Receiver Patents (Class 342/89)
  • Patent number: 8170135
    Abstract: A method is provided for coordinating detection of emitted signals by a receiver with transmission of signals by a transmitter, wherein the receiver and the transmitter are located on the same platform. The receiver scans a surrounding environment to detect emitted signals in multiple frequency ranges while the transmitter transmits signals in a predetermined frequency range. The receiver may employ dwells which may be defined as receiver configurations. A dwell, when executed, may be used to detect signals in a certain frequency range. If a frequency range of the dwell conflicts with the frequency range of transmitter signals, which may result in interference of transmitter signals with detection of emitted signals, execution of the dwell may be delayed. If the frequency range of the dwell is such that transmitter signals do not interfere with execution of the dwell, the dwell can be executed.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: May 1, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Craig A. Hanna, Anthony J. Gounalis, Robert Haefner
  • Patent number: 8138965
    Abstract: A method, Kinematic Algorithm for Rocket Motor Apperception (KARMA), for processing radar returns for identifying the type of a missile target includes generating tracks representing the missile, and applying the tracks to a set of plural template-based filters, each representing one missile hypothesis, to generate plural sets of missile states, one set for each hypothesis. The missile states are processed to generate kinematic parameter likelihood values (LLHs). The LLH values for each filter hypothesis are normalized and weighted. A weighted maximum likelihood value (WMLH) is calculated for each hypothesis. The correct hypothesis is deemed to be the one having the maximum WMLH, thus identifying the missile type.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 20, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Thu-Van T. Luu, Jeffrey B. Boka
  • Patent number: 8130137
    Abstract: A method and a system for sensing a boosting target missile, estimate position and velocity and boost acceleration parameters of the target missile, and control an interceptor missile to the target missile. A boost-phase missile target state estimator estimates at least acceleration, velocity, and position using an acceleration template for the target vehicle. The nominal template is incorporated into an extended Kalman filter which corrects the nominal template acceleration with the filter states to predict future thrust acceleration, velocity and position. The correction can compensate for motor burn variations and missile energy management (lofted/depressed trajectory).
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: March 6, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Thu-Van Luu, Jeffrey B. Boka, Purusottam Mookerjee, Michael J. Harcourt
  • Patent number: 8131224
    Abstract: Phase and gain of a transmit signal are measured at a transmitter by determining a first time delay having a first resolution at a measurement receiver between a reference signal from which the transmit signal is generated and a measured signal derived from the transmit signal by comparing amplitudes of the reference signal and the measured signal. A second time delay having a second resolution finer than the first resolution is determined at the measurement receiver between the reference signal and the measured signal based on the first time delay. The reference signal and the measured signal are time aligned at the measurement receiver based on the second time delay and the phase and gain of the transmit signal are estimated after the reference signal and the measured signal are time aligned.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 6, 2012
    Assignee: St-Ericsson SA
    Inventors: Wael A. Al-Qaq, Zhihang Zhang, Nikolaus Klemmer
  • Patent number: 8125375
    Abstract: A radar that detects the presence or absence of interference when detecting a target based on a frequency spectrum of a beat signal of a transmission signal and a reception signal. Whether or not the number of peaks exceeding a noise threshold in the frequency spectrum exceeds a predetermined number is determined. According to the determination result, the presence or absence of interference on the beat signal is detected. If “interference exists”, the threshold for extraction of target peaks that appear on the frequency spectrum is increased. This allows detection of the presence or absence of a spike noise superposed on the beat signal to be performed more certainly, thereby enabling processing according to the presence or absence of interference.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: February 28, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Motol Nakanishi
  • Patent number: 8119957
    Abstract: A submunition is formulated for destroying a target in a target area. Accommodated in a casing are a signal processing unit connected to a radar antenna and/or an infrared sensor and/or another target-detecting sensor. The submunition further has target recognition software and a charge provided with a covering. To increase the versatility of use and to simultaneously improve detection and decision certainty and reliability, the target recognition software has a software interface for the transfer of at least one parameter specific to the target area.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: February 21, 2012
    Assignee: Diehl BGT Defence GmbH & Co. KG
    Inventor: Harald Wich
  • Patent number: 8116408
    Abstract: A method and apparatus is disclosed to recover at least one information payload from a frame and/or to configure one or more reception parameters to receive a future frame to support RIFS. A physical layer device (PHY) receives at least a training sequence embedded in the frame of a transmitted communication signal using a receiver filter bandwidth corresponding to a variable filter training sequence bandwidth. The PHY determines an amount of gain necessary to recover an information payload embedded in the frame based on the recovery of the training sequence. The PHY determines an amount of gain necessary to recover an information payload embedded in the frame based on the recovery of the preamble. A previous communications receiver gain is adjusted by the difference between the amount of gain necessary to recover the information payload and the previous communications receiver gain.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: February 14, 2012
    Assignee: Broadcom Corporation
    Inventor: Rohit V. Gaikwad
  • Patent number: 8116968
    Abstract: The invention provides a method for identification of traffic lane boundary. Firstly the microwave signal is received, and the noise reduction is treated for the microwave signal. Then the frequency domain information is employed to calculate the legal set of closed interval, in order to form the frequency span information. Finally, the probability density function model is employed to calculate the frequency span information in order to identify the traffic lane boundary.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: February 14, 2012
    Assignee: National Chiao Tung University
    Inventors: Yow-Jen Jou, Hsun-Jung Cho, Yu-Kuang Chen, Heng Huang, Chia-Chun Hsu, Rih-Jin Li, Chien-Lun Lan, Ming-Te Tseng
  • Patent number: 8115673
    Abstract: A UWB RF detector employs a pulsed self-oscillating mixer (SOM) and an output integrator to provide low-noise preamplification, mixing and sampling. The SOM produces short-burst, microwave self-oscillations that are phase-locked to a clock. The self-oscillations are used for mixing. The SOM can also radiate UWB RF pulses. A one-transistor SOM can simultaneously implement both a UWB emitter and a UWB detector in a radar transceiver. A control loop can stabilize the self-oscillations at nanowatt levels. Nanowatt UWB radars and radios can be realized, thereby opening new spectral bands beyond those formally designated for UWB operation.
    Type: Grant
    Filed: August 11, 2007
    Date of Patent: February 14, 2012
    Assignee: McEwan Technologies, LLC
    Inventor: Thomas Edward McEwan
  • Patent number: 8106813
    Abstract: An radar apparatus including a first transmitter, a second transmitter, a first receiver, a second receiver, and a control device. The control device is programmed to use both the characteristics of a first transmit signal from the first transmitter and a second transmit signal from the second transmitter to determine a first control signal for applying to the first receiver to determine its impulse response characteristics, and to determine a second control signal for applying to the second receiver to determine its impulse response characteristics which differ from the first receiver. These control signals have the ability to separate out the first transmit signal and the second transmit signal from their combined sum that appears at the input of the receiver. The procedure can be generalized to include any number of transmit signals and a corresponding number of control signals to separate out the transmit signals from their combined form.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: January 31, 2012
    Inventor: Unnikrishna Sreedharan Pillai
  • Patent number: 8098193
    Abstract: An ultra wide band (UWB) millimeter (mm) wave radar system includes a signal source having a control input, a GHz signal output and a frequency controlled output. A control loop is coupled between the GHz signal output and the control input including a frequency divider and a digitally controlled PLL that provides a locked output coupled to the control input of the signal source to provide frequency locked output signals that are discrete frequency swept or hopped. A frequency multiplier is coupled to the frequency controlled output of the signal source for outputting a plurality of mm-wave frequencies. An antenna transmits the mm-wave frequencies to a surface to be interrogated and receives reflected mm-wave signals therefrom. A mixer mixes the reflected mm-wave signals and mm-wave frequencies and processing circuitry determines at least one parameter relating to the surface from the mixing output.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 17, 2012
    Assignee: Honeywell International Inc.
    Inventors: Bin Sai, Laurent Mauduit
  • Patent number: 8098192
    Abstract: A terrain awareness system includes a processor for receiving radar returns and providing terrain and/or obstacle alerts or warnings in response to the radar returns. The processor receives information from a database and the information is used to select the radar transmit function and/or the radar reception function to optimize the performance of the system.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: January 17, 2012
    Assignee: Rockwell Collins, Inc.
    Inventors: Joel M. Wichgers, Richard D. Jinkins, Richard M. Rademaker, Daniel L. Woodell
  • Patent number: 8089393
    Abstract: An exemplary system and method are for tracking a target in a decentralised network having a plurality of sensing nodes. Each node makes observations of a target, performs a multiple models tracking algorithm based on the observations, and updates tracking information stored therein. Each node communicates the updated track information to selected other nodes in the network. In response to receiving track information from another node, each node fuses the receiving track information with local track information.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: January 3, 2012
    Assignee: BAE Systems PLC
    Inventors: Eric William Nettleton, Christopher Mark Lloyd
  • Patent number: 8085184
    Abstract: According to a conventional method of correlating beat frequencies in a radar device, a detecting state of a target differs at the time of up-chirping and at that of down-chirping, so that, when the number of peaks of beat frequencies does not match with each other, there occurs a situation in which the beat frequencies cannot be accurately correlated.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: December 27, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yuuki Takabayashi, Hiroshi Kameda
  • Patent number: 8085185
    Abstract: A method of down-converting couples a first high-frequency signal to a first detector and to a second detector. An antenna receives a signal and the received signal is provided to at least the first detector. The high-frequency signal is detected to produce a first detected signal including a first detected high-frequency signal and a demodulated signal. The high-frequency signal is concurrently detected to produce a second detected high-frequency signal. The second detected signal is subtracted from the first detected signal so as to cancel amplitude-modulated noise on a detected signal output.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: December 27, 2011
    Assignee: Invention Planet, LLC
    Inventors: Christopher E. Stewart, Grant E. Moulton, Steven H. Goody
  • Patent number: 8081104
    Abstract: A single chip radio transceiver includes circuitry that enables detection of radar signals to enable the radio transceiver to halt communications in overlapping communication bands to avoid interference with the radar transmitting the radar pulses. The radio transceiver is operable to evaluate a number of most and second most common pulse interval values to determine whether a traditional radar signal is present. The radio transceiver also is operable to FM demodulate an incoming signal to determine whether a non-traditional radar signal, such as a bin-5 radar signal, is present. After FM demodulation, the signal is averaged wherein a substantially large value is produced for non-traditional radar signals and a value approximately equal to zero is produced for a communication signal that is not FM modulated with a continuously increasing frequency signal. Gain control is used to limit incoming signal magnitude to a specified range of magnitudes.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: December 20, 2011
    Assignee: Broadcom Corporation
    Inventor: Christopher J. Hansen
  • Patent number: 8077075
    Abstract: In an object verification method for use in radar systems for motor vehicles, the distances and relative velocities of located objects are determined on the basis of received radar echoes. The signature of multiple reflections is searched for in the received radar echoes to verify real objects.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: December 13, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Martin Randler, Ruediger Jordan
  • Patent number: 8072367
    Abstract: A movement detection system includes a microwave antenna able to transmit microwave frequency signals into a space. An electronics controller is connected to the microwave antenna, and is configured to continually measure the impedance of the microwave antenna while it transmits microwave frequency signals into the space. An interpretive device is connected to receive impedance measurements from the electronics controller, and is configured to interpret and report changes in the magnitude and phase angles of individual impedance measurements as the passing of things and their direction through the space.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: December 6, 2011
    Assignee: Stolar, Inc.
    Inventors: Igor Bausov, Gerald Stolarczyk, Larry G. Stolarczyk
  • Patent number: 8068052
    Abstract: When an excitation signal is generated from an exciter due to an activation signal generated from a radar control device and is distributed to supply to each antenna sub-module, a combination reception signal is transmitted to a receiver from each antenna sub-module. The receiver takes in the combination reception signal obtained by each sub-module in response to an instruction from the radar control device, a frequency converter converts the combination reception signal into a prescribed frequency band, and a distributed aperture combination circuit performs a beam combination in accordance with a distributed aperture combination algorithm. In this way, a radar apparatus, which is equivalent to an active phased array radar of a large aperture and with high performance, is achieved.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: November 29, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taihei Nakada, Junichiro Suzuki, Yoshiaki Satake
  • Patent number: 8059025
    Abstract: An altimetry method comprising: providing a signal receiver (RX) on a first platform (S1) flying above a portion of the Earth surface (ES), for receiving a temporal series of signals emitted by a second flying platform (S2) and scattered by said portion of the Earth surface; and computing altimetry waveforms, indicative of an elevation profile of said portion of the Earth surface, by processing the received signals; characterized in that said step of computing altimetry waveforms comprises: cross-correlating the received signals with a plurality of locally-generated frequency-shifted replicas of the emitted signals; introducing a frequency-dependent temporal shift to the correlation waveforms in order to compensate for range delay curvature; and incoherently summing the temporally shifted correlation waveforms (CXC) corresponding to signals scattered by a same region of the Earth surface at different times during motion of said first platform.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: November 15, 2011
    Assignee: Agence Spatiale Europeenne
    Inventor: Salvatore D'Addio
  • Patent number: 8054217
    Abstract: A detection system and method. The inventive system includes an arrangement for receiving a frame of image data; an arrangement for performing a rate of change of variance calculation with respect to at least one pixel in said frame of image data; and an arrangement for comparing said calculated rate of change of variance with a predetermined threshold to provide output data. In the illustrative embodiment, the frame of image data includes a range/Doppler matrix of N down range samples and M cross range samples. In this embodiment, the arrangement for performing a rate of change of variance calculation includes an arrangement for calculating a rate of change of variance over an N×M window within the range/Doppler matrix. The arrangement for performing a rate of change of variance calculation includes an arrangement for identifying a change in a standard deviation of a small, localized sampling of cells.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: November 8, 2011
    Assignee: Raytheon Company
    Inventors: Donald P. Bruyere, Ivan S. Ashcraft, John B. Treece
  • Patent number: 8035546
    Abstract: A method for the detection of at least one moving object in a pre-determined detection zone by way of a speed sensor. The method includes the following steps: determining a detection zone within an illumination region of the speed sensor; detecting a speed signal, particularly a Doppler signal, at least with the entry of a moving object into the illumination region; estimating an entry of the moving object into the detection zone on the basis of a speed of the object, and of a distance between a boundary of the illumination region and the detection zone.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: October 11, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Nalezinski, Claus Seisenberger
  • Patent number: 8031109
    Abstract: An antenna configuration is described for high frequency (HF) or very high frequency (VHF) radars contained in a single vertical post. The radar may include a vertical dipole or monopole transmitting antenna collocated with a three-element receive antenna. The three antennas including two crossed loops and a vertical element are used in a direction-finding (DF) mode. Isolation between the three antennas produces high quality patterns useful for determining target bearings in DF mode. The single vertical post is sufficiently rigid mechanically that it may be installed along a coast without guy wires.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: October 4, 2011
    Assignee: Codar Ocean Sensors, Ltd.
    Inventors: Donald E. Barrick, Peter M. Lilleboe
  • Patent number: 8026841
    Abstract: Disclosed is a method, means for and computer program for enhancing range and azimuth resolution in a two-dimensional (2D) image generated by a frequency modulated continuous-wave (FMCW) radar for providing enhanced situational awareness in autonomous approach and landing guidance (AALG) system by forming and displaying a two-dimensional (2D) model of landing conditions from received range and azimuth real beam radar (RBR) signals by rendering one or more target locations and amplitudes in both range and azimuth, selecting a region of interest from the displayed 2D model to enhance the one or more target locations in the selected region of interest, selectively applying range and azimuth resolution enhancement using a first and second beamforming approach or applying azimuth only resolution enhancement by using just the second beamforming approach to obtain an one or more accurate target location estimations and combining the enhanced one or more target locations to render an enhanced 2D image.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: September 27, 2011
    Assignee: BAE SYSTEMS Controls Inc.
    Inventors: Guoqing Liu, Ken Yang
  • Patent number: 8026840
    Abstract: A biometric radar system and method for identifying a person's positional state are generally described herein. The biometric radar may phase adjust a sequence of radar return signals received through two or more receive antennas to remove at least some phase noise due to the stationary objects. The biometric radar may also segment the phase adjusted radar return signals into a plurality of multi-resolutional Doppler components. Each multi-resolutional Doppler component may be associated with one of a plurality of biometric features. The biometric radar system may also combine and weight the segmented radar returns for each biometric feature to generate weighted classifications for a feature extraction process.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: September 27, 2011
    Assignee: Raytheon Company
    Inventors: Wesley H. Dwelly, Vinh N. Adams
  • Patent number: 8026844
    Abstract: A method for determining whether a target of interest located within radar resolution cells in a target area of interest is detectable with a radar system from a location and elevation of the radar system is described. The method includes the steps of (a) developing a topographic map of the terrain in the target area of interest; (b) mapping the radar resolution cells onto the topographic map; (c) modeling radar signal propagation to each of the radar resolution cells on the topographic map; and (d) determining, using the results of the modeling, if the radar system has sufficient signal-to-noise (SNR) to detect the target of interest.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 27, 2011
    Assignee: Vista Research, Inc.
    Inventors: Philip A. Fox, Joseph W. Maresca, Jr., Dennis M. Hancock, Charles L. Rino
  • Patent number: 8022864
    Abstract: Signal processing is used to detect transient signals in the presence of noise. Two embodiments are disclosed. In both embodiments, the time series from a remote sensor is broken into a number of short time series. The power spectrum of each short time series are then calculated along with the mean noise level. The moments of each peak in every power spectrum are calculated and the peak with the largest power selected from each power spectrum. A histogram of the moments from these selected peaks is generated and normalized to become a measured PDF. In addition, a pre-determined PDF is derived, in the same method as above, from theoretically calculated noise, numerically simulated noise, or measured noise. Comparison between the measured and pre-determined PDF's establish the detection of a transient signal. The first embodiment compares the area between the measured and pre-determined PDF's against a threshold to determine detection.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: James Ronald Jordan, James Harwood Churnside, Paul Ernest Johnston
  • Patent number: 8022860
    Abstract: An Advanced Focal Plane Array (“AFPA”) for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ryan Mukai, Victor A. Vilnrotter
  • Patent number: 8018371
    Abstract: A passive proximity detection system and method are provided. A transmitted signal, such as a communication signal, is sampled and placed in memory. A version of the transmitted signal, reflected by a target in the vicinity of the transmitting antenna, is sampled and compared to the stored reference sample. Correlation between the reference and reflected samples indicates the presence of a target in the vicinity of the transmitting antenna. Processing of the signals can include frequency shifts to account for Doppler shifts in the reflected energy as a result of a non-zero relative radial velocity of the target. Multiple antennas for receiving reflected energy can be provided to enhance the coverage area of the system, and/or to provide information regarding the relative location of a target. In addition, signals from multiple transmitting antennas can be used as sources of energy for probing the vicinity of those antennas for targets.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 13, 2011
    Assignee: Ball Aerospace & Technologies Corp.
    Inventors: Dean A. Paschen, William G. Newhall, Mark C. Leifer
  • Patent number: 8018374
    Abstract: A radar having a high time and high spatial resolution and being capable of performing volume scanning with an inexpensive and simple structure, while enabling reduction is size and weight. A radar (50) is provided with an antenna unit (51) including a radio wave lens antenna device, which has a spherical transmission radio wave lens (2), a spherical reception radio wave lens (3), a primary radiator (4) arranged at a focal point of the radio wave lens (2), and a primary radiator (5) arranged at a focal point of the radio wave lens (3). The primary radiators (4, 5) pivot in an elevation direction about an axis connecting center points of the radio wave lenses (2, 3) and pivot in an azimuthal direction about an axis orthogonal to the axis connecting the center points of the radio wave lenses (2, 3).
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: September 13, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsuyuki Imai, Tomoo Ushio
  • Patent number: 8013784
    Abstract: A radar apparatus comprises a substrate having first and second sides, an antenna including radiative elements disposed on the first side of the substrate, a Butler matrix supported by the substrate having input and output ports, where each output port of the Butler matrix is electrically connected to a group of radiative elements, and input connections between a radio-frequency (RF) circuit and the input ports of the Butler matrix. The RF circuit may be supported by the second side of the substrate.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: September 6, 2011
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Alexandros Margomenos, Ruihua Ding
  • Patent number: 8013781
    Abstract: In a radar system using a radar clutter map comprising a plurality of range-azimuth cells containing parameter data values indicative of time averaged echo returns for affecting alarm threshold levels at range-azimuth locations scanned by the radar system antenna, a method for detecting comprising the steps of obtaining from the radar clutter map a first parameter data value associated with a given cell under test (CUT); determining a second parameter data value using parameter data values of other cells from the plurality of range-azimuth cells from the radar clutter map; comparing the first parameter data value associated with the CUT with the second parameter data value; and generating a signal indicative of a target detection when the first parameter data value exceeds the second parameter data value by a given threshold corresponding to a target false alarm rate.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: September 6, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Peter H. Stockmann
  • Patent number: 8004458
    Abstract: A calibration system for the receiver of a dual polarization radar system has been developed. The system includes a radar transmitter that transmits signals in horizontal and vertical polarizations and a radar receiver that receives the horizontal and vertical polarization signals. The system also includes a test signal generator that generates a continuous wave test signal. A calibration circuit for the radar receiver modifies the test signal to simulate weather conditions by adjusting the attenuation and Doppler phase shift of a continuous wave test signal.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: August 23, 2011
    Assignee: Baron Services, Inc.
    Inventor: William H. Walker
  • Patent number: 7999726
    Abstract: A system for estimating an antenna boresight direction. The novel system includes a first circuit for receiving a Doppler measurement and a line-of-sight direction measurement corresponding with the Doppler measurement, and a processor adapted to search for an estimated boresight direction that minimizes a Doppler error between the Doppler measurement and a calculated Doppler calculated from the estimated boresight direction and the line-of-sight direction measurement. The line-of-sight direction measurement is measured relative to the true antenna boresight, and the calculated Doppler is the Doppler calculated for a direction found by applying the line-of-sight direction measurement to the estimated boresight direction. In a preferred embodiment, the first circuit receives a Doppler measurement and a line-of-sight direction measurement from each of a plurality of pixels, and the processor searches for an estimated boresight direction that minimizes a sum of squares of Doppler errors for each of the pixels.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: August 16, 2011
    Assignee: Raytheon Company
    Inventors: Ralph Guertin, David Faulkner, John Treece, Donald Bruyere
  • Patent number: 7999721
    Abstract: A GPS enabled radar detector dynamically handles radar sources based upon previously-stored geographically-referenced information on such sources and data from the GPS receiver. The detector includes technology for determining the location of the detector, and comparing this location to the locations of known stationary sources, to improve the handling of such detections. The detector may ignore detections received in an area known to contain a stationary source, or may only ignore specific frequencies or may handle frequencies differently based upon historic trends of spurious police radar signals at each frequency. Notification of the driver will take on a variety of forms depending on the stored information, current operating modes, and vehicle speed. The detector may be also incorporated within a general purpose navigation device.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 16, 2011
    Assignee: Escort Inc.
    Inventor: Steve K. Orr
  • Patent number: 7982654
    Abstract: A smart signal jammer is disclosed that receives a description of an unwanted signal or signals to be jammed, and transmits one or more jamming signals in one or more temporal transmission patterns of pulses that jam the unwanted signal or signals. A smart jammer according to the present invention can use available transmitters efficiently to transmit jamming pulses in a manner that maximizes jamming effectiveness. A smart jammer according to the present invention comprises a jamming signal calculator that calculates the parameters of the jamming signals to be transmitted. The calculations are based on inequalities that are satisfied by an efficient jamming signal.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: July 19, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Nathan E. Low
  • Patent number: 7982666
    Abstract: A system and method for extrapolating sampled radar data allows in one aspect spectral data to be increased without increasing scan time and in another aspect allows scan time to be decreased without decreasing radar data quality. Extrapolation is carried out by extending a sequence of In-Phase and Quadrature-Phase samples by appending additional samples to each end of the sequence. Extrapolated samples are selected to maintain the statistical properties of the original sequence. Applying conventional windowing techniques to the extrapolated sample set results in a weighted extrapolated sequence having a corresponding Doppler spectrum with an increased spectral resolution.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 19, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Svetlana M. Bachmann
  • Patent number: 7978610
    Abstract: A method for asynchronous transmission of communication data between periodically blanked terminals separated by an unknown distance is disclosed. A bursted signal is transmitted from a first terminal with a burst time tB and a burst cycle period T. The bursted signal is received at a second terminal. A bursted response signal is transmitted from the second terminal to the first terminal. The bursted response signal has a burst cycle period of T/2 and includes a pair of response bursts, with each burst in the pair having a burst time tA?T/2?tB. Each burst in the pair of response bursts carries an identical data payload. At least one of the response bursts is received at the first terminal.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: July 12, 2011
    Assignee: L-3 Communications Corp.
    Inventors: William K. McIntire, Larry S. Thomson, John J. Carver, II
  • Patent number: 7973701
    Abstract: A blockage detection system and method for use in a sensor such as a side object detection (SOD) sensor in an automotive radar system is described. The sensor emits signals and receives return signals (i.e. reflected signals) from a passing object. If the passing object is within a virtual detection zone, the sensor uses the information from the passing object to determine if a blockage condition exists in the sensor. The technique utilizes statistics related to the passing object to determine whether a blockage condition exists within the sensor. In one embodiment, a SOD sensor mounted in a first vehicle uses information from a second passing vehicle (e.g. radar return information) to determine whether a blockage condition exists within the SOD sensor itself.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: July 5, 2011
    Assignee: Valeo Radar Systems, Inc.
    Inventors: Stephen P. Lohmeier, Nguyen D. Nguyen
  • Patent number: 7969350
    Abstract: Methods and systems for reducing a leakage component of a received-signal are disclosed. A transmit antenna of a radar system transmits a transmit-signal including a transmit component. A receive antenna of the radar system receives a received-signal including a leakage component and a target component. The received-signal corresponds to the transmit-signal. An overlap determination is made to determine whether the target component overlaps the leakage component and/or is received during a time when the leakage component is expected to be received. If overlap exists, a reduction leakage component (e.g., a previously determined reduction leakage component) is subtracted from the received-signal so as to produce a modified received-signal, the modified received-signal including the target component and substantially excluding the leakage component.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: June 28, 2011
    Assignee: Honeywell International Inc.
    Inventors: Benjamin J. Winstead, Jason I. Formo
  • Patent number: 7961140
    Abstract: A multi-beam radar sensor has a plurality of antenna elements disposed next to each other, a collective lens situated at a distance in front of the antenna elements, and an additional preliminary focusing lens disposed in such a way that it affects only a portion of the radar radiation transmitted from, and/or received by, the antenna elements.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: June 14, 2011
    Assignee: Robert Bosch GmbH
    Inventor: Thomas Binzer
  • Patent number: 7952515
    Abstract: Narrow virtual transmit pulses are synthesized by differencing long-duration, staggered pulse repetition interval (PRI) transmit pulses. PRI is staggered at an intermediate frequency IF. Echoes from virtual pulses form IF-modulated interference patterns with a reference wave. Samples of interference patterns are IF-filtered to produce high spatial resolution holographic data. PRI stagger can be very small, e.g., 1-ns, to produce a 1-ns virtual pulse from very long, staggered transmit pulses. Occupied Bandwidth (OBW) can be less than 10 MHz due to long RF pulses needed for holography, while spatial resolution can be very high, corresponding to ultra-wideband (UWB) operation, due to short virtual pulses. X-Y antenna scanning can produce range-gated surface holograms from quadrature data. Multiple range gates can produce stacked-in-range holograms. Motion and vibration can be detected by changes in interference patterns within a range-gated zone.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: May 31, 2011
    Assignee: McEwan Technologies, LLC
    Inventor: Thomas Edward McEwan
  • Patent number: 7952511
    Abstract: A method for detecting an object, comprising the steps of defining expected characteristics of scattered electromagnetic radiation to be received at a receiver; attenuating at least a portion of electromagnetic radiation received at the receiver by a presence of an object within a path of electromagnetic information; and detecting the attenuation to indicate a presence of the object. The object may be a low radar profile object, such as a stealth aircraft. The electromagnetic radiation is preferably microwave, but may also be radio frequency or infrared. By using triangulation and other geometric techniques, distance and position of the object may be computed.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: May 31, 2011
    Inventor: James L. Geer
  • Publication number: 20110109494
    Abstract: According to one embodiment, an radar apparatus includes a signal processor, a transmitting unit, an antenna, a first receiving unit, and a second receiving unit. The signal processor generates first or second pulses, and generates a control signal having first or second states. The transmitting unit converts the first and second pulses into first and second transmission pulses. The antenna radiates the first and second transmission pulses and receives reflection pulses to generate a reception signal. The first receiving unit includes first and second receiving circuits which processes the reception signal to generate first and second processed signals, respectively, and outputs one of the first and second processed signals depending on the state of the control signal. The second receiving unit processes the one of the first and second processed signals.
    Type: Application
    Filed: July 19, 2010
    Publication date: May 12, 2011
    Inventors: Toshio ASANO, Toshio Namba, Takashi Murano
  • Publication number: 20110109492
    Abstract: This disclosure provides a signal processing device, which includes a reception signal acquiring module for acquiring reception signals received by a radar antenna, an identifying module for identifying a kind of each reception signal, an extracting module for extracting the reception signal for each kind, and a kind-base signal processing module for performing individual signal processing for each kind of the extracted reception signal.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 12, 2011
    Inventor: Masahiro NAKAHAMA
  • Patent number: 7928900
    Abstract: An antenna array includes at least one transmit array comprising a plurality of metamaterial elements. The antenna array further includes at least one near-field stimulator for inputting electromagnetic signal to the transmit array so that a sub-wavelength target is illuminated with an electromagnetic wave.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: April 19, 2011
    Assignee: Alliant Techsystems Inc.
    Inventors: Christopher Fuller, John R. Lamberg, John J Geddes, Michael J Gawronski
  • Patent number: 7924211
    Abstract: Detecting reflectors of an emitted electromagnetic pulse, using a received signal, by time-sampling the received signal and the emitted pulse at a same sampling frequency, each received sample corresponding to a return-trip distance for the emitted pulse between its transmitter and a possible reflector. The sampled received signal is divided by the emitted pulse sampled and temporally translated into an interval of duration equal to the emitted pulse divided into L samples, producing L results of the division. A weighted summing of the L results of the division is calculated, the sets of L weights each having a support on which the weights are not zero, every subinterval of length between L/n and L being the support for at least one set of weights and no support having a length of less than L/n, wherein the sums of the weights of a set all being equal, and n is a nonzero integer such that L/n is greater than or equal to 2.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: April 12, 2011
    Assignee: Thales
    Inventors: Luc Bosser, Stephane Kemkemian, Myriam Nouvel
  • Patent number: 7920088
    Abstract: The present invention is a method and apparatus that provides detection, characterization, and intuitive dissemination of targets. This disclosure combines improvements to ultra-wideband (UWB) sensing and machine target characterization with a means to convey data in a format that is quickly and readily understood by practitioners of the technology. The invention is well suited for Situational Awareness (SA) support in areas that are occluded by rain, fog, dust, darkness, distance, foliage, building walls, and any material that can be penetrated by ultra-wideband RF signals. Sense Through The Wall (STTW) performance parameters including target range, stand-off distance, and probability of detection are improved herein by combining a dynamically positioned sliding windowing function with orthogonal feature vectors that include but are not limited to time amplitude decay, spectral composition, and propagation time position in the return signal data.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: April 5, 2011
    Inventors: Scott Randall Thompson, Bernt A Askildsen, Anthony Gervasi
  • Patent number: 7907082
    Abstract: A method and system for presence detection within a detection volume delimited by an inner radius and an outer radius using microwave radiation. The outer radius of the detection volume is controlled by selecting the length of a first pulse controlling the transmit interval of a microwave transmitter and by selecting the length of a third pulse controlling the receive interval of a microwave receiver. The inner radius of the detection volume is controlled through selecting the length of a second pulse defining a predetermined time period between the first pulse and the third pulse.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: March 15, 2011
    Assignee: Volvo Car Corporation
    Inventors: Anders Antonsson, Göran Svedoff
  • Patent number: 7898469
    Abstract: Provided is a receiving device that is used for a spread spectrum radar apparatus, receives a spectrum-spread signal, and obtains a precise radar spectrum, and includes: a despreading unit that (i) generates first and second despread signals that are generated by despreading a reception signal using a pseudo-noise code, the second despread signal passing through a transmission line carrying a current having a current value identical to a current value of a current carried by a transmission line through which the first despread signal passes, and (ii) includes a first transistor pair including first and second transistors having an identical characteristic, the first transistor outputting the first despread signal, and the second transistor outputting the second despread signal; and a quadrature demodulating unit that generates an in-phase signal and a quadrature signal by quadrature-demodulating the first despread signal and the second despread signal, respectively.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: March 1, 2011
    Assignee: Panasonic Corporation
    Inventors: Shinji Ujita, Takeshi Fukuda