Having Light Beams Of Different Frequencies (e.g., Heterodyning) Patents (Class 356/484)
  • Publication number: 20120320381
    Abstract: A measurement apparatus obtains a reference signal from light modulated by a first frequency, obtains a measurement signal from light modulated by the first frequency and a second frequency, and measures a position of a target object by calculating a phase difference between the reference signal and the measurement signal. The apparatus includes: a demodulation unit which demodulates the measurement signal by the first frequency; a decimation filter which removes harmonic components from the signal generated by the demodulation unit; a detection unit which detects periodic error components included in the signal output from the decimation filter; a removing unit which removes the periodic error components from the signal output from the decimation filter; and a calculation unit which calculates the position of the target object based on the signal output from the removing unit.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 20, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Yoshiyuki Okada
  • Patent number: 8269978
    Abstract: An object that might be at least partially obscured is imaged. Frequency-entangled photons are generated. The frequency-entangled photons include photons having first and second frequencies. Those photons having the first frequency can pass through the obscuration and illuminate the object. Photons scattered by the object and those photons having the second frequency are used to form an image by considering coincidences in time of arrival.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: September 18, 2012
    Assignee: The Boeing Company
    Inventors: Barbara A. Capron, Claudio G. Parazzoli
  • Patent number: 8238745
    Abstract: A method of collecting data from an optical channel monitor for monitoring the power of a wavelength-division multiplexed light signal at each wavelength is disclosed. The total light power is analog-to-digital converted by an A/D converter. The data of the total light power which has been analog-to-digital converted is compared with a reference light power by a comparator for each conversion, and when the difference between the total light power and the reference light power exceeds a predetermined threshold, a power fluctuation flag is turned ON. After the comparison, the above process of the analog-to-digital conversion and the comparison is iterated until the optical channel monitor completes the data collection for each wavelength. Thereafter, the processor determines whether the power fluctuation flag is ON or not. When the power fluctuation flag is ON, the processor discards the currently collected data and maintains the data which were collected immediately before.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: August 7, 2012
    Assignee: NEC Corporation
    Inventor: Takefumi Oguma
  • Patent number: 8222623
    Abstract: The invention provides an apparatus and method for generating quantum-correlated and/or polarization-entangled photon pairs with unequal wavelengths. The photon pairs generated collinearly with respect to the pump light via a nonlinear process in a nonlinear optical medium are collected into a single mode fiber and split using a dichroic device. The wavelengths of photons constituting a pair are selected such that, first, their efficient propagation in the same single mode optical fiber, and second, their efficient splitting with high switching ratio, is possible. A detected rate ˜105-106 pairs/s and >98% quantum interference visibility of polarization entanglement is observed. This source, given its performance, robustness and minimum alignment requirements is ideal for quantum communication schemes, in particular for entanglement-based quantum cryptography.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: July 17, 2012
    Assignee: qutools GmbH
    Inventors: Pavel Trojek, Harald Weinfurter
  • Patent number: 8199331
    Abstract: A vibrometer and a method for optically measuring oscillations at an object, including a radiation source for creating a source beam, a beam splitter to split the source beam into a measuring beam and a reference beam, an optic interference device for interfering the reference beam with a measuring beam, at least partially reflected by the object, and a detector, with the interference device and the detector being embodied cooperating such that a measuring beam, at least partially deflected by the object, and the reference beam interfere on the detector. The vibrometer is embodied as a heterodyne vibrometer, having an optic frequency shift unit, which is arranged in the optical path of the vibrometer, to form a carrier frequency by creating a frequency difference between the measuring beam and the reference beam.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: June 12, 2012
    Assignee: Polytec GmbH
    Inventors: Christian Rembe, Georg Siegmund, Tian-Hua Xu
  • Patent number: 8173982
    Abstract: A non-degenerate polarization-entangled photon pair generation device (1) that efficiently and easily generates non-degenerate polarization-entangled photon pairs includes: a quantum-entangled photon pair generator (2) including a single crystal in which periodically poled structures (3a, 3b) having different periods are formed; and a light radiating unit (4) for entering light into the quantum-entangled photon pair generator (2) such that the light passes through the periodically poled structure (3a) and then through the periodically poled structure (3b).
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: May 8, 2012
    Assignee: Japan Science and Technology Agency
    Inventors: Keiichi Edamatsu, Ryosuke Shimizu, Shigehiro Nagano
  • Patent number: 8154732
    Abstract: A multiband spatial heterodyne spectrometer for determining spectra in first and second wavelength bands has a beam splitter configured to split incident light and to direct the incident light upon a first and a second diffraction grating. The gratings are configured for Littrow reflection of incident light of the first wavelength band at a first order and Littrow reflection of incident light of the second wavelength band at a second order. Light reflected by the first and the second diffraction grating forms diffraction patterns that are imaged by an electronic camera. A dispersive device such as a prism or diffraction grating separates the imaged interference patterns onto separate rows of pixel sensors corresponding to the wavelength bands. A processing device receives information from the detector and computes spectra therefrom. In embodiments, the spectrometer is configured to compute hyperspectral images of a target.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 10, 2012
    Assignee: Bodkin Design and Engineering, LLC
    Inventors: Andrew Bodkin, Andrew I. Sheinis
  • Patent number: 8149419
    Abstract: An object of the invention is to provide an optical reflectometry and an optical reflectometer, in which accurate measurement can be performed irrespective of a measurement distance. In the optical reflectometry and optical reflectometer according to the invention, in which a distribution of backscattered light intensity from a measurement target in an optical propagation direction is measured using Optical Frequency Domain Reflectometry (OFDR), a coherence monitor unit 12 that monitors a coherence property of a frequency sweep light source 1 is provided, and measurement result of a measuring unit 11 is corrected based on the monitor result of the coherence monitor unit 12.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 3, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Xinyu Fan, Fumihiko Ito, Yusuke Koshikiya
  • Publication number: 20120057170
    Abstract: A demodulation method for a pseudo-heterodyne signal, wherein the pseudo-heterodyne signal has a phase-modulated carrier signal and the pseudo-heterodyne signal is digitally sampled. A demodulation method at least partially avoids the disadvantages known from the prior art is implemented according to the invention in that the digitally sampled pseudo-heterodyne signal is subjected to a discrete Fourier transformation and at least one output Fourier coefficient featuring an amplitude and a phase is determined, an atan 2 function (11) is applied on exactly one output Fourier coefficient of the discrete Fourier transformation and the atan 2 function (11) provides the phase of the one output Fourier coefficient as a result.
    Type: Application
    Filed: January 26, 2011
    Publication date: March 8, 2012
    Applicant: KROHNE MESSTECHNIK GMBH
    Inventor: Kai GOSSNER
  • Patent number: 8073336
    Abstract: Entanglement-based QKD systems and methods with active phase tracking and stabilization are disclosed wherein pairs of coherent photons at a first wavelength are generated. Second harmonic generation and spontaneous parametric downconversion are used to generate from the pairs of coherent photons entangled pairs of photons having the first wavelength. Relative phase delays of the entangled photons are tracked using reference optical signals. Classical detectors detect the reference signals while single-photon detectors and a control unit generate a phase-correction signal that maintains the relative phases of phase-delay loops via adjustable phase-delay elements.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: December 6, 2011
    Assignee: MagiQ Technologies, Inc.
    Inventor: Alexei Trifonov
  • Patent number: 8064065
    Abstract: A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.
    Type: Grant
    Filed: June 5, 2010
    Date of Patent: November 22, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Corey Vincent Bennett
  • Publication number: 20110235049
    Abstract: Wavefront sensing apparatus comprises a beam splitter (106) for combining a wavefront to be characterised (105) with a frequency-shifted plane wavefront (111) and a bundle of optical fibres (112) arranged to detect the combined beam at a plurality of positions across the combined beam. Output from individual fibres of the bundle are detected to produce corresponding heterodyne signals, the phases of which are extracted by demodulation. By fitting the extracted phases to an assumed functional form for the phase of the wavefront to be characterised, the piston, tip, tilt and radius of curvature phase parameters of the wave-front to be characterised may be found at the position of the fibre bundle. In contrast, prior art methods of wavefront characterisation only allow the piston phase of the wavefront to be characterised to be obtained.
    Type: Application
    Filed: December 4, 2009
    Publication date: September 29, 2011
    Applicant: QINETIQ LIMITED
    Inventors: James Gordon Burnett, Andrew Maxwell Scott, David Caradoc Jones, Simon Christopher Woods
  • Patent number: 8025425
    Abstract: An improved beaconless adaptive optics system and process. A target is illuminated with a high energy laser beam of a directed energy laser. Wave front measurements are made of high energy laser beam reflections from the target. These wave front measurements are analyzed by a high speed processor to determine both high frequency phase components and low frequency phase components in the wave front data. (Applicants' experiments have shown that there is a direct correlation between beam spot size on the target and the phase variance of the reflected laser beam. The correlation is: the greater the phase variance the smaller the beam spot size.) Applicants have developed a technique for providing special control algorithms that provide very high speed control of the elements of a deformable mirror using this phase variance as a feedback parameter. Applicants have also developed algorithms to correct a limited number of Zernike modes associated with the wave front control.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: September 27, 2011
    Assignee: Trex Enterprises Corp
    Inventor: Mikhail Belenkii
  • Patent number: 8000847
    Abstract: A flight control system is configured for controlling the flight of an aircraft through windshear conditions. The system has means for measuring values of selected flight performance states of the aircraft and a control system for operating flight control devices on the aircraft. A windshear detection system located on the aircraft uses at least some of the measured values of the selected flight performance states to calculate a gust average during flight for comparison to pre-determined values in a table for determining whether windshear conditions exist. The control system then operates at least some of the flight control devices in response to an output of the windshear detection system.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: August 16, 2011
    Assignee: Textron Innovations Inc.
    Inventor: Shyhpyng Jack Shue
  • Publication number: 20110096335
    Abstract: A handheld wavelength meter that includes a housing that encloses a non-stable reference signal source, an interferometer with rotating retroreflectors, optical-electrical converters, a frequency multiplier, and a controller.
    Type: Application
    Filed: October 26, 2010
    Publication date: April 28, 2011
    Inventors: Piotr Anatolij Levin, Aleksandr Stepanov, Vadim Gorchakov
  • Publication number: 20110096334
    Abstract: A heterodyne interferometer includes a light source, an optical system, and a signal generator including at least two light-receiving elements that respectively output a first signal and a second signal. The signal generator generates a third signal and a fourth signal of which phases are respectively shifted by 90° from phases of the first signal and the second signal, generates a first periodic signal by adding a signal that is obtained by multiplying the first signal and the second signal to a signal that is obtained by multiplying the third signal and the fourth signal, and generates a second periodic signal by subtracting a signal that is obtained by multiplying the first signal and the fourth signal from a signal that is obtained by multiplying the second signal and the third signal.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 28, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Ko Ishizuka
  • Publication number: 20110085173
    Abstract: Phase differences associated with a defocused wavefront can be determined from a single color image. The color image, which is a measurement of intensity as a function of wavelength, is used to calculate the change in intensity with respect to wavelength over the image plane. The change in intensity can then be used to estimate a phase difference associated with the defocused wavefront using two-dimensional fast Fourier transform solvers. The phase difference can be used to infer information about objects in the path of the defocused wavefront. For example, it can be used to determine an object's shape, surface profile, or refractive index profile. It can also be used to calculate path length differences for actuating adaptive optical systems. Compared to other techniques, deriving phase from defocused color images is faster, simpler, and can be implemented using standard color filters.
    Type: Application
    Filed: October 6, 2010
    Publication date: April 14, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Laura A. Waller, George Barbastathis
  • Patent number: 7911621
    Abstract: Exemplary embodiments of an apparatus are provided. For example, the exemplary apparatus can include at least one first arrangement providing at least one first electro-magnetic radiation to a sample, at least one second electro-magnetic radiation to a first reference and at least one third electro-magnetic radiation to a second reference. A frequency of radiation provided by the first arrangement generally varies over time. The exemplary apparatus may also include at least one second arrangement which is configured to detect a first interference between at least one fourth electro-magnetic radiation associated with the first electro-magnetic radiation and at least one fifth electro-magnetic radiation associated with the second radiation. The second arrangement is also configured to detect a second interference between at least one sixth electro-magnetic radiation associated with the first electro-magnetic radiation and at least one seventh electro-magnetic radiation associated with the third radiation.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: March 22, 2011
    Assignee: The General Hospital Corporation
    Inventors: S. M. Reza Motaghiannezam, Guillermo J. Tearney, Brett Eugene Bouma
  • Patent number: 7884997
    Abstract: Systems and methods for coherent beam combination of lasers are provided. In one embodiment, a method for coherent beam combination is provided. The method comprises providing a plurality of secondary laser signals from a primary laser signal, amplifying the plurality of secondary signals along respective amplifier arms to provide a plurality of amplified output signals, providing a frequency-shifted reference beam from the primary laser signal, generating a plurality of optically heterodyne detected (OHD) beat signals based on combining respective amplified output signals of the plurality of amplified output signals with the frequency-shifted reference beam, and adjusting path lengths of respective amplifier arms based on respective amplitudes of the plurality of OHD beat signals to control the path length of respective amplifier arms to within a coherence length of the primary laser signal.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: February 8, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventor: Gregory Douglas Goodno
  • Patent number: 7852486
    Abstract: According to various illustrative embodiments, a device, method, and system for measuring optical fine structure of lateral modes of an optical cavity are described. In one aspect, the device comprises at least one photodetector arranged to detect an output of the optical cavity in a lateral direction thereof. The device also comprises an analyzer coupled to an output of the at least one photodetector and arranged to analyze at least a portion of signals produced in the at least one photodetector by at least a portion of the lateral modes of the optical cavity. The device also comprises a processor arranged to determine the optical fine structure of the at least the portion of the lateral modes of the optical cavity based on an output of the analyzer.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: December 14, 2010
    Assignee: Board of Regents, The University of Texas System
    Inventors: Michael Vasilyev, Nikolai Michael Stelmakh
  • Patent number: 7835010
    Abstract: A tunable light source 10 for varying emission wavelength periodically and an optical interferometer are used. A reflector is disposed at a measurement position, a light interference signal is A/D converted at a regular time interval, and data numbers at timing giving peak and bottom are calculated according to a least-squares method. Based on this, an approximate equation is calculated according to polynomial approximation and a sequence including the number of exponentiation of 2 and converting the data number at a regular frequency interval is calculated. Then, by disposing a measured target at the measurement position, calculating the necessary number of pieces of data for FFT from measured data at each timing according to straight-line approximation and Fourier transforming a light beat signal obtained by an optical interferometer at regular frequency interval, a tomogram having high resolution and high sensitivity can be acquired.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: November 16, 2010
    Assignee: Santec Corporation
    Inventors: Atsushi Morosawa, Changho Chong
  • Patent number: 7830526
    Abstract: A method and an apparatus for optical frequency measurement, using one or two frequency-stabilized mode-locked laser combs operating at different repetition rates to mix with a laser under measurement (LUM) respectively so as to generate two beat frequencies. The ordinal comb number where the beat frequency is generated is determined by measuring the ordinal comb number difference where the two beat frequencies are generated at different repetition rates so as to obtain the frequency of the LUM. The ordinal comb number difference is measured by using a dispersion device to offer an approximate ordinal comb number or by operating a mode-locked laser at three different repetition rates.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: November 9, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Long Peng, Tze-An Liu, Ren-Huei Shu
  • Patent number: 7817285
    Abstract: An instrument for use in a borehole, the instrument including a pressure tuned light source disposed in a housing adapted for insertion into the borehole.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: October 19, 2010
    Assignee: Baker Hughes Incorporated
    Inventor: Rocco DiFoggio
  • Publication number: 20100253950
    Abstract: The carrier-envelope phase in a train of optical pulses is varied utilizing the dispersive properties of lossless plates while the total dispersion in transmission is maintained practically constant. The plates include sloped surfaces and are mounted for displacement such that the ratio of the thicknesses of the two plates through which the optical pulses will pass can be varied by displacing the plates so as to shift the carrier-envelope phase in the optical pulses. In one embodiment, the plates include a barium fluoride wedge and a fumed silica wedge, wherein the wedges are bond together to form a composite structure with thicker and thinner portions of the wedges inversely matched.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 7, 2010
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Franz X. Kaertner, Richard Ell
  • Publication number: 20100245835
    Abstract: A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.
    Type: Application
    Filed: June 5, 2010
    Publication date: September 30, 2010
    Inventor: Corey Vincent Bennett
  • Patent number: 7796268
    Abstract: Optical communications can be performed using spectral interferometry. An incident transmission pulse or beam may be mixed with a locally generated beam or pulse to create an interference pattern that may be analyzed to extract the transmitted data. The incident transmission pulse or beam may also be split and mixed with itself to create an interference pattern.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: September 14, 2010
    Assignee: Attochron, LLC
    Inventors: John Cabaniss, Tom Chaffee
  • Patent number: 7792570
    Abstract: A microscopy apparatus includes a heating source to provide a pulse of heating energy focused on a target to heat a localized region of the target, such as human tissue, to generate motion. A measuring source provides a measuring light beam focused on the target. A coherent confocal microscopy assembly focuses the measuring light beam on the target and returns a reflected signal from the target. A detection assembly receives the reflected signal from the target and detects a Doppler shift of the reflected signal. A scanning assembly scans pulses from the heating source over the target and scans the measuring light beam from the measuring source over the target to build up an image of a plane of the target.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: September 7, 2010
    Assignee: Northeastern University
    Inventors: Charles A. DiMarzio, Luis A. Nieva
  • Patent number: 7764363
    Abstract: An improved technique for acoustic sensing involves, in one embodiment, launching into a medium, a plurality of groups of pulse-modulated electromagnetic-waves. The frequency of electromagnetic waves in a pulse within a group differs from the frequency of the electromagnetic waves in another pulse within the group. The energy scattered by the medium is detected and, in one embodiment, may be used to determine a characteristic of the environment of the medium. For example, if the medium is a buried optical fiber into which light pulses have been launched in accordance with the invention, the presence of acoustic waves within the region of the buried fiber can be detected.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: July 27, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Justin Hayward, Andrew B. Lewis, Stuart Russell
  • Patent number: 7742157
    Abstract: An improved technique for acoustic sensing involves, in one embodiment, launching into a medium, a plurality of groups of pulse-modulated electromagnetic-waves. The frequency of electromagnetic waves in a pulse within a group differs from the frequency of the electromagnetic waves in another pulse within the group. The energy scattered by the medium is detected and, in one embodiment, the beat signal may be used to determine a characteristic of the environment of the medium. For example, if the medium is a buried optical fiber into which light pulses have been launched in accordance with the invention, the presence of acoustic waves within the region of the buried fiber can be detected.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: June 22, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Andrew B. Lewis, Stuart Russell
  • Patent number: 7738111
    Abstract: A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: June 15, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Corey Vincent Bennett
  • Publication number: 20100141956
    Abstract: The present invention relates to an apparatus and a method combining achromatic complex FDOCT signal reconstruction with a common path and dual beam configuration. The complex signal reconstruction allows resolving the complex ambiguity of the Fourier transform and to enhance the achievable depth range by a factor of two. The dual beam configuration shares the property of high phase stability with common path FDOCT. This is of importance for a proper complex signal reconstruction and is in particular useful in combination with handheld probes such as in endoscopy and catheter applications. The advantages of the present invention are in particular the flexibility to choose arbitrarily positioned interfaces in the sample arm as reference together with the possibility to compensate for dispersion.
    Type: Application
    Filed: January 21, 2008
    Publication date: June 10, 2010
    Inventors: Rainer Leitgeb, Martin Villiger, Roland Michaey, Theo Lasser, Adrian Bachmann
  • Publication number: 20100128279
    Abstract: The present invention relates to a scanning microscope using a heterodyne interferometer, which can be used for mapping or imaging complex optical parameters such as physical structures and material properties of a sample under test. The heterodyne interferometer is designed to provide in- and quadrature-phase interference signal which can be used for extracting the phase and amplitude change induced on the probe beam. The phase and the amplitude of the probe beam, which is reflected from or transmitted through the sample, are modified by the physical structures and material properties of the sample. Therefore, by scanning the probe beam, local variations of the phase and amplitude can be mapped, and, thereby, three-dimensional microscopic physical structures and material properties can be imaged by processing the phase and amplitude values.
    Type: Application
    Filed: January 29, 2010
    Publication date: May 27, 2010
    Applicant: Industry-University Cooperation Foundation Sogang University
    Inventors: Kyuman CHO, Kang-Hyuk KWON
  • Patent number: 7719736
    Abstract: In the field of optical quantum information processing, manipulation of single photon qubits in frequency modes employs a frequency beamsplitter employs an asymmetric two-path interferometer, reversible down to the quantum limit. A first partially transmitting mirror splits photons into first and second paths. A time delay element introduces a differential time delay into the second path. And a second partially transmitting mirror mixes the two paths again to form two outputs. A half-wave plate utilizes two of the beam splitters.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: May 18, 2010
    Assignee: Qucor Pty Ltd. A.C.N.
    Inventors: Timothy Cameron Ralph, Elanor Huntington
  • Patent number: 7715015
    Abstract: A method and apparatus for demodulation of detected fringes from interferometric sensors with high slew rates are provided. A detected interference signal may be mixed with a local oscillator phasor to obtain a mixed signal, the local oscillator being controlled to produce a frequency that roughly matches the fringe frequency of the interference signal. A sensor phase estimate may be obtained from the detected interference signal or the mixed signal. The local oscillator signal can be computed from the sensor phase estimate. The mixed signal and the sensor phase estimate may be low pass filtered and decimated and the resulting decimated mixed signal and decimated sensor phase estimate may be processed and combined with moderate processing power requirements in an effort to accurately measure the sensor phase for the interferometric sensor.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 11, 2010
    Assignee: Optoplan AS
    Inventors: Ole Henrik Waagaard, Erlend Rønnekleiv
  • Patent number: 7705993
    Abstract: A method and device for sampling ultra-fast optical signals by generating a sampling signal comprising a train of short pulses and coupling the sampling signal together with an optical data signal to be sampled into a highly non-linear optical fiber. Four-wave mixing (FWM) occurs between the two signals resulting in a secondary signal output from the fiber consisting of pulsed components having energy proportional to the instantaneous power of points along the data signal. An analysis of this secondary signal can be carried out to create a normal trace or eye-diagram of the data signal.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: April 27, 2010
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Antonella Bogoni
  • Publication number: 20100094135
    Abstract: Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code.
    Type: Application
    Filed: June 30, 2009
    Publication date: April 15, 2010
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Christopher M. Fang-Yen, Gabriel Popescu, Changhuei Yang, Adam Wax, Ramachandra R. Dasari, Michael S. Feld
  • Publication number: 20100091265
    Abstract: A fiber optic sensor head for detecting the shape or the distance of a test object has an optical fiber, in particular a glass fiber, for conducting and returning partial beams to and from the test object, and an injection/extraction lens on the test object side. For conducting partial beams, injected on the sensor head side and having an optical path length difference, to the test object and returning partial beams injected on the test object side without an optical path length difference, a Fizeau interferometer having a nondiscrete design is associated with the optical fiber and compensates for the optical path length difference between the partial beams.
    Type: Application
    Filed: March 31, 2009
    Publication date: April 15, 2010
    Inventor: Gerald Franz
  • Patent number: 7684023
    Abstract: An apparatus and method for generating a terahertz (THz) wave are provided. The apparatus comprises: an fiber optic probe injecting an optical wave transmitted through an optical fiber into a device under test (DUT); a driving oscillator generating and injecting an electrical wave into the DUT; and the device under test (DUT) generating a THz wave using the produced optical and electrical waves.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: March 23, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kwang Yong Kang, Mun Cheol Paek, Doo Hyeb Youn, Min Hwan Kwak, Suk Gil Han
  • Publication number: 20100068655
    Abstract: A position measuring module includes a movement mirror provided on a movable member and having a reflecting surface along a first axis direction; detection-light units which are arranged for a plurality of measuring axes disposed in the first axis direction respectively and which irradiate, onto the movement mirror, detection lights in a second axis direction intersecting the first axis direction; a reference-light unit which includes a fixed mirror fixed to a member different from the movable member and which irradiates a reference light onto the fixed mirror; a plurality of optical path combining elements which combines detection optical paths for the detection lights reflected by the movement mirror in relation to the measuring axes respectively or combines the detection optical paths for the detection lights and a reference optical path for the reference light via the reference-light unit; and a detecting section which detects an interference fringe brought about by interference between the detection ligh
    Type: Application
    Filed: September 8, 2009
    Publication date: March 18, 2010
    Inventor: JUNICHI MOROE
  • Publication number: 20100014096
    Abstract: A sensing system comprises a light source having three or more distinct wavelengths for illuminating a plurality of distinct areas in a field of view, a sensor for measuring the reflectance of the distinct areas at each of the distinct wavelengths, and an identifier for identifying at least one object in the field of view from the measured reflectance at each of the wavelengths.
    Type: Application
    Filed: August 1, 2007
    Publication date: January 21, 2010
    Inventor: Kamal Alameh
  • Patent number: 7643148
    Abstract: A THz. spectrometer a includes an adjustable resonator situated between two parabolic mirrors at least one being movable with a stepper motor to create a resonance chamber. A terahertz source irradiated the chamber and a mixer which also receives a signal modulated by the sample in the resonance chamber.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 5, 2010
    Assignee: Physical Logic AG
    Inventor: Noel Axelrod
  • Publication number: 20090323061
    Abstract: A nanoparticle sensor is capable of detecting and recognizing single nanoparticles in an aqueous environment. Such sensor may find applications in broad areas of science and technology, from the analysis of diesel engine emissions to the detection of biological warfare agents. Particle detection is based on interferometric detection of multi-color light, scattered by the particle. On the fundamental level, the detected signal has a weaker dependence on particle size (ÿ R3), compared to standard detection methods (ÿ R6). This leads to a significantly larger signal-to-noise ratio for smaller particles. By using a multi-color or white excitation light, particle dielectric properties are probed at different frequencies. This scheme samples the frequency dependence of the particle's polarizability thereby making it possible to predict the composition of the particle material.
    Type: Application
    Filed: February 27, 2007
    Publication date: December 31, 2009
    Inventors: Lukas Novotny, Filipp Ignatovich
  • Patent number: 7639366
    Abstract: A position-measuring device for determining the positions of two objects movable with respect to each other along a measuring direction includes a first radiation source for emitting an electromagnetic beam of rays, a beam splitter, which splits each beam of rays emitted by the radiation source into at least one first and one second partial beam of rays, a reference reflector arranged in the beam path of the first partial beam of rays, a measuring reflector, movable with respect to the reference reflector along the measuring direction, which is arranged in the beam path of the second partial beam of rays, a device for superposing the two partial rays of beams after their reflecting at the respective reflector, for generating a measuring signal, a second radiation source for emitting additional electromagnetic beams of rays and a combining device for combining the additional electromagnetic beams of rays into the beam path of the electromagnetic beam of rays generated by the first radiation source.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: December 29, 2009
    Assignee: Dr. Johannes Heidenhain GmbH
    Inventor: Erwin Spanner
  • Patent number: 7634201
    Abstract: Tunable receivers and techniques for receiving an electrical oscillator signal in the RF, microwave or millimeter spectral range based on photonics technology to use both (1) photonic or optical components and (2) electronic circuit components.
    Type: Grant
    Filed: September 1, 2007
    Date of Patent: December 15, 2009
    Assignee: OEwaves, Inc.
    Inventors: Lutfollah Maleki, Danny Eliyahu, David Seidel
  • Patent number: 7630084
    Abstract: A system and method for measuring and evaluating optical signals for detecting an analyte in an analysis liquid.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: December 8, 2009
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Frederic Wehowski, Bern Rosicke, Stefan Kalveram
  • Patent number: 7609385
    Abstract: Techniques for characterizing the response of an optical device comprising modulating at least one signal using the device; coupling the modulated signal with a reference signal in a variety of ways; detecting the coupled signals; and obtaining the response of the modulator by analyzing the detected signals, are described. In a heterodyne embodiment, the method includes modulating a first optical signal using the optical device to produce a modulated first optical signal, the modulated first optical signal is combined with a second optical signal in a different spectral region; and the response of the optical device is determined from the intensity of the combined optical signal. A homodyne method using various splitting and recombining of the modulated optical signal with a reference signal is also described.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: October 27, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Christophe J. Dorrer
  • Patent number: 7609382
    Abstract: A system and method of detecting entangled photon pairs, each pair including a signal photon and an idler photon, is disclosed. Entangled photon pairs are provided having an entanglement time and an entanglement area selected to substantially increase an associated entangled two-photon cross-section of an associated target medium. The entangled photon pairs are also selected to have an energy distribution between the signal photon and the idler photon to substantially decrease an associated random two-photon absorption cross section of the target medium. The entangled photon pairs are directed to the target medium, and at least one entangled-photon pair being absorbed by the target medium is detected.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: October 27, 2009
    Assignee: General Dynamics Advanced Information System, Inc,
    Inventors: Keith Kastella, Kenneth Augustyn, Ralph Conti, Richard Freeling
  • Patent number: 7601957
    Abstract: An object of the present invention is to provide an electron microscope that employs a hologram of a diffraction pattern to reconstruct a microscopic image involving no imaging aberration due to image forming lenses, as well as a combined illumination lens used for such an electron microscope.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: October 13, 2009
    Assignee: National University Corporation Kyoto Institute of Technology
    Inventors: Hisamitsu Endoh, Masato Achihara, Katsushige Tsuno, Tetsuo Oikawa
  • Publication number: 20090251706
    Abstract: A vibrometer and a method for optically measuring oscillations at an object, including a radiation source for creating a source beam, a beam splitter to split the source beam into a measuring beam and a reference beam, an optic interference device for interfering the reference beam with a measuring beam, at least partially reflected by the object, and a detector, with the interference device and the detector being embodied cooperating such that a measuring beam, at least partially deflected by the object, and the reference beam interfere on the detector. The vibrometer is embodied as a heterodyne vibrometer, having an optic frequency shift unit, which is arranged in the optical path of the vibrometer, to form a carrier frequency by creating a frequency difference between the measuring beam and the reference beam.
    Type: Application
    Filed: April 2, 2009
    Publication date: October 8, 2009
    Applicant: Polytec GmbH
    Inventors: Christian Rembe, Georg Siegmund, Tian-Hua Xu
  • Publication number: 20090225326
    Abstract: An object of this invention is to provide a charged particle beam apparatus that can easily evaluate the stability of a position that is irradiated with a charged particle beam. To achieve the above object, this invention includes a detector that scans a charged particle beam and detects secondary particles that originate from a substrate, and an image processer that displays an image of the substrate on a display based on the secondary particles that are detected by the detector. The image processer is configured to display on the display any two or more members of the group consisting of a scanning image produced by the charged particle beam of the substrate, a wave in time domain showing fluctuations of the irradiation position of the charged particle beam on the substrate, and a power spectrum of the wave in time domain.
    Type: Application
    Filed: February 17, 2009
    Publication date: September 10, 2009
    Inventors: Hiroshi Tsuji, Naoma Ban