Optical Frequency Converter Patents (Class 359/326)
  • Patent number: 9323068
    Abstract: Embodiments of the invention relate to a spatial stereoscopic display device and an operating method thereof. The spatial stereoscopic display device comprises: a laser source; a two-dimensional scanning unit, receiving and projecting the laser light onto a variable isoclinic transflective unit; the variable isoclinic transflective unit, receiving and dividing the laser light into a first and second splitting lights intersecting in an imaging space, by transmission and reflection; a power source and position sensor unit, connected with the variable isoclinic transflective unit to control an intersection of the first and second splitting lights in the imaging space; the imaging space, provided with an up-conversion material inside, and the up-conversion material at the intersection of the first and second splitting lights is excited to form a light-emitting point; and the 3D modulator, connected with the laser source, the two-dimensional scanning unit, the power source and position sensor unit.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: April 26, 2016
    Assignees: Chengdu BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Yanxia Xin, Seungyik Park, Yuqing Yang
  • Patent number: 9319170
    Abstract: An all-optical modulator includes a directional coupling unit that multiplexes, on a carrier light beam, a signal light beam of a modulation signal that a carrier signal at a characteristic frequency is modulated with an information signal. The all-optical modulator includes a nonlinear medium that cross-phase-modulates the carrier light beam with the multiplexed signal light beam, and frequency-multiplexes the information signal in the signal light beam on the carrier light beam to generate an optical frequency division multiplexed signal. The all-optical modulator includes a monitoring control unit that controls a polarization control unit that controls a polarization state of the signal light beam in a direction in which an intensity of a modulation component takes a maximum value, based on the intensity of the modulation component involved in a modulation signal at a desired characteristic frequency of the optical frequency division multiplexed signal.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: April 19, 2016
    Assignee: FUJITSU LIMITED
    Inventors: Ryou Okabe, Shigeki Watanabe
  • Patent number: 9310664
    Abstract: A nonlinear frequency conversion (NLFC) component is incorporated into a light source. The light source includes a light emitting element that emits a non-diffraction limited input light beam, and the NLFC component that exhibits walkoff and performs an NLFC process, such as second harmonic generation. An optical component is configured to converge the non-diffraction limited input beam into the NLFC component with a determined convergence half-angle. The convergence half-angle in air in a non-walkoff plane of the NLFC component is larger than a convergence half-angle angle for diffraction-limited light. Said convergence half-angle may be a multiple, ?×M, multiplied by the convergence half-angle value for diffraction-limited light, wherein ? has a value between a lower value equal to the larger of 0.4 and 1 M and an upper value of 5.0, where M is the square root of the beam quality factor for the non-diffraction limited light.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: April 12, 2016
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tim Michael Smeeton, Edward Andrew Boardman, Karl Peter Welna
  • Patent number: 9300397
    Abstract: A device for measuring a measured optical transmission path includes a first optical transmitter transmitting into the measured optical tramsmission path and a compensation transmitter transmitting into a compensation optical transmission path. The device includes an optical receiver for receiving transmissions from each of the first optical transmitter and the compensation transmitter. A controller controls the compensation transmitter and provides a controller output signal representative of a measured value of the first transmission path. A nose piece separates the optical transmitter from the optical receiver. The compensation transmitter is placed in a first cavity. The receiver is placed in a second cavity. A filter in the measured optical transmission path has a transmissivity for the wavelength of the light of the first optical transmitter of at least 50% and an absorption factor for the wavelength of the light of the compensation transmitter of at least 25%.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: March 29, 2016
    Assignee: Elmos Semiconductor AG
    Inventors: Michael Hase, Michael Domokos, Uwe Hendrik Hill
  • Patent number: 9263653
    Abstract: In some embodiments, a light-emissive device may include a reflector assembly, a dielectric layer, an electrode pin, a second semiconductor, and an electrode connector. The reflector assembly may define a cavity, a light opening, and an electrode pin opening. The dielectric layer may be positioned adjacent to the reflector assembly. The dielectric layer may define an electrode pin aperture and an electrode connector aperture. The electrode pin may include a head and a shaft. The head may be positioned in the cavity and coated with a first semiconductor. The shaft may be at least partially positioned in the electrode pin opening and through-mounted to the electrode pin aperture. The second semiconductor may be disposed in the cavity. The second semiconductor may surround the first semiconductor. The electrode connector may be electrically coupled to the second semiconductor and through-mounted to the electrode connector aperture.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: February 16, 2016
    Assignee: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventors: Geoffrey R. Facer, Micheal J. Nicholls
  • Patent number: 9252881
    Abstract: A method for regenerating optical signals includes determining an input including a source amplitude-modulated optical signal, regenerating the source amplitude-modulated optical signal by using successive saturation modes of amplification, and producing an output optical signal from the regeneration. The source amplitude-modulated optical signal includes input power modulation levels that each indicate information carried on the source amplitude-modulated optical signal. The output optical signal includes output power modulation levels that include information equivalent to information of the input power modulation levels.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 2, 2016
    Assignee: Fujitsu Limited
    Inventors: Youichi Akasaka, Jeng-Yuan Yang
  • Patent number: 9244225
    Abstract: Methods for the fabrication of orientation-patterned semiconductor structures are provided. The structures are light-waveguiding structures for nonlinear frequency conversion. The structures are periodically poled semiconductor heterostructures comprising a series of material domains disposed in a periodically alternating arrangement along the optical propagation axis of the waveguide. The methods of fabricating the orientation-patterned structures utilize a series of surface planarization steps at intermediate stages of the heterostucture growth process to provide interlayer interfaces having extremely low roughnesses.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: January 26, 2016
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Dan Botez, Thomas F. Kuech, Luke J. Mawst, Steven Christopher Ruder
  • Patent number: 9223187
    Abstract: A system for conversion or amplification using quasi-phase matched nonlinear optical wave-mixing comprises a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, and a bent structure for receiving the pump radiation beam and the signal radiation beam. The radiation propagation portion of the bent structure is made of a uniform nonlinear optical material and the radiation propagation portion comprises a dimension taking into account the spatial variation of the nonlinear optical susceptibility along the radiation propagation portion as experienced by radiation travelling along the bent structure for obtaining quasi-phase matched nonlinear optical wave-mixing in the radiation propagation portion. The dimension thereby is substantially inverse proportional with the linear phase mismatch for the nonlinear optical process.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: December 29, 2015
    Assignee: VRIJE UNIVERSITEIT BRUSSEL
    Inventors: Nathalie Vermeulen, John Edward Sipe, Hugo Jean Arthur Thienpont
  • Patent number: 9203209
    Abstract: A high-power fiber laser exploits efficiency and wavelength-conversion of nonlinear wave mixing in a higher-order mode (HOM) fiber providing large effective area and higher-power operation than single-order mode (SMF) fiber. In a “monomode” approach, mixing waves (pump(s), signal, idler) propagate in the same higher-order mode, and in an “intermodal” approach different waves propagate in different modes. The monomode approach can provide high-power wavelength conversion generating output in a desired band where good dopants may be unavailable. The intermodal approach demonstrates coherent combining of outputs of multiple lasers to generate high-power output in a desired band.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: December 1, 2015
    Assignee: Trustees of Boston University
    Inventor: Siddharth Ramachandran
  • Patent number: 9200779
    Abstract: An apparatus including a three-dimensional display, for displaying volumetric images, including a three-dimensional non linear photoluminescent medium defining a display volume and including nanostructures distributed throughout the display volume; and a scanner configured to scan an output volume, where a first photon flux and a second photon flux meet, in three dimensions within the display volume.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: December 1, 2015
    Assignee: Nokia Technologies Oy
    Inventors: Tapani Kalervo Levola, Jyrki Sakari Kimmel
  • Patent number: 9203204
    Abstract: An apparatus for generating laser radiation at a frequency multiplied as compared with a base frequency, has an optical resonator, in which input laser radiation circulates resonantly at the base frequency, and at least one conversion element through which the input laser radiation circulating in the optical resonator radiates, and which converts this radiation, at least in part, into output laser radiation at the multiplied frequency. At least one compensation element is provided, through which the input laser radiation circulating in the optical resonator also radiates, and which absorbs this radiation, in part, wherein the compensation element balances out a temperature-dependent variation of the optical path length of the input laser radiation in the conversion element, at least in part. Furthermore, a system generates laser radiation.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: December 1, 2015
    Assignee: TOPTICA Photonics AG
    Inventors: Matthias Scholz, Waldemar Weber
  • Patent number: 9166360
    Abstract: The fundamental wave light emitted from a semiconductor laser is converted in wavelength by a wavelength conversion element and emitted therefrom. A lighting circuit lights the semiconductor laser, and a temperature control unit 21b controls the amount of electric power supply to a heater so that the temperature of the wavelength conversion element turns into temperature at which the wavelength conversion efficiency thereof becomes optimal. When a state where the amount of electric power supply of the heater is lower limit or below continues for a predetermined period or longer, the hang-up suppressing unit 21c, or when duration time in a state where the temperature of the wavelength conversion element is higher than the control target temperature becomes higher than a constant value, laser lighting current is decreased by a preset amount, thereby recovery from a high temperature hang-up state performed.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: October 20, 2015
    Assignee: USHIO DENKI KABUSHIKI KAISHA
    Inventors: Yoshihiro Horikawa, Takayuki Kozakura, Tetsuya Ozawa, Toru Nishikubo, Takanori Samejima, Kazuhiro Yoshida
  • Patent number: 9146453
    Abstract: A light-emitting device includes: a semiconductor light-emitting element which emits light of a first wavelength; and a first wavelength conversion unit which includes a first phosphor and emits light of a second wavelength by being excited by the light of the first wavelength. The first phosphor contains europium as an activator. The light of the first wavelength is emitted to the first wavelength conversion unit at 1 kW/cm2 or greater. 1??12/?11?1.17 is satisfied where ?1 is light output ratio of the light of the first wavelength to the light of the second wavelength, ?11 is light output ratio obtained when the light of the first wavelength is emitted to the first wavelength conversion unit at 5 kW/cm2, and ?12 is light output ratio obtained when the light of the first wavelength is emitted to the first wavelength conversion unit at 2.5 kW/cm2.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: September 29, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hideki Kasugai, Kiyoshi Morimoto, Kazuhiko Yamanaka, Takuma Katayama
  • Patent number: 9121889
    Abstract: A magnetometer is provided comprising an atomic vapor in an enclosure, a source of light for preparing the vapor into a state exhibiting electromagnetically induced transparency, a first laser beam passing through the atomic vapor, a phase detector for detecting changes in phase of the first laser beam, and a controller which controls the light source and laser beam and receives the information detected by the phase detector in order to compute from those changes in phase a magnetic field strength in the presence of a selected background magnetic field of at least 0.001 T. Operation in the presence of a background field helps make this magnetometer suitable for diagnostic imaging applications.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: September 1, 2015
    Assignee: ENTANGLEMENT TECHNOLOGIES, LLC
    Inventor: Ari K. Tuchman
  • Patent number: 9080913
    Abstract: By mating a main part with a first prism part or second prism part, a terahertz-wave spectrometer can easily switch between optical paths of a terahertz wave T propagating within a spectroscopic prism. When the main part mates with the first prism part, the terahertz wave T incident on an entrance surface passes through a depression, so as to be reflected by an arrangement part, whereby reflection spectrometry can be performed. When the main part mates with the second prism part, the terahertz wave T incident on the entrance surface is refracted by the depression, so as to pass through an object to be measured within a groove, whereby transmission spectrometry can be preformed.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: July 14, 2015
    Assignee: HAMAMATSU PHOTONICS K.K
    Inventors: Takashi Yasuda, Yoichi Kawada, Atsushi Nakanishi, Kouichiro Akiyama, Hironori Takahashi
  • Patent number: 9057930
    Abstract: An optical parametric amplification device and method. The method includes providing a pump pulse having a pump pulse duration, providing a chirped seed pulse having a seed pulse duration, sequentially passing the pump and seed pulses through amplification stages, wherein the pump and seed pulses are coupled into the amplification stages with varying mutual temporal overlap and the seed pulse is amplified at each amplification stage, an amplified signal pulse is provided by the seed pulse after amplification in a last amplification stage, the seed pulse duration is longer than the pump pulse duration, the mutual temporal overlap of the pump and seed pulses is varied with different temporal ranges of the seed pulse amplified at each amplification stage. Compared with the seed pulse, the signal pulse has an increased energy in the spectral regions determined by the temporal overlap of the seed pulse with the pump pulse.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: June 16, 2015
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Yunpei Deng, Ferenc Krausz
  • Publication number: 20150136987
    Abstract: Provided is a terahertz wave generator having the following structural feature in a plane perpendicular to an optical propagation direction of an optical waveguide. Specifically, 0<r1<r2 is satisfied, where r1 represents a radius of curvature of a terahertz wave emitting plane of a coupling member at a point A at which a line extending from the optical waveguide in the normal direction to a surface of a substrate crosses the terahertz wave emitting plane of the coupling member, and r2 represents a radius of curvature of a wavefront of a terahertz wave at the same point A. Here, r1 has a positive value when being convex in a propagation direction of the terahertz wave.
    Type: Application
    Filed: July 1, 2013
    Publication date: May 21, 2015
    Inventor: Kousuke Kajiki
  • Patent number: 9036248
    Abstract: A terahertz light generation device 1 comprises a resonator structure 12 for intensifying incident light and outputting the intensified light and laser oscillation units 10, 11 for feeding the incident light into the resonator structure 12. The incident light comprises first and second incident light components having polarization states different from each other and frequencies different from each other. The laser oscillation units 10, 11 feed the resonator structure 12 with the first and second incident light components at an angle inclined from a principal surface in the resonator structure 12. The resonator structure 12 outputs light having a frequency corresponding to the difference between the respective frequencies of the first and second incident light components.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 19, 2015
    Assignees: Osaka Prefecture University Public Corporation, Sumitomo Electric Industries, Ltd.
    Inventors: Hajime Ishiahara, Atsuyuki Oyamada, Satoshi Kuzuhara, Hisanobu Kitaguchi, Keiji Ebata
  • Publication number: 20150131143
    Abstract: A mode-locked fiber MOPA delivers pulses of laser-radiation. A super-continuum generator including a bulk spectral-broadening element and a negative group-delay dispersion (NGDD) device is arranged to receive a pulse from the MOPA and cause the pulse to make a predetermined number of sequential interactions with the broadening element and the NGDD device. After making the predetermined interactions, the pulse is delivered from the super-continuum generator with a very broad spectral-bandwidth and a very short duration.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: COHERENT, INC.
    Inventors: Norman HODGSON, Dmitri SIMANOVSKI, Andrei STARODOUMOV
  • Patent number: 9007677
    Abstract: A wavelength conversion element includes a core formed of a ferroelectric crystal having a periodically poled structure in which first and second domains having mutually inverted directions of spontaneous polarization are alternately aligned side by side, and a cladding covering all side surfaces of the core along a light propagation direction and having a uniform refractive index. Boundary surfaces of the first and second domains are arranged in a non-parallel manner with respect to the light propagation direction.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: April 14, 2015
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Tadashi Kishimoto
  • Publication number: 20150098070
    Abstract: A light wavelength conversion module including a substrate, a first light wavelength conversion layer, and a first light transmissive layer is provided. The substrate has a light passing-through area and a first light wavelength conversion area. The first light wavelength conversion layer is located at the first light wavelength conversion area and between the first light transmissive layer and the substrate. The first light wavelength conversion layer is suitable for converting a coherent light beam into a first conversion light beam, wherein wavelengths of the coherent light beam and the first conversion light beam are different from each other. An illumination system and a projection apparatus are also provided.
    Type: Application
    Filed: July 31, 2014
    Publication date: April 9, 2015
    Applicant: CORETRONIC CORPORATION
    Inventors: Chi-Tang Hsieh, Chia-Hao Wang, Chi-Hsun Wang, Ko-Shun Chen
  • Publication number: 20150086151
    Abstract: Stabilization of an injection locked optical frequency comb is achieved through polarization spectroscopy of an active laser cavity, eliminating optical PM sidebands inherent in previous stabilization methods. Optical SNR of 35 dB is achieved. A monolithic AlInGaAs quantum well Fabry-Prot laser injection locked to a passively mode-locked monolithic laser is presented here. The FP laser cavity can be used as a true linear interferometric intensity modulator for pulsed light.
    Type: Application
    Filed: April 11, 2013
    Publication date: March 26, 2015
    Applicant: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Peter J. Delfyett, Charles Williams, Edris Sarailou
  • Publication number: 20150085347
    Abstract: This invention relates to a metamaterial structure, which can simultaneously cause resonance at a wavelength of light that excites quantum dots and a wavelength of light produced by the quantum dots in a local space where quantum dots are located. The metamaterial structure, which can resonate with two wavelengths unlike conventional metamaterial structures that resonate with a single wavelength, includes a substrate, a quantum dot layer, and a resonance layer formed between the substrate and the quantum dot layer and having two rectangular holes which are formed to cross each other so that resonance occurs at two different resonance wavelengths.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 26, 2015
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Choongi CHOI, Jongho CHOE
  • Publication number: 20150085349
    Abstract: Provided is a nonlinear optical device manufactured with 4H silicon carbide crystal. The nonlinear optical crystal may be configured to alter at least a light beam (12) at a frequency to generate at least a light beam (16) at a further frequency different from the frequency. The nonlinear optical crystal comprises a 4H silicon carbide crystal (13). The nonlinear optical device is more compatible with practical applications in terms of outputting mid-infrared laser at high power and high quality and thus are more applicable in practice, because the 4H silicon carbide crystal has a relatively high laser induced damage threshold, a relatively broad transmissive band (0.38-5.9 ?m and 6.6-7.08 ?m), a relatively great 2nd-order nonlinear optical coefficient (d15=6.7 pm/V), a relatively great birefringence, a high thermal conductivity (490 Wm?1K?1), and a high chemical stability.
    Type: Application
    Filed: January 6, 2012
    Publication date: March 26, 2015
    Applicant: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiaolong Chen, Shunchong Wang, Tonghua Peng, Gang Wang, Chunjun Liu, Wenjun Wang, Shifeng Jin
  • Patent number: 8982450
    Abstract: Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: March 17, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Jonathan A. Cox, Franz X. Kaertner
  • Patent number: 8974444
    Abstract: A method for welding tissue wounds in an animal. The method comprises joining edges of a tissue wound and irradiating the tissue wound and tissue surrounding the tissue wound with a pulsed laser. The pulsed laser has a laser wavelength in a range of an absorption band of water, elastin and/or collagen in the tissue wound and tissue surrounding the tissue wound. The pulsed laser has a pulse width of not more than picoseconds in order of magnitude to heat tissue surrounding the tissue wound and facilitate bonding of native tissue protein present in the tissue surrounding the tissue wound to achieve tissue repair. The laser wavelength is in a range of between about 800 nm to about 2,700 nm.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: March 10, 2015
    Inventors: Robert R. Alfano, Vidyasagar Sriramoju
  • Patent number: 8976445
    Abstract: Methods, systems and devices implement optical tapped delay lines. In one aspect, a device includes an optical tapped delay (TDL) including a wavelength conversion element, and a dispersive element, coupled with the wavelength conversion element, to impose a relative delay to an optical signal. The optical TDL can include a nonlinear element to combine signals in a phase coherent manner. The wavelength conversion element can include an optical nonlinear device such as a periodically poled lithium niobate (PPLN) or a highly nonlinear fiber (HNLF) with a high nonlinear coefficient and a low dispersion slope to effect four-wave mixing (FWM). The dispersive element can have a low dispersion slope, and the delays effected by the optical TDL can be tunable.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: March 10, 2015
    Assignee: University of Southern California
    Inventors: Alan E. Willner, Mohammad R. Chitgarha, Salman Khaleghi, Omer F. Yilmaz
  • Patent number: 8958141
    Abstract: A broadband optical material is described. The broadband optical material includes a stacked structure having a plurality of layers of metamaterial. Each layer of metamaterial has a matrix material and a plurality of nano-particles. The plurality of nano-particles are geometrically arranged in an array within the matrix material such that the layer of metamaterial has a refractive index plasmon resonance based on a cooperative plasmon effect at a predetermined electro-magnetic radiation (EMR) wavelength, wherein the predetermined EMR wavelength for the refractive index plasmon resonance is different for each of the layers of metamaterial.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 17, 2015
    Inventor: Robert G. Brown
  • Publication number: 20150040980
    Abstract: A spectrum manipulation device and method for increasing an energy conversion efficiency of a photovoltaic cell arrangement, the device including: (a) a black body adapted to absorb an input electromagnetic energy having an input energy flux spectrum, and to emit a first output electromagnetic energy having a different, output energy flux spectrum; (b) a transparent cover, adapted to thermally insulate the black body from an ambient environment, and to receive light and direct the light towards the black body; (c) an optical device, facing the black body, and adapted to: (i) receive the first output energy and emit a second output electromagnetic energy having a narrow, modified energy flux spectrum, with respect to the output energy flux spectrum, and (ii) recycle some of the first output electromagnetic energy to the black body; (d) a photovoltaic cell having a photon absorption surface, disposed to be in optical communication with the optical device, and (e) a housing containing the black body and the opti
    Type: Application
    Filed: August 25, 2014
    Publication date: February 12, 2015
    Inventor: Levi SCHACHTER
  • Patent number: 8947766
    Abstract: An optical device comprising a tunable optical frequency comb generator. The comb generator includes an interferometer, and an optical feed-back loop waveguide.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: February 3, 2015
    Assignee: Alcatel Lucent
    Inventors: Long L. Chen, Christopher R. Doerr, Nicolas Dupuis
  • Publication number: 20150015936
    Abstract: Embodiments of the invention provide apparatuses and methods for phase correlated seeding of parametric mixer and for generating coherent frequency combs. The parametric mixer may use two phase-correlated optical waves with different carrier frequencies to generate new optical waves centered at frequencies differing from the input waves, while retaining the input wave coherent properties. In the case when parametric mixer is used to generate frequency combs with small frequency pitch, the phase correlation of the input (seed) waves can be achieved by electro-optical modulator and a single master laser. In the case when frequency comb possessing a frequency pitch that is larger than frequency modulation that can be affected by electro-optic modulator, the phase correlation of the input (seed) waves is achieved by combined use of an electro-optical modulator and injection locking to a single or multiple slave lasers.
    Type: Application
    Filed: June 20, 2014
    Publication date: January 15, 2015
    Applicant: RAM Photonics, LLC
    Inventor: Ping Piu KUO
  • Publication number: 20150015937
    Abstract: A system for conversion or amplification using quasi-phase matched nonlinear optical wave-mixing comprises a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, and a bent structure for receiving the pump radiation beam and the signal radiation beam. The radiation propagation portion of the bent structure is made of a uniform nonlinear optical material and the radiation propagation portion comprises a dimension taking into account the spatial variation of the nonlinear optical susceptibility along the radiation propagation portion as experienced by radiation travelling along the bent structure for obtaining quasi-phase matched nonlinear optical wave-mixing in the radiation propagation portion. The dimension thereby is substantially inverse proportional with the linear phase mismatch for the nonlinear optical process.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 15, 2015
    Applicant: VRIJE UNIVERSITEIT BRUSSEL
    Inventors: Nathalie VERMEULEN, John Edward SIPE, Hugo Jean Arthur THIENPONT
  • Publication number: 20150009554
    Abstract: Embodiments of the present invention generally relate to optical mode conversion using intermodal Cherenkov radiation. More specifically, embodiments of the present invention relate to optical mode conversion utilizing intermodal four-wave mixing to convert light between modes for complex applications, whereby one of the four waves is generated from Cherenkov radiation. In one embodiment of the present invention, a fiber comprises an input end for receiving light in a first mode at a first wavelength, and an output end for outputting light in a desired second mode at a desired second wavelength; wherein the desired second mode is controlled deforming the fiber, such as by bending, during an intermodal Cherenkov radiation process.
    Type: Application
    Filed: February 21, 2013
    Publication date: January 8, 2015
    Inventors: Lars Gruner-Nielsen, Martin Erland Vestergaard Pedersen, Chris Xu, Ji Cheng
  • Patent number: 8928971
    Abstract: A high-power optical fiber laser includes: an oscillator (1); a pumping laser (5) able to emit a high-power pumping optical radiation beam; and a signal-amplifying optical fiber (3) able to receive the optical source signal and the high-power pumping optical radiation beam so as to generate a high-power laser beam. The pumping laser includes a plurality of pumping multimode laser diodes (7a-7f) and a laser cavity, the laser cavity including a double-clad fiber (4) including: a neodymium-doped monomode waveguide; a fiber Bragg grating (9) forming one end of the laser cavity; and a fiber reflector (11) forming the other end of the laser cavity, the monomodefiber laser being able to generate a laser radiation beam when it is optically pumped by a pumping radiation beam originating from the plurality of pumping laser diodes in order for the laser cavity to emit a high-power pumping laser radiation beam.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: January 6, 2015
    Assignees: IXFIBER, Centre National de la Recherche Scientifique
    Inventors: Mathieu Laroche, Herve Gilles, Sylvain Girard, Thierry Robin, Benoit Cadier
  • Publication number: 20140376077
    Abstract: Provided are a wavelength swept source apparatus and a method for operating thereof. According to the provided apparatus and method, single mode light is generated, a basic optical comb including a plurality of light rays having identical frequency differences with adjacent light rays is generated by modulating the generated single mode light, and a plurality of optical combs, that includes same number of light rays as the plurality of light rays, has a different frequency band from that of the basic optical comb, and is distributed in a wider frequency band than that in which the basic optical comb is distributed, is generated by modulating the plurality of light rays. The plurality of light rays and light rays included in the plurality of optical combs are sequentially emitted according to frequencies of the plurality of light rays and the light rays included in the plurality of optical combs.
    Type: Application
    Filed: December 12, 2013
    Publication date: December 25, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee KWON, Kwang Ryong OH, minhyup SONG, Chul-Wook LEE, Jang Uk SHIN, Young-Tak HAN
  • Publication number: 20140368900
    Abstract: A supercontinuum generation system comprises a noise-like pulse fiber laser structure, an amplification unit and a broadening medium. The noise-like pulse fiber laser structure generates at lease one noise-like pulse of the wavelength less than 1300 nm. The amplification unit includes a gain fiber with which the noise-like pulse is coupled. The broadening medium is coupled with the gain fiber. A supercontinuum is generated when the noise-like pulse is amplified by the amplification unit and broadened in spectrum by the broadening medium.
    Type: Application
    Filed: September 11, 2013
    Publication date: December 18, 2014
    Applicant: National Tsing Hua University
    Inventors: Ci-Ling PAN, Alexey ZAYTSEV, Chih-Hsuan LIN, Yi-Jing YOU
  • Publication number: 20140362431
    Abstract: Generating broadband light downhole for wellbore application. A laser source is configured to reside outside a wellbore and produce a seed light pulse at a first wavelength spectrum. A converter is configured to be received inside the wellbore, remote from the laser source. The converter receives the seed light pulse at the first wavelength spectrum through one or more fiber optic cables, and generates light at a second wavelength spectrum that has a broader range than the first wavelength spectrum.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventors: Ian Bradford Mitchell, Mikko Jaaskelainen
  • Patent number: 8901477
    Abstract: According to the present invention, an electromagnetic wave detection device includes an optical waveguide, an electromagnetic wave input unit, and a phase difference measurement unit. According to the thus constructed electromagnetic wave detection device, an optical waveguide is a nonlinear crystal, and includes a branching portion for receiving a probe light pulse, and causing the probe light pulse to branch into two beams of branching light, and two branching light transmission portions for receiving the branching light from the branching portion, and transmitting the branching light. An electromagnetic wave input unit inputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] tilted by an angle generating Cherenkov phase matching with respect to a travel direction of the branching light into one of the two branching light transmission portions.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 2, 2014
    Assignee: Advantest Corporation
    Inventors: Kazunori Shiota, Akiyoshi Irisawa
  • Publication number: 20140347719
    Abstract: A system (100) for spatially addressing the synchronization of two light pulses (118, 120) having a respective wavelength. The system (100) includes two light sources (110, 114), each one generating one of the light pulses (118, 120) in response to receiving a respective source trigger. The light pulses (118, 120) are combined and then distributed in many light guiding elements (104) in which propagation at the first and second wavelength takes a different amount of time, the differences between the propagation times at the first and second wavelengths differing between the light guiding elements (104). The source triggers are separated from each other by a variable delay in order to cause simultaneous arrival of the first and second pulses (118, 120) at the output of only one of the light guiding elements (104).
    Type: Application
    Filed: August 28, 2012
    Publication date: November 27, 2014
    Inventor: Alain Villeneuve
  • Patent number: 8891158
    Abstract: A laser frequency converter includes a first substrate material forming a first planar surface that includes a first nonlinear material situated along a portion of the first planar surface of the first substrate material to perform a frequency conversion of a laser signal. The frequency converter includes a second substrate material forming a second planar surface and separated by a distance from the first planar surface of the first substrate material. The second substrate material includes a second nonlinear material situated along a portion of the second planar surface of the second substrate material to perform the frequency conversion of the laser signal in conjunction with the first non-linear material. The second nonlinear material is offset from the first nonlinear material along an axis of propagation for the laser signal.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: November 18, 2014
    Assignee: Northrup Grumman Systems Corporation
    Inventors: Hiroshi Komine, Joseph M. Fukumoto, Chun-Ching Shih, William H. Long
  • Patent number: 8885246
    Abstract: A device for extending the lifetime of a frequency-converting non-linear optical system (19) subjected to the radiation of an intense laser beam includes two plates (2, 3) with flat and parallel surfaces angled on the beam and elements for transverse rotation of the plates (2, 3) suitable for changing the angle of inclination of the first plate in an angular range (i20±?i2) to move the incident beam relative to the optical system (19), while minimizing the amplitude of movement of the output beam (37, 47) on the angular inclination range (i20±?i2) of the first plate. The application of the device in a non-linear optical source including one or more non-linear crystals (1, 16) is also described.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 11, 2014
    Assignee: Eolite Systems
    Inventors: David Horain, Louis Mcdonagh, Julien Saby, Francois Salin, Philippe Metivier
  • Patent number: 8885247
    Abstract: The present invention relates to a device for controlling optical frequency (F1, F2) about a central working frequency (F0). This device comprises a vertical cavity (2) formed of two parallel and partially reflecting walls (3a, 3b), and a membrane (6) comprising at least one layer (7a, 7b) structured in the form of a photonic crystal. In this device, the two walls (3a, 3b) are separated by an optical distance substantially proportional to half the wavelength (?0) corresponding to the central working frequency (F0). The membrane (6) is integrated between the walls (3a, 3b) of the cavity (2) and devised in such a way as to exhibit a mode of optical resonance at this central working wavelength (?0). At least one layer of the device is made up of at least one portion of a material exhibiting nonlinear optical properties.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: November 11, 2014
    Assignee: Centre National de la Recherche Scientific—CNRS
    Inventors: Xavier Letartre, Pierre Viktorovitch, Jean-Louis Leclercq, Christian Seassal
  • Publication number: 20140327956
    Abstract: The present invention provides a tunable optical frequency converter based on a Doppler vibration mirror, which comprises a laser, a first optical isolator, a circulating frequency shift module. Said circulating frequency shift module is composed of an optical coupler, a Doppler vibration mirror, a plane mirror, a first optical circulator, an optical fiber Bragg grating, an optical amplifier, a second optical circulator, a tunable filter and a first optical isolator. Light outputted by said laser is inputted to said circulating frequency shift module to conduct frequency shifting repeatedly after passing through the first optical isolator, and then separated by a tunable filter and a second optical circulator, then the frequency converted light is outputted from the port of the circulating frequency shift module.
    Type: Application
    Filed: October 24, 2012
    Publication date: November 6, 2014
    Inventors: Zhengbiao Ouyang, Chunchao Qi
  • Publication number: 20140320953
    Abstract: The present invention provides a tunable optical frequency converter based on an ultrasonic grating, which includes a laser, a first optical isolator, and a circulating frequency shift module. Said circulating frequency shift module is composed of an optical coupler, an ultrasonic grating, a lens group, an optical amplifier, a second optical isolator, a first optical circulator, a fiber Bragg grating, a second optical circulator, a tunable filter and a tunable attenuator. Light outputted by said laser is inputted to said circulating frequency shift module to conduct frequency shifting repeatedly after passing through the first optical isolator, and then separated by a tunable filter and a second optical circulator, then frequency converted light is outputted from the port of the circulating frequency shift module.
    Type: Application
    Filed: October 24, 2012
    Publication date: October 30, 2014
    Inventors: Zhengbiao Ouyang, Chunchao Qi
  • Publication number: 20140313570
    Abstract: The present invention provides a tunable optical frequency converter based on an amplitude modulator, which comprises a laser, a first optical isolator, a circulating frequency conversion module. Said circulating frequency conversion module is composed of an optical coupler, an amplitude modulator, an optical amplifier, a second optical isolator, a first optical circulator, an optical fiber Bragg grating, a second optical circulator, a tunable filter and a tunable attenuator. Light outputted by said laser is inputted to said circulating frequency conversion module to conduct frequency converting repeatedly after passing through the first optical isolator, and then separated by a tunable filter and a second optical circulator, then the frequency converted light is outputted from the port of the circulating frequency conversion module.
    Type: Application
    Filed: October 24, 2012
    Publication date: October 23, 2014
    Inventors: Zhengbiao Ouyang, Chunchao Qi
  • Patent number: 8861073
    Abstract: The optical fiber delivery system for delivering optical short pulses includes: a chirped pulse source (10) for emitting an up-chirped optical short pulse having high peak power; optical waveguide unit (20) for delivering the optical short pulse emitted from the chirped pulse source (10); negative group-velocity dispersion generation unit (30) for providing negative group-velocity dispersion to the optical short pulse exited from the optical waveguide unit (20); and an optical fiber (40) for delivering the optical short pulse exited from the negative group-velocity dispersion generation unit (30), along a desired distance, in which the optical short pulse emitted from the chirped pulse source (10) is adapted to be exited, from the optical fiber (40), as a down-chirped optical short pulse that is substantially free of waveform distortion resulting from higher-order dispersion.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 14, 2014
    Assignee: Olympus Corporation
    Inventors: Masato Fujiwara, Kenji Taira
  • Publication number: 20140300948
    Abstract: The present invention provides a tunable optical frequency converter based on a phase modulator, which comprises a laser, a first optical isolator and a circulating frequency shift module. Said circulating frequency shift module is composed of an optical coupler, a phase modulator, an optical amplifier, a second optical isolator, a first optical circulator, an optical fiber Bragg grating, a second optical circulator, a tunable filter and a tunable attenuator. Light outputted by said laser is inputted to said circulating frequency shift module to conduct frequency converting repeatedly after passing through the first optical isolator, and then separated by a tunable filter and a second optical circulator, then the frequency converted light is outputted from the port of the circulating frequency shift module.
    Type: Application
    Filed: October 24, 2012
    Publication date: October 9, 2014
    Inventors: Zhengbiao Ouyang, Chunchao Qi
  • Patent number: 8854725
    Abstract: A wavelength conversion element disclosed in the present application includes a phosphor layer including a plurality of phosphor particles and a matrix that is located among the plurality of phosphor particles and is formed of zinc oxide. The zinc oxide is columnar crystals or a single crystal in a c-axis orientation.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: October 7, 2014
    Assignee: Panasonic Corporation
    Inventors: Takahiro Hamada, Nobuyasu Suzuki, Kenji Orita, Nobuaki Nagao
  • Publication number: 20140293402
    Abstract: A laser light source (100) includes a laser element (102) that emits a fundamental wave, a wavelength converting element (104) that performs wavelength conversion on the fundamental wave emitted from the laser element (102) and outputs the converted wave, and an optical waveguide (103) that guides the light output from the wavelength converting element (104). The optical waveguide (103) has a direction changing portion (113) that changes the travel direction of the guided light. The direction changing portion (113) has a function of transmitting the converted wave alone and of not transmitting the fundamental wave.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 2, 2014
    Applicant: CITIZEN HOLDINGS CO., LTD.
    Inventor: Masafumi Ide
  • Patent number: 8848281
    Abstract: In order to create a stable non-linear optical effect with high efficiency for a plurality of input lights having different wavelengths, according to a first aspect of the present invention, provided is a wavelength conversion apparatus comprising an input section into which input light is input; a wavelength converting section that includes a polarity inverting structure whose polarity inverts periodically and that, in response to the input of light having a wavelength corresponding to the period with which the polarity inverts, converts the wavelength of the light; and a direction changing section that changes a progression direction in which the input light passes through the polarity inverting structure, according to the wavelength of the input light, without changing relative positions of the input section and the polarity inverting structure. Also provided are a light source apparatus and a wavelength converting method.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: September 30, 2014
    Assignee: Advantest Corporation
    Inventor: Takao Sakurai