffusion of a Ni component in a magnetic layer and a Zn component in a nonmagnetic sheet to form an interdiffusion layer in a region of the nonmagnetic sheet inside a conductive pattern. This method allows the interdiffusion layer to be formed without need for complicated processing of the nonmagnetic sheet. Furthermore, there is no boundary region between the magnetic layer and the nonmagnetic sheet around it. The nonmagnetic layer is located between turns of a coiled conductor to suppress degradation of dc bias characteristics and a magnetic body penetrates in a region inside the coiled conductor to suppress reduction in inductance due to provision of the nonmagnetic layer between turns of the coiled conductor.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 3, 2012
    Assignee: TDK Corporation
    Inventors: Hidekazu Sato, Masazumi Arata, Kunio Oda, Yoshimitsu Satoh
  • Patent number: 8205324
    Abstract: A damascene process is utilized to fabricate the segmented magnetic core elements of an integrated circuit inductor structure. The magnetic core is electroplated from a seed layer that is conformal with a permanent dielectric mold that results in sidewall plating defining an easy magnetic axis. The hard axis runs parallel to the longitudinal axis of the core and the inductor coils are orthogonal to the core's longitudinal axis. The magnetic field generated by the inductor coils is, therefore, parallel and self-aligned to the hard magnetic axis. The easy axis is enhanced by electroplating in an applied magnetic field parallel to the easy axis.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 26, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson, Andrei Papou
  • Patent number: 8136222
    Abstract: A method of forming an encapsulated coupled coil arrangement. The method includes coupling a first lead of a first coil to a second lead of an electrical circuit device, by soldering or infusion, using a superconductive jointing alloy; and encapsulating the first coil, the electrical circuit device and the jointed leads of the first coil and the electrical circuit device in an encapsulation material. The jointing alloy has a melting point higher than a highest temperature experienced by the encapsulation material during the encapsulation process.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: March 20, 2012
    Assignee: Siemens Plc
    Inventors: Graham Hutton, M'Hamed Lakrimi, Adrian Mark Thomas
  • Patent number: 8125304
    Abstract: An improved choke assembly for a power electronics device is provided. More specifically, a choke assembly with improved protection from environmental conditions such as dirt and water is provided. An improved choke assembly may include an insulative housing for an inductor coil that seals the inductor coil from the environment.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: February 28, 2012
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: John R Brubaker, Lixiang Wei
  • Patent number: 8108984
    Abstract: Methods of manufacture of integrated circuit inductors having slotted magnetic material will be described. The methods may employ electro- or electroless plating techniques to form a layer or layers of magnetic material within the slotted magnetic material structure, and in particular those magnetic material layers adjacent to insulator layers.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: February 7, 2012
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Gerhard Schrom, Peter Hazucha, Fabrice Paillet, Tanay Karnik
  • Patent number: 8077003
    Abstract: A coil component includes a first coil winding wound around a first axis, a second coil winding wound around a second axis and juxtaposed to the first coil winding, a connecting member for electrically connecting second terminals that are one end of the first coil winding and one end of the second coil winding, and a heat conductive member mounted on the connecting member and having electrical insulation properties and heat conductivity. The first and second coil windings are each wound such that magnetic flux is generated by a current flowing through the first and second coil windings to pass through an opening of the first coil winding and through an opening of the second coil winding in an opposite direction to the direction passing the opening of the first coil winding. Accordingly, heat generated in the first and second coil windings is dissipated from the heat conductive member.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: December 13, 2011
    Assignee: TDK Corporation
    Inventor: Akira Ikezawa
  • Publication number: 20110279208
    Abstract: A coil component comprises a plurality of coil elements arranged side-by-side and a connecting portion that interconnects the coil elements. The plurality of coil elements are formed from a single flat wire wound edgewise so that the coil elements wind in the same direction and have rectangular annular configurations. The connecting portion includes a portion of the flat wire between the two coil elements wound edgewise to protrude radially outward from two adjacent sides of the rectangular annular configurations of the coil elements, and bent flatwise at three positions including a turnover so that the two coil elements are arranged side-by-side with their axes in parallel with each other.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 17, 2011
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventor: Hiroshi ONO
  • Patent number: 8013710
    Abstract: A magnetic element module includes a magnetic core assembly and at least one first winding structure. The magnetic core assembly includes a first magnetic core and a second magnetic core. The first magnetic core includes a first magnetic slab and a first magnetic post. The second magnetic core includes a second magnetic slab and a second magnetic post. The first winding structure is sheathed around the first magnetic post. The first magnetic post is placed on a second edge of the second magnetic slab. The second magnetic post is placed on a first edge of the first magnetic slab. The first magnetic core, the second magnetic core and the first winding structure are combined together, thereby producing the magnetic element module.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: September 6, 2011
    Assignee: Delta Electronics, Inc.
    Inventors: Yu-Chun Lai, Po-Yu Wei
  • Patent number: 8004380
    Abstract: A transformer 10 has a first core CR1, a second core CR2, a first transformer primary winding W1, a coil 45, a coil 46 and a coil 47. The second core CR2 is integrally formed with the first core CR1. The first transformer primary winding W1 is wound onto the first core CR1. The coil 45 is wound onto the first core CR1 and forms a transformer T1 together with the first transformer primary winding W1. The coil 46 is wound around the first core CR1 and forms a transformer T2 together with the first transformer primary winding W1. The coil 47 is connected to the coil 45 and coil 46 and forms an output coil using the second core CR2 as a magnetic core.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: August 23, 2011
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventor: Sergey Moiseev
  • Publication number: 20110199175
    Abstract: Two conducting wires are used in one embodiment of an inductor. Opposite ends of each of the conducting wires are connected to leader lines (terminals) shared by the conducting wires. Each of the conducting wires is wound to make half a round of an annular or ring-like magnetic substance. One of the conducting wires is wound around a lower half area of the magnetic substance to form one winding while the other conducting wire is wound around an upper half area of the magnetic substance to form another winding. In this manner, the distance between the leader lines can be increased to eliminate parasitic capacitance between the leader lines. The magnetic fluxes generated by current flowing in the two windings are in the same direction. Thus, it is possible to provide an inductor whose total parasitic capacitance is reduced. In other embodiments, additional conducting wires are used.
    Type: Application
    Filed: February 8, 2011
    Publication date: August 18, 2011
    Applicant: FUJI ELECTRIC HOLDINGS CO., LTD.
    Inventor: Kazuaki Mino
  • Patent number: 7990246
    Abstract: A pulse transformer arrangement (100) is built from an uncut pulse transformer core (110) and at least one foil winding (120-A, 120-B) (each) comprising multiple insulated conducting strips arranged around the core and ending in foil winding terminals to form multiple independent primary windings. This new design principle has several advantages. Making the winding(s) of foil eliminates the need to cut the core, because of the ease of insertion of the foil winding(s) onto the core. The work to set up a plurality of primary windings is significantly reduced. In addition to the elimination of the costs for cutting the core, this also brings the further advantages of reduced DC reset current, reduced risk for electrical shorts and avoidance of excessive losses due to potential high frequency AC resistance problems.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: August 2, 2011
    Assignee: Scandinova Systems AB
    Inventors: Mikael Rolf Lindholm, Bengt Anderberg
  • Patent number: 7940152
    Abstract: A multi-primary and distributed transformer is provided for one or more sets of parallel-connected or series-connected power amplifiers. The transformer may include a plurality of primary windings, including a first primary winding, a second primary winding, a third primary winding, and a fourth primary winding, where each of the plurality of primary windings is not directly connected to any other of the plurality of primary windings, where each primary winding includes a respective positive port and a negative port for receiving respective differential signals, where each primary winding include a respective first number of turns; and a single secondary winding having a plurality of segments, including a first segment and a second segment, where each segment includes a second number of turns, the second number of turns greater than or equal to the respective first number of turns, where the single secondary winding includes at least one output port.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: May 10, 2011
    Assignees: Samsung Electro-Mechanics Company, Ltd., Georgia Tech Research Corporation
    Inventors: Woonyun Kim, Jihwan Kim, Chang-Ho Lee, Joy Laskar
  • Patent number: 7893807
    Abstract: A magnetic element including a first core and a second core each of which has a winding core provided with a flange portion having a flange surface at least at one end thereof; and an intermediate core to form a closed magnetic circuit which is disposed between said first core and said second core in a manner being integrally connected with said first core and said second core.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: February 22, 2011
    Assignee: Sumida Corporation
    Inventor: Kan Sano
  • Patent number: 7886425
    Abstract: A method of manufacturing a transformer is disclosed. A first bobbin piece, having a first channel and a primary winding section is provided. A second bobbin comprising first and second secondary side plates, plural partition plates, a wall portion, a secondary base having a first pin arranged on a bottom surface of the secondary base, plural secondary winding sections, and a second channel is provided. A second pin is inserted into the second bobbin piece to form a wire-arranging part protruded from the second secondary side plate and an insertion part protruded from the bottom surface of the secondary base. A primary winding coil is wound on the primary winding section, and the first and second terminals of a secondary winding coil are respectively fixed on the first pin and the wire-arranging part. A magnetic core assembly is partially disposed within the first channel and the second channel.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: February 15, 2011
    Assignee: Delta Electronics, Inc.
    Inventors: Tzu-Yang Liu, Ching-Hsien Teng, Hsin-Wei Tsai, Yi-Lin Chen, Bou-Jun Zung, Chia-Hung Pai, Shih-Hsien Chang
  • Patent number: 7880577
    Abstract: A ripple reduction circuit for use in a current doubler rectifier has first and second inductors coupled via a first coupling coefficient. The first and second inductors generate a first and a second ripple current, respectively. A third inductor is coupled to the first and second inductors; and an impedance is connected in series with the third inductor, wherein the circuit generates a third ripple current opposing the combination of the first and second ripple currents generated by the first and second inductors.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: February 1, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: John Stanley Glaser, Michael Andrew de Rooij
  • Publication number: 20100321142
    Abstract: A reactor is provided in which coil segments (5-1, 5-2) of each of first and second auxiliary winding elements (2-1, 2-2) is of a multilayered and aligned winding structure. The coil segments (5-1, 5-2) of the first auxiliary winding element (2-1) and the coil segments (5-1, 5-2) of the second auxiliary winding element (2-2) are disposed within respective space areas (6-1, 6-2) delimited between the coil segments of the second auxiliary winding element and an outside and between the outside and the coil segments of the first auxiliary winding element. The coil segments of each of those first and second auxiliary winding elements are so combined as to be adjacently alternately positioned in a line to thereby form a main winding body (3). The pair of the auxiliary winding elements are connected parallel to each other.
    Type: Application
    Filed: February 22, 2008
    Publication date: December 23, 2010
    Inventors: Toshihide Tabuchi, Takenori Kunimi
  • Patent number: 7849586
    Abstract: A method for making a power inductor comprises providing a first magnetic core comprising a ferrite bead core material, cutting a first cavity and a first air gap in said first magnetic core, and attaching a second magnetic core to said first magnetic core at least one of in and adjacent to said air gap.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: December 14, 2010
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 7847664
    Abstract: A flux sharing magnetic circuit has a parallel arrangement of secondary electromagnetic circuits with independent loads. An AC driven primary delivers current to the secondary circuits to maintain charge in their batteries. The batteries deliver DC current to the loads while secondary coils provide battery charging currents to maintain charge in the batteries. When current is not drawn by the battery or the load, flux is delivered to a flux pool in the magnetic circuit so that input AC power drain is reduced.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: December 7, 2010
    Assignee: Verde Power Supply, Inc.
    Inventor: Richard Dellacona
  • Patent number: 7841070
    Abstract: A planar transformer or balun device, having small trace spacing and high mutual coupling coefficient, and a method of fabricating the same is disclosed. The method may comprise providing a first and a second inductor on a primary and a second substrate respectively, interleaving at least partially the first inductor with the second inductor, coupling the primary and the secondary substrates to form a unitary structure, and providing electrical contacts to couple the first and second inductors with another device or circuit.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: November 30, 2010
    Assignee: Intel Corporation
    Inventor: Telesphor Kamgaing
  • Patent number: 7839251
    Abstract: Three-phase AC or two-phase DC choke arrangement of a frequency converter, in which is a magnetic core, in which are the phase-specific pillars of the AC choke arrangement or the branch-specific pillars of the DC choke arrangement (1a, 1b), around which are arranged the phase-specific windings of the AC choke arrangement or the branch-specific windings of the DC choke arrangement (Ldc1+, Ldc1?) to filter difference-mode currents, and in which an additional pillar (3) for damping common-mode currents is arranged in the magnetic core of the choke. The additional pillar (3) is arranged without the phase-specific or branch-specific windings fitted around it, in which case damping of the common-mode currents is achieved by means of the common-mode impedance formed by the windings arranged around the additional pillar and around the phase-specific or the branch-specific pillars.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: November 23, 2010
    Assignee: Vacon Oyj
    Inventor: Nicklas Sodo
  • Patent number: 7830233
    Abstract: An electrical induction device for high voltage applications, of the type comprising a magnetic core which has at least one leg and is operatively coupled to a supporting structure, at least one inner winding which is arranged around said leg and has a first rated voltage, at least one outer winding which is arranged around said at least one inner winding and has a second rated voltage; and electrically insulating means, wherein said at least one inner winding comprises a plurality of substantially concentric turns formed by a sheet of electrically conducting material which is spirally wound, and in that said electrically insulating means comprise at least one layer of electrically insulating material which is arranged between mutually facing surfaces of said concentric turns, and first shaped insulating means which edge, at least partially, at least one of the upper and lower external rims of said inner winding.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: November 9, 2010
    Assignee: ABB Technology AG
    Inventor: Miljenko Hrkac
  • Publication number: 20100237971
    Abstract: A coil component includes a first coil winding wound around a first axis, a second coil winding wound around a second axis and juxtaposed to the first coil winding, a connecting member for electrically connecting second terminals that are one end of the first coil winding and one end of the second coil winding, and a heat conductive member mounted on the connecting member and having electrical insulation properties and heat conductivity. The first and second coil windings are each wound such that magnetic flux is generated by a current flowing through the first and second coil windings to pass through an opening of the first coil winding and through an opening of the second coil winding in an opposite direction to the direction passing the opening of the first coil winding. Accordingly, heat generated in the first and second coil windings is dissipated from the heat conductive member.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 23, 2010
    Applicant: TDK Corporation
    Inventor: Akira IKEZAWA
  • Patent number: 7782168
    Abstract: A reactor part includes at least a winding and a magnetic substance core, in which the core includes a pair of winding portions around each the winding is wound, and a non-winding portion around which no winding is wound, wherein a cross-sectional area in a direction orthogonal to a magnetic path of the non-winding portion of the core is made smaller than a cross-sectional area in a direction orthogonal to a magnetic path of the each of winding portions.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: August 24, 2010
    Assignee: Tamura Corporation
    Inventors: Ryo Nakatsu, Kensuke Maeno
  • Patent number: 7692527
    Abstract: A common mode choke coil is provided with first and second coil conductors that are magnetically coupled to each other, a third coil conductor that is electrically connected in series to the first coil conductor and substantially not magnetically coupled to the first coil conductor, a fourth coil conductor that is electrically connected in series to the second coil conductor and substantially not magnetically coupled to the second coil conductor, a first contact conductor for connecting the third coil conductor with the inner end of the first coil conductor, and a second contact conductor for connecting the fourth coil conductor with the inner end of the second coil conductor. The third coil conductor and the fourth coil conductor are substantially not magnetically coupled, and are in a linear symmetrical relationship based on a prescribed center line.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: April 6, 2010
    Assignee: TDK Corporation
    Inventors: Tomokazu Ito, Takeshi Okumura, Toshio Tomonari
  • Patent number: 7617590
    Abstract: A manufacturing method of an embedded inductor includes the steps of providing a magnetic plastic material, disposing at least one coil into a mold, and injecting or pressing the magnetic plastic material into the mold to form a magnetic body encapsulating the coil. An embedded inductor includes at least one magnetic body encapsulating the coil by injecting molding or pressing molding.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: November 17, 2009
    Assignee: Delta Electronics, Inc.
    Inventors: Cheng-Hong Lee, Yu-Lin Hsueh, Yi-Hong Huang
  • Patent number: 7607216
    Abstract: A multilayer composite including a core made of a magnetic ceramic sintered compact disposed therein, and shrinkage restraining layers including an inorganic powder that is not substantially sintered at the sintering temperature of the green ceramic layers are sintered in order to reduce the difference in shrinkage behavior during firing between the core and the green ceramic layers.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: October 27, 2009
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Ryuichiro Wada, Tetsuya Ikeda
  • Publication number: 20090243776
    Abstract: In accordance with the present invention, a multi-output transformer includes a primary bobbin provided with one primary winding unit with one input terminal and one ground terminal; a secondary bobbin provided with n(n: positive integer) number of secondary winding units with two output terminals respectively; a primary coil wound around the one primary winding unit; secondary coils wound around each of the n secondary winding units; and a pair of cores inserted into insertion holes formed inside the primary bobbin and the secondary bobbin respectively to separate the primary bobbin and the secondary bobbin.
    Type: Application
    Filed: June 11, 2008
    Publication date: October 1, 2009
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jeong Hyun PARK, Jong Rak Kim
  • Patent number: 7584533
    Abstract: A damascene process is utilized to fabricate the segmented magnetic core elements of an integrated circuit inductor structure. The magnetic core is electroplated from a seed layer that is conformal with a permanent dielectric mold that results in sidewall plating defining an easy magnetic axis. The hard axis runs parallel to the longitudinal axis of the core and the inductor coils are orthogonal to the core's longitudinal axis. The magnetic field generated by the inductor coils is, therefore, parallel and self-aligned to the hard magnetic axis. The easy axis can be enhanced by electroplating in an applied magnetic field parallel to the easy axis.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: September 8, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson, Andrei Papou
  • Patent number: 7568278
    Abstract: A method for manufacturing an inductor using a system-in-package (SIP) includes forming a first penetration electrode in a silicon substrate; depositing an insulating film on a first surface of the silicon substrate, and patterning the insulating film to form an inductor hole and a second penetration hole aligned with the first penetration hole; forming an inductor in the inductor hole and a second penetration electrode in the second penetration hole; and depositing a protective film on the insulating film and performing a back grind process such that the first penetration electrode is exposed from a second surface of the silicon substrate, the second surface being opposed to the first surface.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: August 4, 2009
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Jae-Won Han
  • Patent number: 7528692
    Abstract: The present invention includes a high voltage transformer and high voltage inductor having a high resistivity magnetic core and multiple secondary windings without needing insulation between the high resistivity core and multiple secondary windings.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: May 5, 2009
    Inventor: Jonathan Paul Nord
  • Publication number: 20080290977
    Abstract: A common mode choke coil is provided with first and second coil conductors that are magnetically coupled to each other, a third coil conductor that is electrically connected in series to the first coil conductor and substantially not magnetically coupled to the first coil conductor, a fourth coil conductor that is electrically connected in series to the second coil conductor and substantially not magnetically coupled to the second coil conductor, a first contact conductor for connecting the third coil conductor with the inner end of the first coil conductor, and a second contact conductor for connecting the fourth coil conductor with the inner end of the second coil conductor. The third coil conductor and the fourth coil conductor are substantially not magnetically coupled, and are in a linear symmetrical relationship based on a prescribed center line.
    Type: Application
    Filed: May 13, 2008
    Publication date: November 27, 2008
    Applicant: TDK CORPORATION
    Inventors: Tomokazu ITO, Takeshi OKUMURA, Toshio TOMONARI
  • Publication number: 20080272875
    Abstract: Interleaved three-dimensional (3D) on-chip differential inductors 110, 120 and transformer 100 are disclosed. The interleaved 3D on-chip differential inductors 110, 120 and transformer 100 make the best use of multiple metal layers in mainstream standard processes, such as CMOS, BiCMOS and SiGe technologies.
    Type: Application
    Filed: August 2, 2006
    Publication date: November 6, 2008
    Inventors: Daquan Huang, Mau-Chung Frank Chang
  • Patent number: 7447050
    Abstract: The present disclosure is concerned with a multilevel converter including a transformer arrangement comprising at least two transformer units, each with primary and secondary windings and a transformer core structure. The latter are merged into one shared transformer core comprising at least one return limb that is part of the closed magnetic flux paths of the at least two transformer units. Sharing return limbs among individual transformer units, in particular when fed with primary voltage signals that have a certain phase shift between each other, helps to reduce the volume and weight as compared to an individual transformer core structure for each of the transformer units. The multilevel converter is beneficially used in railway traction applications.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: November 4, 2008
    Assignee: ABB Technology AG
    Inventors: Philippe Stefanutti, Harry Zueger, Nicolas Hugo, Georges Dormia, Bernard Descollaz
  • Publication number: 20080253149
    Abstract: An E-shaped transformer core has a middle leg and one pair of outer legs and on opposite sides with respect to the middle leg. A first pair of coils including at least two coils are wound around the middle leg so that a power transmission transformer unit is formed. The outer leg is divided into two outer leg portions and with a space therebetween allowing coil wiring therebetween, and a second pair of coils including two coils are respectively wound around the respective two outer leg portions and so as to have mutually opposite winding directions, so that a signal transmission transformer unit is formed.
    Type: Application
    Filed: June 12, 2008
    Publication date: October 16, 2008
    Inventor: Tadahiko Matumoto
  • Publication number: 20080246577
    Abstract: Methods and structures for constructing a magnetic core of a coupled inductor. The method provides for constructing N-phase coupled inductors as both single and scalable magnetic structures, where N is an integer greater than 1. The method additionally describes how such a construction of the magnetic core may enhance the benefits of using the scalable N-phase coupled inductor. The first and second magnetic cores may be formed into shapes that, when coupled together, may form a single scalable magnetic core. For example, the cores can be fashioned into shapes such as a U, an I, an H, a ring, a rectangle, and a comb, that cooperatively form the single magnetic core.
    Type: Application
    Filed: October 30, 2007
    Publication date: October 9, 2008
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventors: Charles R. Sullivan, Aaron M. Schultz, Anthony Stratakos, Jieli Li
  • Patent number: 7412766
    Abstract: A method of fabricating a coil-embedded inductor provides steps for obtaining uniform density of coil-embedded inductor. The cavity of a first die is filled with dust before being flipped, and then filled with dust a second time. The dust in the cavity is pressed only once for improving the density.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: August 19, 2008
    Assignee: Delta Electronics, Inc.
    Inventors: Ming-Shan Shiu, Cheng-Hong Lee
  • Publication number: 20080129435
    Abstract: A medical apparatus includes a medical assist device to process signals to relating biological functions. A first lead is operatively connected to the medical assist device, the first lead having a distal end and a proximal end. A second lead is operatively connected to the medical assist device, the second lead having a distal end and a proximal end. The first electrode is operatively connected to the distal end of the first lead, and a second electrode is operatively connected to the distal end of the second lead. A filter circuit is operatively connected near the distal end of the first lead and the distal end of the second lead. A compensation circuit, operatively connected to the first lead, provides a compensation voltage to enable the filter to effectively block changing magnetic fields induced current in the second lead from passing through the second electrode of the distal end of the second lead.
    Type: Application
    Filed: October 29, 2007
    Publication date: June 5, 2008
    Applicant: MEDTRONIC, INC.
    Inventor: Robert W. GRAY
  • Patent number: 7061356
    Abstract: A controllable transformer device comprising a body of a magnetic material, a primary winding wound round the body about a first axis, a secondary winding wound round the body about a second axis at right angles to the first axis, and a control winding wound round the body about a third axis, coincident with the second axis. The device can be employed to provide a frequency controlled power supply.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: June 13, 2006
    Assignee: Magtech AS
    Inventors: Espen Haugs, Frank Strand
  • Patent number: 7042323
    Abstract: A signal transformer having a primary limb and a first secondary limb is specified, a primary winding at least partly enclosing the primary limb and a secondary winding at least partly enclosing the first secondary limb and the primary limb being connected to the first secondary limb. Furthermore, 2n+1 additional secondary limbs are provided, where n=0, 1, 2, 3, . . . , and the additional secondary limbs are connected to the primary limb and the first secondary limb. At least one secondary winding is in each case provided for the additional secondary limbs and for the first secondary limb, the secondary winding at least partly enclosing the respective secondary limb. Moreover, a control winding is provided for each secondary limb, said control winding at least partly enclosing the respective secondary limb. Furthermore, a method for operating such a signal transformer and a driver circuit having such a signal transformer are specified.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: May 9, 2006
    Assignee: ABB Research LTD
    Inventors: Pieder Joerg, Alper Akdag
  • Patent number: 7012414
    Abstract: A vertically packaged cellular power converter solves the problems associated with conventional designs and paves the way for a cellular circuit architecture with ultra-low interconnect resistance and inductance. The vertical packaging results in a power flow in the vertical direction (from the bottom to the top) with very short internal interconnects, thereby minimizing the associated conduction losses and permitting high conversion efficiency at high currents. The cellular architecture is ideally suited for generating multiple supply voltages.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: March 14, 2006
    Assignee: ColdWatt, Inc.
    Inventors: Vivek Mehrotra, Jian Sun, Sriram Chandrasekaran
  • Patent number: 6965291
    Abstract: A circuit component (L1) with controllable impedance, includes a body (1) of a magnetizable material, a main winding (A1) wound round the body (1) about a first axis and a control winding (A2) wound round the body (1) about a second axis, at right angles to the first axis, where the main winding (A1) is arranged for connection to a working circuit in which the circuit component (L1) is to be employed and the control winding (A2) is arranged for connection to a control unit for controlling the impedance in the working circuit. The circuit component or a similar transformer device can be included in various current and voltage regulating devices.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: November 15, 2005
    Assignee: MAGTECH AS
    Inventors: Espen Haugs, Frank Strand
  • Patent number: 6938325
    Abstract: In one embodiment, a method for fabricating electromagnetic meta-materials includes applying first and second array of electromagnetically reactive patterns to first and second non-conducting surfaces, wherein the first array includes at least one of a split ring resonator pattern, a square split ring resonator pattern, and a swiss roll pattern, and the second array includes a thin parallel wire pattern. The first and second non-conducting surfaces are joined together such that the first and second non-conducting surfaces bearing the first and second arrays of electromagnetically reactive patterns are commonly oriented. Alternately, a method may further include slicing between elements of the first and second arrays of electromagnetically reactive patterns in a plane perpendicular to the first and second surfaces to form a plurality of slices, rotating at least one of the slices, and applying a third array of electromagnetically reactive patterns to a third non-conducting surface.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: September 6, 2005
    Assignee: The Boeing Company
    Inventor: Minas H. Tanielian
  • Patent number: 6885274
    Abstract: An inductor module includes a common inductor core, and first and second inductor windings. Each of the first and second inductor windings has an input end, an output end, and an inductor winding section disposed between the input and output ends. The inductor winding sections are wound on the common inductor core such that the distance between the input end of the first inductor winding and the output end of the second inductor winding is larger than the distance between the output end of the first inductor winding and the input end of the second inductor winding. The output end of the first inductor winding is free of an electrical connection with the input end of the second inductor winding.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: April 26, 2005
    Assignee: Micro-Star Int'l Co., Ltd.
    Inventors: Chien-Chi Hsu, Chih-Sheng Li, Yung-Kuang Lee, Guo-Yang Wu