With Frequency Or Phase Steering Patents (Class 342/157)
  • Patent number: 7151476
    Abstract: A radar system having a beamless emission signature is described. In one implementation, the radar system includes a transmission system and a receiver system. The transmission system is configured to transmit a pattern comprising a plurality of radar signals having different frequencies simultaneously. The receiver system is configured to receive a reflection of the pattern and combine the plurality of radar signals into a composite waveform forming an image of a target.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 19, 2006
    Assignee: M/A-COM, Inc.
    Inventors: Robert Egri, Dennis Martinez, John Vaughan
  • Patent number: 7132975
    Abstract: An ultra wideband radar system for detecting moving objects comprising an antenna, which may be scanned in at least one dimension, and a signal processor wherein the signal processor includes a scan combiner that combines scan information in accordance with a candidate trajectory for the moving object. Scans may be combined by integration or filtering. A fast calculation method is described wherein the scans are combined into subsets and subsets are shifted in accordance with the candidate trajectory before further combination. A method is described wherein a region is scanned with an ultra wideband radar, the scan information is combined in accordance with an expected trajectory to enhance the object signal to noise. Further features are described wherein the scan information is combined according to a family of trajectories. A trajectory yielding a potential object detection initiates a further scan combination step wherein the family of trajectories is further resolved.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: November 7, 2006
    Assignee: Time Domain Corporation
    Inventors: Larry W. Fullerton, James Richards
  • Patent number: 7081847
    Abstract: A radar system with a radar sensor (10) which comprises a transmitting module (20), a receiving module (22) and a supply network (64), wherein the transmitting module (20) comprises a first plurality of partial antennas (26, 28, 30, 32, 34) and the receiving module (22) comprises a second plurality of partial antennas (46, 48, 50), and wherein the supply network (64) operates at least one partial antenna (30) of the transmitting module (20) together with at least one partial antenna (48) of the receiving module (22) in a first operating mode, to obtain a first, low angular resolution, and wherein the supply network operates one group of partial antennas (26, 28, 30, 32, 34) of the transmitting module (20) together with a group of partial antennas (46, 48, 50) of the receiving module (22) in a second operating mode to obtain a second high angular resolution.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: July 25, 2006
    Assignee: Valeo Schalter und Sensoren
    Inventors: Thomas Ziller, Uwe Papziner
  • Patent number: 7071867
    Abstract: Methods, apparatus, and computer program products are provided for tracking at least one moving target with a radar device without requiring the use of Doppler information. The invention comprises scanning an area with radar signals at a first time to receive a first plurality of target data signals indicative of a position of the target at the first time and determining the position of the target at the first time by collecting the first plurality of target data signals into a first target data grouping, such that the first target data grouping defines a first reference point. Similarly, a second reference point for the target is determined for a second time, and the position of the first reference point is compared to the position of the second reference point to track the moving target. Advantageously, the tracked positions of the moving target may be used to predict a future position of the target at a subsequent time.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: July 4, 2006
    Assignee: The Boeing Company
    Inventors: Peter S. Wittenberg, Aaron Y. Mosher
  • Patent number: 7038615
    Abstract: A method and apparatus for estimating elevation angle when using a broad search beam such as a cosecant-squared beam is provided. The range of a target detected during a search with a broad beam covering a broad angular search area is determined. Based on the determined range, consecutive beams are transmitted at increasing search elevation angles in the broad angular search area. Echo signals of the consecutive beams are used to determine an elevation angle estimate for the target.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 2, 2006
    Assignee: Raytheon Company
    Inventor: Eli Brookner
  • Patent number: 7026978
    Abstract: A plurality of primary detection regions A to I are scanned by switching a beam width and a beam direction of an antenna. The primary detection regions A to I are formed such that one detection region overlaps at least one of other detection regions. A small region (any one of secondary detection region (1) to (14)) corresponding to a region provided by excluding a region corresponding to a sum of set of the detection regions where a detection object was not detected, from a region corresponding to a product set of the primary detection regions where the object was detected is specified as a bearing in which the object exists, based on detection results of the respective primary detection regions.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: April 11, 2006
    Assignee: Omron Corporation
    Inventors: Shinichiro Okamura, Tadao Nishiguchi, Hirohisa Furukawa
  • Patent number: 7009562
    Abstract: The present invention is a wide band GaAs microwave monolithic integrated circuit (MMIC) transmit chip that is capable of transmitting linearly or circularly polarized signals when connected to a pair of orthogonal cross-polarized antennas. In an active phased-array antenna environment, this transmit chip is capable of transmitting signals with different scan angles. This invention also contains a digital serial to parallel converter that uses TTL signal to control the phase shifter and attenuator circuits that are required for controlling the polarization and scan angle of the transmitted signal.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: March 7, 2006
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventor: Masud Jenabi
  • Patent number: 6975267
    Abstract: A vertically integrated Ka-band active electronically scanned antenna including, among other things, a transitioning RF waveguide relocator panel located behind a radiator faceplate and an array of beam control tiles respectively coupled to one of a plurality of transceiver modules via an RF manifold. Each of the beam control tiles includes a respective plurality of high power transmit/receive (T/R) cells as well as dielectric waveguides, RF stripline and coaxial transmission line elements. The waveguide relocator panel is preferably fabricated by a diffusion bonded copper laminate stack up with dielectric filling. The beam control tiles are preferably fabricated by the use of multiple layers of low temperature co-fired ceramic (LTCC) material laminated together.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: December 13, 2005
    Assignee: Northrop Grumman Corporation
    Inventors: Peter A. Stenger, Fred C. Kuss, Kevin LaCour, Craig Heffner, Robert Sisk, Carl D. Wise, Joseph Paquin, Tujuana Hinton, Andrew Walters, David Krafcsik, Brian T. McMonagle, Steven D. Block, Steven S. Handley
  • Patent number: 6972713
    Abstract: Methods, apparatus, and computer program products are provided for improving the crossrange resolution of a radar device for more accurate determinations of angular position of a target. The radar device transmits and receives scanning signals at crossrange beam positions having a beamwidth, wherein the beam positions are separated by a step. The radar device scans a target to receive target data from at least three beam positions, typically consecutive beam positions, to determine a first beam position with a first target data value that is greater than a second target data value of a second beam position preceding the first beam position and greater than a third target data value of a third beam position following the first beam position. A target data relationship between the first, second, and third beam positions is determined to provide the angular position of the target relative to the first beam position.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: December 6, 2005
    Assignee: The Boeing Company
    Inventors: Aaron Y. Mosher, Peter Wittenberg
  • Patent number: 6937183
    Abstract: Beams are irradiated in three directions by switching an irradiation direction of a mainlobe of an antenna by stages, and an echo is received from a detection object obtained in the mainlobe or a sidelobe in each irradiation direction. Then, reflection power intensity in each irradiation direction is found from the received echo, and pattern of relative variation of the reflection power intensity (power intensity pattern) in each irradiation direction is generated. Meanwhile, a detection region is divided into seven bearings “c” to “i” and a power intensity pattern when an object exists in each bearing is previously stored as a reference pattern in each bearing. Then, the bearing in which the detection object exists is specified by comparing the power intensity pattern obtained from the received echo with the reference pattern in each bearing.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: August 30, 2005
    Assignee: Omron Corporation
    Inventors: Tadao Nishiguchi, Shinichiro Okamura, Hirohisa Furukawa
  • Patent number: 6907269
    Abstract: A mobile communication base station determines the oncoming direction of a radio wave with a simple arrangement and transmits a narrow angle beam in this direction. Received signals from a pair of wide angle beam antennae 21-1 and 21-2 having an equal configuration and a common orientation and which are located close to each other are fed to a direction finder receiver 22 and a communication receiver 15. By utilizing the fact that the both received signals have a coincident amplitude, a phase difference between the received signals is detected. The oncoming direction of the received radio wave (or the direction of a mobile station) is determined on the basis of the phase difference. A beam switcher 12 is controlled so as to connect a transmitter 13 to a narrow angle beam antenna (one of 11-1 to 11-4) which is directed in the oncoming direction thus determined.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: June 14, 2005
    Assignee: NTT DoCoMo, Inc.
    Inventors: Ryo Yamaguchi, Noriyoshi Terada, Toshio Nojima
  • Patent number: 6876323
    Abstract: A radar system with a phase controlled antenna array that contains a number of data and supply networks (2), which are installed so that they are interchangeable, and a transmit/receive module (3) containing a transmitter and receiver circuit (4) as well as a number of circulator circuits (8) and a number of antenna elements (9) that are coupled via a circulator circuit (8) to the transmitter and receiver circuit (4). Transmitter and receiver circuits (4), circulator circuits (8), and antenna elements (9) are combined in each transmit/receive module (3) and the transmit/receive modules (3) are arranged interchangeably on the radiation side of the radar or EW system (1).
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: April 5, 2005
    Assignee: EADS Deutschland GmbH
    Inventors: Heinz-Peter Feldle, Helmut Leier, Wolfang Menzel, Marc Schreiner
  • Patent number: 6856277
    Abstract: In the on-vehicle radar apparatus of the present invention, the vertical scanning width of the radar beam is narrowed, before the horizontal scanning, thereby avoiding unnecessary data processing and improving the data processing efficiently. Further, the S/N ratio of the target detection signal is increased, thereby stabilizing the distance detection and its accuracy. The vertical scanning antenna is a single travelling wave excitation antenna (TWEA) constructed by a plurality of antenna elements. At the same time, the horizontal scanning antenna is a multi-channel antenna wherein a plurality of TWEAs is assigned to a plurality of horizontal directions. The horizontal scanning angle is arbitrarily widened by increasing the number of TWEAs.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: February 15, 2005
    Assignee: Denso Corporation
    Inventors: Tetsuya Katayama, Yuichi Tanaka
  • Patent number: 6853329
    Abstract: A monopulse radar system for detecting an azimuth depending upon amplitude difference or phase difference between signals respectively received by plural receiving antennas, includes: a transmitting array antenna and a receiving array antenna each including antenna elements forming an antenna train, at least one antenna switch disposed among the elements of the transmitting array antenna and/or the receiving array antenna, and a switch controller for turning ON/OFF the antenna switch to change an aperture length of the transmitting array antenna and/or the receiving array antenna thereby changing a beam shape thereof. The antenna elements of the transmitting array antenna and the receiving array antenna are formed on a dielectric substrate. A dielectric length between the antenna train formed by the antenna elements and the antenna switch is ½ dielectric wavelength.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: February 8, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Shinoda, Hiroshi Kondoh
  • Publication number: 20040257265
    Abstract: For suppressing secondary lobes in pulsed radar systems, the antenna characteristics of the transmitting antenna and the receiving antenna are designed so that the dominant secondary lobes appear mutually offset and their maximums and minimums are mutually suppressed. This increases the safety against detection of false targets.
    Type: Application
    Filed: April 8, 2004
    Publication date: December 23, 2004
    Inventor: Frank Gottwald
  • Patent number: 6828932
    Abstract: A wideband receiver system capable of simultaneously receiving multiple independent RF input signals from different sources which signals can be polarized (linearly or circularly) differently and exhibit different scan angles.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: December 7, 2004
    Assignee: ITT Manufacutring Enterprises, Inc.
    Inventor: Masud Jenabi
  • Publication number: 20040183719
    Abstract: A radar device (2) includes plural transmission antennas and plural reception antennas. The reception antennas constitute a reception-side antenna portion (20) and are arranged at an interval of d. The transmission antennas constitute a transmission-side antenna portion (18) and are arranged at an interval of d′=d×(n−1). The path length at which the electric wave is reflected from a target is identical between channels A9 and B1, and seventeen kinds of channels (A1 to A8, A9 or B1, B2 to B9) which are different in path length by every fixed distance are achieved. The data of the channels (A1 to A9 and B1 to B9) using different transmission antennas are respectively collected in different measuring cycles, and an error based on the time difference between the measuring cycles is corrected on the basis of a correction value calculated from the data of the channels A9, B1.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Applicant: DENSO CORPORATION
    Inventors: Kazuma Natsume, Hiroshi Hazumi
  • Patent number: 6784837
    Abstract: This invention relates to a transmit/receive module for a high power Active Phased Array Antenna system operating in L-band based upon a combination of Hybrid Microwave Integrated Circuit (MIC) as well as Monolithic Microwave Integrated Circuit (MMIC) technology. The transmit/receive module includes a power monitoring means, transmitter protector means, and a receiver protector means. The module comprises a signal transmit chain incorporating power conditioner and a signal receive chain incorporating control electronics and bias- sequencer modulator. The transmit chain has switching means for switching the module to transmit mode which is connected to the transmit amplifier chain through a shared digital phase shifter. The amplified signals from the transmit amplifier chain are conveyed to a duplexer means.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 31, 2004
    Assignee: Chief Controller, Research and Development Ministry of Defence, Government of India
    Inventors: Udayshankar Kashinathrao Revankar, Kalappurakkal Thomas Sophy, Kilari Sreenivasulu, Kori Malleshappa Veerabhadra
  • Publication number: 20040150554
    Abstract: A vertically integrated Ka-band active electronically scanned antenna including, among other things, a transitioning RF waveguide relocator panel located behind a radiator faceplate and an array of beam control tiles respectively coupled to one of a plurality of transceiver modules via an RF manifold. Each of the beam control tiles includes a respective plurality of high power transmit/receive (T/R) cells as well as dielectric waveguides, RF stripline and coaxial transmission line elements. The waveguide relocator panel is preferably fabricated by a diffusion bonded copper laminate stack up with dielectric filling. The beam control tiles are preferably fabricated by the use of multiple layers of low temperature co-fired ceramic (LTCC) material laminated together.
    Type: Application
    Filed: February 5, 2003
    Publication date: August 5, 2004
    Inventors: Peter A. Stenger, Fred C. Kuss, Kevin LaCour, Craig Heffner, Robert Sisk, Carl D. Wise, Joseph Paquin, Tujuana Hinton, Andrew Walters, David Krafcsik, Brian T. McMonagle, Steven D. Block, Steven S. Handley
  • Patent number: 6771205
    Abstract: A combined defense and navigational system on a naval vessel is disclosed. The disclosed system includes a track-while-scan pulse radar which is controlled to provide either navigational information or tracking information on selected targets. Additionally, the disclosed system includes a plurality of guided missiles, each of which may be vertically launched and directed toward intercept of a selected target either by commands from the track-while-scan radar or from an active guidance system in each such missile.
    Type: Grant
    Filed: August 1, 1979
    Date of Patent: August 3, 2004
    Assignee: Raytheon Company
    Inventors: David K. Barton, Benjamin L. Young
  • Publication number: 20040145512
    Abstract: One of the objects of the present invention is to reduce the size of a radar device mounted on a vehicle body. To achieve the object, one aspect of the invention provides a radar device, which is mounted on a vehicle body and detects a target present in a moving direction of the vehicle body, with (1) a transmitting antenna for transmitting a mm-Wave that forms an electric field having a width equivalent to the width of the vehicle body at a position away in a moving direction of the vehicle body by a distance corresponding to the most-approached distance defined between the vehicle body and the target and (2) two receiving antennas for receiving the reflected mm-Waves at mutually different positions.
    Type: Application
    Filed: November 26, 2003
    Publication date: July 29, 2004
    Inventors: Kazuaki Takano, Jiro Takezaki, Hiroshi Kuroda, Hiroshi Kondo
  • Patent number: 6768458
    Abstract: An active array radar system is controlled by photonic signals. The array of N antenna elements is divided into M subarrays, each having N/M antenna elements. Tunable lasers provide M optical wavelengths within non-overlapping bands. For transmission, a microwave transmit pulse is amplitude modulated onto the M optical signals. Time delays are introduced for an offset between elements in a subarray and for an offset between subarrays. By using wavelength division multiplexing each antenna element on the array has a true time delay.
    Type: Grant
    Filed: August 9, 1999
    Date of Patent: July 27, 2004
    Assignee: Raytheon Corporation
    Inventors: Leon Green, Joseph Preiss
  • Publication number: 20040125009
    Abstract: Beams are irradiated in three directions by switching an irradiation direction of a mainlobe of an antenna by stages, and an echo is received from a detection object obtained in the mainlobe or a sidelobe in each irradiation direction. Then, reflection power intensity in each irradiation direction is found from the received echo, and pattern of relative variation of the reflection power intensity (power intensity pattern) in each irradiation direction is generated. Meanwhile, a detection region is divided into seven bearings “c” to “i” and a power intensity pattern when an object exists in each bearing is previously stored as a reference pattern in each bearing. Then, the bearing in which the detection object exists is specified by comparing the power intensity pattern obtained from the received echo with the reference pattern in each bearing.
    Type: Application
    Filed: October 23, 2003
    Publication date: July 1, 2004
    Inventors: Tadao Nishiguchi, Shinichiro Okamura, Hirohisa Furukawa
  • Patent number: 6750810
    Abstract: To realize a monopulse radar system wherein the velocity of a mobile body, distance between an obstacle and the mobile body and relative velocity can be detected and simultaneously, the direction of the obstacle can be detected, in a monopulse radar system wherein an azimuth is detected depending upon amplitude difference or phase difference between signals respectively received by plural receiving antennas, an array antenna composed of plural antenna elements is used for each transmitting antenna and each receiving antenna, at least one of the transmitting antenna and the receiving antenna is provided with an antenna switch for switching an antenna beam shape to a short angle/long distance or a wide angle/short distance and a switch control device that controls the switching of the antenna switch is provided.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: June 15, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Shinoda, Hiroshi Kondoh
  • Patent number: 6738018
    Abstract: The invention concerns a method and apparatus for cascaded processing of signals in a phased array antenna system in which a plurality of antenna elements are configured as a plurality of sub-arrays. A weighting factor is applied to each of the antenna elements to form a plurality of sub-array beams, each pointed in a selected direction. For each sub-array, an output from each the antenna elements in the sub-array can be combined to produce a sub-array output signal. The sub-array output signals are selectively weighted and combined in a fully adaptive process. Subsequently, the system can estimate an angle-of-arrival direction for a signal-of-interest (“SOI”) and at least one signal-not-of-interest (“SNOI”). Based on this estimating step, the system calculates a new set of weighting factors for controlling one or more of the sub-array beams to improve the signal-to-noise plus interference ratio obtained for the SOI in the array output signal.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: May 18, 2004
    Assignee: Harris Corporation
    Inventors: H. Richard Phelan, Mark L. Goldstein, G. Patrick Martin, Richard J. Nink
  • Patent number: 6720908
    Abstract: A method for measuring range and bearing of an object. At least a portion of a first signal is transmitted from a sensor. The transmitted signal is reflected from an object and received by the sensor. At least a portion of the first signal is applied a first mixer and a second mixer. The received signal is applied to the first mixer and the second mixer. A second signal is generated from the first mixer, and a third signal is generated from the second mixer when the portion of the first signal that was transmitted overlaps the reflected signal at least partially. Bearing angle, degree on or off boresight and object range may be determined from the second and third signals, or a combination thereof. Also disclosed is a sensor for object range and bearing measurement.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: April 13, 2004
    Assignee: M/A-Com, Inc.
    Inventor: Kenneth V. Puglia
  • Patent number: 6714157
    Abstract: A pulse radar system capable of mapping multiple targets essentially simultaneously using a single radar antenna. By alternately transmitting radar pulses toward multiple targets positioned at different angles relative to the antenna and alternately receiving return signals from the multiple targets as the radar antenna is switched between multiple beam positions, a time-interleaved radar operation is achieved which enables multiples targets to be mapped, and thus tracked, at the same time. A different radio frequency is preferably employed for each target so as to avoid interference and ambiguous returns. Using the teachings of the present invention, between two and twenty radar maps, and possibly more, can be generated simultaneously in approximately the same amount of time required to map a single target using conventional systems of the prior art.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: March 30, 2004
    Assignee: The Boeing Company
    Inventor: Peter S. Wittenberg
  • Publication number: 20040036648
    Abstract: An aircraft phased array antenna system has transmit and receive antenna structures externally mounted on the aircraft fuselage. Each antenna comprises a plurality of phased array elements and antenna power and support equipment. Aerodynamically shaping antenna structure to enclose an antenna element grid provides additional antenna structure volume, which is efficiently utilized by locating antenna support equipment within the antenna structure. To control signal attenuation a receive antenna internal converter converts receive frequency signals to L-band frequency signals for aircraft use, and a similar transmit antenna converter converts L-band frequency signals to transmit frequency signals, thus unconstraining antenna to internal aircraft equipment spacing. To reduce power loss and cabling weight, antenna operating power is first generated in the 28 to 270 volts DC range within the aircraft, and locally converted in each antenna to the 3 to 6 volt DC power to operate each antenna's phased array elements.
    Type: Application
    Filed: August 18, 2003
    Publication date: February 26, 2004
    Inventor: Ronald Steven Carson
  • Publication number: 20030218566
    Abstract: A radar system with a phase-controlled antenna array that contains a number of data and supply networks (2), which are installed so that they are interchangeable, and a sender/receiver module (3) containing a sender and receiver circuit (4) as well as a number of circulator circuits (8) and a number of antenna elements (9) that are coupled via a circulator circuit (8) to the sender and receiver circuit (4). Sender and receiver circuits (4), circulator circuits (8), and antenna elements (9) are combined in each sender/receiver module (3) and the sender/receiver modules (3) are arranged interchangeably on the radiation side of the radar system (1).
    Type: Application
    Filed: January 9, 2003
    Publication date: November 27, 2003
    Inventors: Heinz-Peter Feldle, Helmut Leier, Wolfang Menzel, Marc Schreiner
  • Publication number: 20030206132
    Abstract: The invention concerns a method and apparatus for cascaded processing of signals in a phased array antenna system in which a plurality of antenna elements are configured as a plurality of sub-arrays. A weighting factor is applied to each of the antenna elements to form a plurality of sub-array beams, each pointed in a selected direction. For each sub-array, an output from each the antenna elements in the sub-array can be combined to produce a sub-array output signal. The sub-array output signals are selectively weighted and combined in a fully adaptive process. Subsequently, the system can estimate an angle-of-arrival direction for a signal-of-interest (“SOI”) and at least one signal-not-of-interest (“SNOI”). Based on this estimating step, the system calculates a new set of weighting factors for controlling one or more of the sub-array beams to improve the signal-to-noise plus interference ratio obtained for the SOI in the array output signal.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 6, 2003
    Inventors: H. Richard Phelan, Mark L. Goldstein, G. Patrick Martin, Richard J. Nink
  • Patent number: 6618002
    Abstract: A HF radar uses the same antenna array (414, 424, 424′, 424′) for both transmission (TX) and reception (RX). Each radiating element of the array may be driven by its own local transmitter and may have its own local receiver, both being connected to a central processor via fiber optic cables conveying digital data to the local transmitter relating to element energization in the TX mode and data representing signals received by the radiating elements in the RX mode. Each antenna element may have its own TX/RX unit, or a single TX/RX unit may serve two or more radiating elements. Each radiating element may comprise a skeletal pyramidal dipole mounted at ground level.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: September 9, 2003
    Assignee: Alenia Marconi Systems Limited
    Inventor: Ken Perry
  • Patent number: 6593881
    Abstract: A phased array antenna includes a plurality of phased array antenna modules and associated antenna elements. Further, at least one of the phased array antenna modules may also include a temperature sensor for measuring a temperature of the at least one phased array antenna module. More particularly, the temperature sensor may include a capacitor and a circuit element coupled in series with the capacitor having a resistance that varies with temperature. Additionally, the at least one phased array antenna module may further include a module controller for charging/discharging the capacitor through the circuit element, measuring a charging/discharging time required to charge/discharge the capacitor to a predetermined threshold, and determining the temperature of the at least one phased array antenna module based upon the charging/discharging time.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 15, 2003
    Assignee: Harris Corporation
    Inventors: David Kenyon Vail, Frank J. Tabor, Daniel P. Blom, Stephen S. Wilson
  • Patent number: 6574021
    Abstract: An active array radar system is controlled by photonic signals. The array of N antenna elements is divided into M subarrays, each having N/M antenna elements. Tunable lasers provide M optical wavelengths within non-overlapping bands. For reception, the microwave signals are optically modulated onto a single fiber for each subarray. Time delays are introduced for an offset between elements in a subarray and for an offset between subarrays. By using wavelength division multiplexing, a true time delay is attributed to each antenna element on the array. A non-coherent optical combiner having an array of N photodetectors demodulates the receive signals and recovers the coherent sum of the RF signals.
    Type: Grant
    Filed: August 9, 1999
    Date of Patent: June 3, 2003
    Assignee: Raytheon Company
    Inventors: Leon Green, Joseph A. Preiss
  • Publication number: 20030085832
    Abstract: In a radar system, sampled aperture data are received from an antenna array. The sampled aperture data include data that do not correspond to echo returns from a beam transmitted by the antenna. A covariance matrix is generating using the sampled aperture data. An eigenvalue decomposition is performed on the covariance matrix. A direction of arrival is determined from which at least one jammer is transmitting a signal included in the sampled aperture data, based on the eigenvalue decomposition.
    Type: Application
    Filed: September 5, 2001
    Publication date: May 8, 2003
    Applicant: Lockheed Martin Corporation
    Inventor: Kai-Bor Yu
  • Patent number: 6542110
    Abstract: The invention describes a device and a method for increasing the angular resolution in a radar system looking in the direction of motion and laterally thereto, wherein the doppler frequency shift of the transmitted signal is evaluated in order to increase the angular resolution. For this purpose, a plurality of adjacent, narrow regions are sampled sequentially by means of pencil-beam antenna characteristics during movement of the antennas. Relative to the total area, this is equivalent to illumination with a broad-beam antenna characteristic. The results from the simulation of this broad-beam illumination are combined with the results of the pencil-beam sampling processes in order to achieve an increase of the angular resolution of the antenna array.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 1, 2003
    Assignee: Eads Deutschland GmbH
    Inventors: Andreas Löhner, Wolfgang Rieck
  • Publication number: 20030058156
    Abstract: On an element-by-element basis, measure phases between signals at Port A to Port B of the antenna feed network to get a phase measurement angle that corresponds tp an angular difference between outgoing radar signals and target echo return signals; applying a least squares fit equation to the angular distance to get a correction phase slope across the array, &dgr;0, and applying a phase slope correction of &dgr; to the phases of the transmitted signal.
    Type: Application
    Filed: September 24, 2001
    Publication date: March 27, 2003
    Inventors: Benjamin R. Myers, David P. Parrish, Kurt G. Ramsey, Richard S. White, Gary I. Kosanovic
  • Patent number: 6531980
    Abstract: In a radar antenna system comprising antenna elements arranged in an active array, the elements are located in predetermined groups such that an individual group can be selected electronically from within the whole array aperture, the said selection being effected by variable attenuator means. This produces a phase difference between direct and multipath reflections so that the radar information from a direct reflection can be distinguished from multipath information.
    Type: Grant
    Filed: July 12, 1994
    Date of Patent: March 11, 2003
    Assignee: Airsys ATM Limited
    Inventor: David Kelvin Jones
  • Patent number: 6522293
    Abstract: A phased array antenna may include a substrate and at least one phased array antenna element carried thereby, at least one element controller for controlling the at least one phased array antenna element based upon desired compensation data, and a central controller for supplying to the at least one element controller a current value of a quick control parameter and a block of current compensation data. The block of current compensation data may be based upon a current value of a slow control parameter and a range of possible values for the quick control parameter. Further, the quick control parameter may vary more quickly than the slow control parameter. Additionally, the at least one element controller may determine the desired compensation data based upon the supplied block of current compensation data and the current value of the quick control parameter.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 18, 2003
    Assignee: Harris Corporation
    Inventors: David Kenyon Vail, Frank J. Tabor, Daniel P. Blom, Stephen S. Wilson
  • Patent number: 6522294
    Abstract: A phased array antenna may include a substrate, a plurality of phased array antenna elements carried by the substrate, and a central controller for providing beam steering commands and beam shaping commands. Furthermore, the phased array antenna may also include a plurality of element controllers connected to the phased array antenna elements and the central controller. Each element controller may store at least one position related value based upon physical positioning of the associated phased array antenna element on the substrate, and determine a beam shaping offset based upon the stored at least one position related value and a received beam shaping command from the central controller. Each element controller may also determine at least one phased array antenna element control value based upon a received beam steering command and the beam shaping offset.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 18, 2003
    Assignee: Harris Corporation
    Inventors: David Kenyon Vail, Frank J. Tabor, Daniel P. Blom, Stephen S. Wilson
  • Patent number: 6507314
    Abstract: A method for beamforming signals for an array of receiving or transmitting elements includes the steps of selecting a beam elevation and azimuth and grouping elements of an antenna array into element ensembles that are substantially aligned with a wavefront projection on the antenna array corresponding to the selected beam elevation and azimuth.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: January 14, 2003
    Assignee: Hughes Electronics Corporation
    Inventors: Donald C. D. Chang, Kar Yung, Frank A. Hagen, Weizheng Wang
  • Patent number: 6496143
    Abstract: A phased array antenna may include a substrate and a plurality of controllable phased array antenna elements carried thereby, a central controller for generating a mode selection signal and beam control signals, and at least one multi-mode element controller connected to at least one of the controllable phased array antenna elements and the central controller. The at least one multi-mode element controller may be operable in a desired operating mode from among a plurality of operating modes based upon the mode selection signal from the central controller. Furthermore, the at least one multi-mode element controller may also generate output signals for the at least one controllable phased array antenna element based upon the beam control signals from the central controller.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: December 17, 2002
    Assignee: Harris Corporation
    Inventors: David Kenyon Vail, Frank J. Tabor, Daniel P. Blom, Stephen S. Wilson
  • Patent number: 6480154
    Abstract: In accordance with the invention, the digital samples associated with each of the array elements arranged along a plurality of parallel lines are shifted by a distinct predetermined number of positions along each of said lines, and the digital samples of each line are added separately. Thereafter, each sum thus obtained is multiplied by a distinct phase coefficient. The signals thus obtained for each beam are all in phase. The lines of array elements that are electronically scanned can be oriented along any direction, and advantageously along one or a plurality of diagonals of the array and the electronic scanning of the array elements can be made separately along odd alternate diagonals and along even alternate diagonals.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: November 12, 2002
    Assignee: Agence Spatiale Europeenne
    Inventors: Luigi Bella, Stefano Badessi, Bernhard Grafmueller
  • Patent number: 6473037
    Abstract: A phased array antenna system may include a substrate and a plurality of phased array antenna elements carried thereby, and a plurality of subarray controllers for controlling respective groups of phased array antenna elements. The phased array antenna system may further include a central controller for generating priority beam control commands and non-priority beam control commands for the subarray controllers, and a communications bus connecting the subarray controllers to the central controller. The central controller may send the priority beam control commands to the subarray controllers via the communications bus on a substantially real time basis with time gaps therebetween. Further, the central controller may also send the non-priority beam control commands to the subarray controllers via the communications bus during the time gaps.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: October 29, 2002
    Assignee: Harris Corporation
    Inventors: David Kenyon Vail, Frank J. Tabor, Daniel P. Blom, Stephen S. Wilson
  • Patent number: 6466160
    Abstract: The receive part of an array antenna of base station system may be interpreted as self-calibrating. However the transmit direction of the array antenna may not coincide with the receive direction due to the difference in receive and transmit frequency. The present application teaches how a correction be performed for the transmitting direction by using the same phase compensations of the receiving direction also in the transmitting direction with a proportional correction for the difference in transmit frequency. A Frequency Domain Duplex (FDD) system is foreseen as the prerequisite for the applicability of present invention, but it will also work for a Time Division Duplex (TDD) system. By calculating during reception a first feed cable weight set by means of an adaptive algorithm at the receive frequency a corresponding second cable weight set for a transmit frequency can be calculated.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: October 15, 2002
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Leonard Rexberg
  • Patent number: 6433738
    Abstract: In a transmission antenna directivity control apparatus, a reception multi-beam generation section executes weights and combines reception signals from reception array antenna elements using a preset weight coefficient to generate reception multi-beams. A transmission weight coefficient generation section generates, in accordance with detection powers of the reception multi-beams, a transmission weight coefficient for transmission data in correspondence with each of transmission multi-beams corresponding to transmission array antenna elements. A transmission multi-beam generation section multiplies the transmission data by the transmission weight coefficient to generate the transmission multi-beams and supplies them to the corresponding transmission array antenna elements.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: August 13, 2002
    Assignee: NEC Corporation
    Inventor: Tohru Kikuchi
  • Patent number: 6380893
    Abstract: A method for beamforming signals for an array of receiving or transmitting elements includes the steps of selecting a beam elevation and azimuth and grouping elements of an antenna array into element ensembles that are substantially aligned with a wavefront projection on the antenna array corresponding to the selected beam elevation and azimuth.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: April 30, 2002
    Assignee: Hughes Electronics Corporation
    Inventors: Donald C. D. Chang, Kar Yung, Frank A. Hagen, Weizheng Wang
  • Patent number: 6369748
    Abstract: A radar system mounted on a vehicle is capable of properly measuring an angle even when a linearity is impaired without increasing a scale of hardware and a load on signal processing, and exhibiting a high performance at a low cost.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: April 9, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Naohisa Uehara
  • Patent number: 6362780
    Abstract: A multi-beam phase-array antenna device includes beam configuring devices (BFN) arranged in respective separate groups behind corresponding radiator elements (SE1 . . . SEm). In each group the beam configuring devices (BFN) are arranged one after the other along a first predetermined direction behind the associated radiator element. The number of beam configuring devices in each separate group is selected according to the number (n) of antenna signals. A signal combining device (SK) is provided for each separate group of beam forming devices (BFN). Signal distributing devices (VR1 . . . VRn) for control of the beam configuring devices are preferably mounted on the rear side of a circuit-carrying substrate (SU) for the beam configuring devices (BFN), in order to provide a compact structure. An especially compact and economical structure is provided when the transverse cross-section of each group is adjusted to the area of the associated radiator element.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: March 26, 2002
    Assignee: Robert Bosch GmbH
    Inventors: Juergen Butz, Hans-Peter Diercks
  • Patent number: 6285312
    Abstract: An arrangement for controlling radar transmissions for a system of antennas disposed on a moving platform. The radar transmissions are allocated to an antenna face for a future transmission. To effect an adequate allocation, a prediction arrangement is provided to predict the angular position of the moving platform and the antenna faces. Preferably an antenna is assigned that realizes the smallest off-broadside angle of the radar transmission.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: September 4, 2001
    Assignee: Thales Nederland B.V.
    Inventor: Sierk Michael Thomassen
  • Patent number: 6268827
    Abstract: The present invention provides a method and apparatus for carrying signals having different frequencies in a space-deployed antenna system. When the antenna system is in a first mode, DC power, command information and RF signals (1) are multiplexed via a multiplexer, (2) propagate along a RF transmission line and (3) are appropriately demultiplexed by a demultiplexer associated with each T/R module. Similarly, when the antenna system is in a second mode, telemetry data and RF signals (1) are multiplexed via a multiplexer, (2) propagate along the RF transmission line and (3) are appropriately demultiplexed by a demultiplexer at a driver stage. By using the RF transmission lines associated with each T/R module to deliver (1) DC power, (2) command data and (3) RF signals in the first mode and to deliver (1) telemetry data and (2) RF signals in the second mode, the DC power and command/telemetry wire harnesses (and their respective conductors) may be eliminated.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: July 31, 2001
    Assignee: Ball Aerospace & Technologies Corp.
    Inventors: Dean Paschen, Dan Becker, Gary Rait, Paul Burlingame