Impedance Matching (e.g., Y-match Or Delta Match, Etc.) Patents (Class 340/12.36)
  • Patent number: 10243617
    Abstract: A coupling circuit for power line communications includes a coupling transformer having first and second mutually coupled windings, with the first winding connectable to a power line. The second winding includes a pair of intermediate taps with one or more tuning inductor therebetween. The inductor or inductors are set between a first portion and a second portion of the second winding of the coupling transformer. A switch member is provided coupled with the inductor. The switch member is selectively actuatable to short-circuit the inductor.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: March 26, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventor: Riccardo Fiorelli
  • Patent number: 9878630
    Abstract: A device for transmitting data between a data transmission device of a vehicle and a data transmission device of a communications network, as part of a charging process of an electrical energy store of the vehicle, is disclosed. The vehicle data transmission device is based on a first communications protocol with a first signal level, while the communications network data transmission device is based on a second communications protocol with a second signal level. The device includes a signal-matching device having at least one first coupling transformer, which couples a data transmission device of a charging station to the data transmission devices of the vehicle and of the communications network via respective coils. The signal-matching device is configured to match the first signal level to the second signal level and vice versa.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: January 30, 2018
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Michael Kaindl, Michael Schwaiger, Christian Jahn, Harald Thierauf
  • Patent number: 9404951
    Abstract: PDs that can be supplied through the LAN line are discriminated from PDs that cannot be so supplied as a function of the resistance of the supply line and of the voltage drop caused by nonlinear elements in series therewith. The values of these two parameters are estimated by applying two distinct voltages to the supply terminals of the LAN line and sensing the relative steady-state currents absorbed by the power supply line, and by processing voltage and current values for estimating the resistance of the line and the voltage drop caused by nonlinear elements connected in series therewith.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: August 2, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Aldo Torazzina, Riccardo Russo
  • Patent number: 9331741
    Abstract: A power line communication system includes a power distribution device connected to two power lines, a plurality of power line communication devices and a first coupler device electrically connected between the first power line and the second power line. The first coupler device is configured at the last end of the power line communication system. Before a transmitting device transmits data to a receiving device, the first coupler device determines whether to couple the power lines with each other according a first signal quality between the transmitting and the receiving device when the power lines are not coupled with each other and a second signal quality between the transmitting and the receiving device when the power lines are coupled with each other.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: May 3, 2016
    Assignee: Wistron NeWeb Corp.
    Inventor: Sheng-Kun Shen
  • Patent number: 9306457
    Abstract: A method and apparatus for monitoring instantaneous load current is disclosed. In one embodiment, an integrated circuit includes a voltage regulator and at least one functional unit implemented thereon. The voltage regulator includes a supply circuit configured to provide a voltage to the functional unit, and a sense circuit configured to determine an amount of current provided to the functional unit by the supply circuit. The sense circuit may determine the instantaneous load current being provided to the functional unit. An indication circuit is configured to provide, to the functional unit, an indication of the amount of current supplied thereto by the supply circuit.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: April 5, 2016
    Assignee: Apple Inc.
    Inventors: Shawn Searles, Jay B. Fletcher
  • Patent number: 8952793
    Abstract: A bicycle electrical system is provided with a first electric component, a second electric component, and a third electric component. The first electric component includes a first electric power line communication section. The second electric component includes a second electric power line communication section. The third electric component includes a third electric power line communication section. The first and second electric power line communication sections are connected with a first electric power line such that the first and second electric power line communication sections conduct communications via the first electric power line. The second and third electric power line communication sections are connected with a second electric power line such that the second and third electric power line communication sections conduct communications via the second electric power line.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: February 10, 2015
    Assignee: Shimaro Inc.
    Inventors: Taihei Nishihara, Takafumi Suzuki, Shun Kou
  • Patent number: 8767871
    Abstract: An antenna tuner is placed between a Power Amplifier (PA) and an antenna. The antenna tuner includes programmable components that can be tuned in order to effect an impedance translation between the antenna and the PA output. In an embodiment, the antenna tuner is adapted dynamically based on changes in the impedance of the antenna. In another embodiment, the antenna tuner is controlled based on measurement of the voltage reflection coefficient S11.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: July 1, 2014
    Assignee: Broadcom Corporation
    Inventors: Bongseok Park, William Fujimoto, Sriraman Dakshinamurthy, Robert Lorenz
  • Patent number: 8421614
    Abstract: A mechanism is provided for providing reliable redundant data communications. The mechanism issues a request for data to a set of powered elements using a set of secondary communication channels in response to a reduction in a level of communications being detected. The set of secondary communication channels comprises one or more alternating current power lines and the request is sent as data injected onto the alternating current power lines to the set of powered elements. The mechanism receives the data using the set of secondary communication channels from the set of powered elements, analyzes the data to determine a set of recovery actions to restore the level of communications, and issues the set of recovery actions to the set of powered elements using the set of secondary communication channels.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brian James Cagno, John Charles Elliott, Kenny Nian Gan Qiu, Donald Scott Smith
  • Patent number: 8130084
    Abstract: A method, system, and computer program product are provided for communicating to a powered element in a rack system. A controller injects communication data onto power lines that provides power to a plurality of powered elements. The powered elements determine if the communication data transmitted via the power lines should be used for configuration using an address embedded within the communication data. The powered elements compare an embedded target address within the communication data to the address of the particular element. If there is a match between the addresses, the corresponding powered element processes the communication data to configure the powered element. As a result, data may be communicated over the power lines thereby eliminating the need for separate communication lines. Thus, the amount of cables required to interconnect the powered elements of the distributed data processing system may be reduced by eliminating the communication lines from the system configuration.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brian James Cagno, Kenny Nian Gan Qiu, Donald Scott Smith
  • Patent number: 7990249
    Abstract: RFID tag circuits, tags, and methods are provided for backscattering a received RF wave using a controllable admittance difference between the ON state and the OFF state. The admittance difference is controlled responsive to a control signal. In some embodiments, the control signal is generated responsive to a command. In others, the control signal is generated responsive to detecting the power level of the received RF wave. In those, the inherent behavior of the admittance difference can be shaped as desired. For example, it can be such that the backscatters with advantageously more power when it is away from the reader, and with less power when it is close to the reader, so as to meet regulatory requirements.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: August 2, 2011
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Ronald A. Oliver