Optical Amplifier Patents (Class 359/333)
  • Patent number: 11979226
    Abstract: A wavelength cross-connect device performs relay processing, the relay processing being such that wavelength multiplexed signal lights, which are multiband transmitted from a plurality of routes, are demultiplexed into different wavelength bands, and for each route, respective optical signals of the different wavelength bands are amplified, then subject to route change by WSSs and outputted to output side routes M. The device includes C-band WXC units that are the same in total number as the wavelength bands of the optical signals of the respective wavelength bands and perform relay processing on optical signals of a specific wavelength band of the different wavelength bands.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 7, 2024
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hiroki Kawahara, Takeshi Seki, Sachio Suda, Kohei Saito, Kenta Hirose
  • Patent number: 11942752
    Abstract: A method for generating output laser pulses from input laser pulses includes causing the input laser pulses to temporally successively pass through an optical component with temperature-dependent power efficiency. The optical component is heated by the passing of the input laser pulses. The input laser pulses emerge from the optical component as output laser pulses. The method further includes calculating a current temperature or a current temperature difference of the optical component, or a temperature-dependent current parameter based on all preceding input laser pulses or output laser pulses that have contributed to the heating of the optical component, and setting a power of a current input laser pulse based on the calculated current temperature, or the calculated current temperature difference, or the calculated current parameter, so that an associated output laser pulse has a pulse energy that deviates from a predefined pulse energy by less than 5%.
    Type: Grant
    Filed: August 11, 2023
    Date of Patent: March 26, 2024
    Assignee: TRUMPF LASER GMBH
    Inventors: Jonathan Brons, Rainer Flaig, Dirk Sutter, Ivo Zawischa
  • Patent number: 11928973
    Abstract: A flight system includes an aerial vehicle having a sensor and capable of flying unmanned. The flight system estimates a condition of dust in an area of a scheduled destination, on the basis of sensing data obtained by observing, with the sensor, the area from a flight position of the aerial vehicle. Then, the flight system controls the aerial vehicle on the basis of the estimation result.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: March 12, 2024
    Assignee: Rakuten Group, Inc.
    Inventor: Toshiaki Tazume
  • Patent number: 11909165
    Abstract: Optical pulse sources. In one example, the pulse source includes an optical fiber ring resonator with at least one normal dispersion fiber segment characterized by a positive group velocity dispersion (GVD) per unit length and at least one anomalous dispersion fiber segment characterized by a negative GVD per unit length. In another example, the pulse source includes an optical fiber ring resonator with one or more fiber segments having a positive net group velocity dispersion (GVD); and an intracavity spectral filter optically coupled to the one or more fiber segments. The pulse source is configured to generate one or more optical solitons in the optical fiber ring resonator.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: February 20, 2024
    Assignee: UNIVERSITY OF ROCHESTER
    Inventor: William Renninger
  • Patent number: 11862923
    Abstract: As described herein, a mode field adapter (MFA) comprises a first fiber including a core associated with a fundamental mode field diameter and a cladding with a diameter that decreases toward a waist. The MFA comprises a second fiber including a core associated with a fundamental mode field diameter that matches the fundamental mode field of the first fiber at the waist and a cladding with a diameter that matches the diameter of the cladding of the first fiber at the waist and increases from the waist of the second fiber. The cladding of the first fiber may be adiabatically etched such that a core-to-cladding ratio of the first fiber changes over a length of the first fiber, and the core and the cladding of the second fiber may be adiabatically tapered such that a core-to-cladding ratio of the second fiber is constant over a length of the second fiber.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: January 2, 2024
    Assignee: Lumentum Operations LLC
    Inventors: Gongwen Zhu, Guan Sun
  • Patent number: 11804905
    Abstract: An optical full-field transmitter (OFFT) includes a plurality of optical circulators and a polarization beam combiner. The plurality of optical circulators are fabricated on a silicon-on-insulator (SOI) substrate, where each of the optical circulators has (a) a first port that optically couples to a high-quality optical source, (b) a second port that optically couples to a child laser configured to receive amplitude modulation data, and (c) a third port optically coupled to a phase modulator that (i) is configured to receive a phase modulation data and (ii) includes an output port that outputs amplitude and phase modulated light. The polarization beam combiner receives the amplitude and phase modulated light from each of the optical circulators and outputs combined amplitude and phase modulated light.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: October 31, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Haipeng Zhang, Mu Xu, Zhensheng Jia, Junwen Zhang, Luis Alberto Campos
  • Patent number: 11789335
    Abstract: In some implementations, a monolithic optical fiber may comprise a tapered core having a first diameter at an input end and a second diameter at an output end. The tapered core may comprise a first tapered region at the input end, a second tapered region at the output end, and a central region having a constant diameter that is larger than the first diameter and the second diameter. The first tapered region expands monotonically from the first diameter to the constant diameter of the central region along a length of the first tapered region, and the second tapered region contracts monotonically from the constant diameter of the central region to the second diameter along a length of the second tapered region. The monolithic optical fiber may be used as a delivery fiber to deliver a laser beam from a fiber laser engine to a process head.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: October 17, 2023
    Assignee: Lumentum Operations LLC
    Inventors: Richard D. Faulhaber, Martin H. Muendel, Patrick Gregg
  • Patent number: 11792381
    Abstract: Disclosed herein are systems and methods of phase-sensitive compressed ultrafast photography (pCUP). In some embodiments, a pCUP system comprises: a dark-field imaging system, and a compressed ultrafast photography (CUP system). The dark-field imaging system may comprise a laser source configured to illuminate the subject with a laser pulse; and a beam block configured to pass laser light scattered by the subject as a first series of phase images and block laser light not scattered by the subject. The CUP system may comprise: a spatial encoding module configured to receive the first series of phase images and to produce a second series of spatially encoded phase images; and a streak camera configured to receive the second series of spatially encoded phase images, to deflect each spatially encoded phase image by a temporal deflection distance, and to integrate the deflected phase images into a single raw CUP image.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: October 17, 2023
    Assignee: California Institute of Technology
    Inventors: Lihong Wang, Taewoo Kim, Jinyang Liang, Liren Zhu
  • Patent number: 11714242
    Abstract: An optical fiber array includes a plurality of single-core fibers each having a core and a cladding and each having, in a distal end surface thereof, a beam expanding portion capable of expanding a mode field diameter (MFD) of light propagating in the core, and a ferrule having an optical fiber holding hole into which the plurality of single-core fibers are inserted, and an end surface in which the optical fiber holding hole opens. A cladding diameter of each of single-core fiber in the beam expanding portion decreases toward the distal end surface. The optical fiber holding hole has a tapered portion whose inner diameter decreases toward the end surface and against which the distal end surfaces abut.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: August 1, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Osamu Shimakawa
  • Patent number: 11686846
    Abstract: A lidar system having a lidar transmitter and lidar receiver that are in a bistatic arrangement with each other can be deployed in a climate-controlled compartment of a vehicle to reduce the exposure of the lidar system to harsher elements so it can operate in more advantageous environments with regards to factors such as temperature, moisture, etc. In an example embodiment, the bistatic lidar system can be connected to or incorporated within a rear view mirror assembly of a vehicle.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: June 27, 2023
    Assignee: AEYE, Inc.
    Inventors: Naveen Reddy, Allan Steinhardt, Luis Dussan, Joel Benscoter, Alex Liang, Philippe Feru, Igor Polishchuk
  • Patent number: 11670181
    Abstract: The present disclosure relates to a vertical takeoff and landing, VTOL, vehicle having a landing aid and associated methods. The landing aid includes at least one processor is configured to: receive image data from an image capture device, receive altitude data from the altimeter, retrieve template landing pad image data for a target landing pad from the database, scale the template landing pad image data based on the altitude data, compare the scaled template landing pad image data and the image data received from the image capture device to locate the target landing pad therein, thereby providing target landing pad localization data, and control a function of the VTOL vehicle based on the target landing pad localization data.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: June 6, 2023
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Anoop S, Mohammed Ibrahim Mohideen, Gang He
  • Patent number: 11630262
    Abstract: Provided is an optical isolator including a semiconductor substrate, an optical attenuator and an optical amplifier aligned with each other on the semiconductor substrate, an input optical waveguide connected to the optical attenuator, and an output optical waveguide connected to the optical amplifier, wherein a gain of the optical amplifier decreases based on an intensity of light incident on the optical amplifier increasing, wherein a first input light incident on the optical attenuator through the input optical waveguide is output as a first output light through the output optical waveguide, and a second input light incident on the optical amplifier through the output optical waveguide is output as a second output light through the input optical waveguide, and wherein when an intensity of the first input light and an intensity of the second input light are equal, an intensity of the first output light is greater than an intensity of the second output light.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 18, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dongjae Shin, Hyunil Byun, Jinmyoung Kim, Changgyun Shin, Changbum Lee
  • Patent number: 11595733
    Abstract: A network element of a cable television network includes at least a first and a second upstream amplifier stage, a first attenuator and a first equalizer between the first and the second amplifier stage, and a second attenuator after the second upstream amplifier stage in upstream signal path direction. A target value is determined for total attenuation of the components of the amplifier. The total attenuation is a sum of attenuations of the first attenuator, the first equalizer, and the second attenuator. The attenuation of the first equalizer is preset. The attenuation of the first attenuator is set to a maximum value such the sum of the attenuations of the first attenuator and the first equalizer is below a first threshold value. The attenuation of the second attenuator is set such that the total attenuation reaches the target value.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: February 28, 2023
    Assignee: TELESTE OYJ
    Inventor: Kari Mäki
  • Patent number: 11557875
    Abstract: Embodiments of the present disclosure include optical transmitters and transceivers with improved reliability. In some embodiments, the optical transmitters are used in network devices, such as in conjunction with a network switch. In one embodiment, lasers are operated at low power to improve reliability and power consumption. The output of the laser may be modulated by a non-direct modulator and received by integrated optical components, such as a modulator and/or multiplexer. The output of the optical components may be amplified by a semiconductor optical amplifier (SOA). Various advantageous configurations of lasers, optical components, and SOAs are disclosed. In some embodiments, SOAs are configured as part of a pluggable optical communication module, for example.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 17, 2023
    Assignee: ARISTA NETWORKS, INC.
    Inventors: Alexey Kovsh, David Towne, Peter Parkinson, Andreas Bechtolsheim
  • Patent number: 11539180
    Abstract: A laser apparatus according to an aspect of the present disclosure includes: a master oscillator; at least one amplifier disposed on an optical path of a first pulse laser beam output from the master oscillator; a sensor disposed on an optical path of a second pulse laser beam output from the at least one amplifier; and a laser controller. The laser controller causes the laser apparatus to perform burst oscillation based on a burst signal from an external device, and performs processing of controlling a beam parameter based on a sensor output signal obtained from the sensor in a burst duration, and processing of detecting self-oscillation light from the amplifier based on a sensor output signal obtained from the sensor in a burst stop duration.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: December 27, 2022
    Assignee: Gigaphoton Inc.
    Inventor: Yoshiaki Kurosawa
  • Patent number: 11474212
    Abstract: A lidar system that includes a laser source and a scannable mirror can be controlled to fire laser pulse shots from the laser source toward targeted range points via the scannable mirror at a variable rate of firing those laser pulse shots. A control circuit for the lidar system can determine a shot order of the targeted laser pulse shots for the variable rate firing based on a plurality of simulations of different shot order candidates with respect to a laser energy model that models how much energy is available from the laser source for laser pulse shots over time as compared to a plurality of energy requirements for the targeted laser pulse shots. Parallelized logic resource in the control circuit can be used to perform the simulations in parallel to support low latency shot scheduling.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: October 18, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Naveen Reddy, Allan Steinhardt
  • Patent number: 11460553
    Abstract: A lidar system that includes a laser source and a scannable mirror can be controlled to schedule the firing of laser pulse shots at range points in a field of view. A first mirror motion model can be used to govern the scheduling of the laser pulse shots, and a second mirror motion model can be used to govern when firing commands are to be generated for the scheduled laser pulse shots. The first and second mirror motion models model motion of the scannable mirror over time. A system controller can use the first mirror motion model as a coarse mirror motion model for the purpose of shot scheduling, while a beam scanner controller can use the second mirror motion model as a fine mirror motion model for the purposes of generating firing commands for the laser source.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: October 4, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11454858
    Abstract: An optical deflector includes: a light transmitting portion through which a light passes; and a pair of electrodes arranged to oppose to each other with the light transmitting portion interposed therebetween. The light transmitting portion is a transparent ion conductor made of a single crystal or polycrystal. The pair of electrodes apply a predetermined voltage to the light transmitting portion to move ions inside the transparent ion conductor so as to change a traveling direction of the light passing through the light transmitting portion.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: September 27, 2022
    Assignees: DENSO CORPORATION, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yosuke Suzuki, Tadaaki Nagao, Akio Watanabe
  • Patent number: 11448823
    Abstract: A method and apparatus for scanning a scene.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: September 20, 2022
    Assignee: Acacia Communications, Inc.
    Inventor: Christopher Doerr
  • Patent number: 11444425
    Abstract: The ultra-short pulse chirped pulse amplification (CPA) laser system and method of operating CPA laser system include outputting nearly transform limited (TL) pulses by a mode locked laser. The system and method further include temporarily stretching the TL pulses by a first Bragg grating providing thus each stretched pulse with a chirp which is further compensated for in a second Bragg grating operating as as a compressor. The laser system and method further include a pulse shaping unit measuring a spectral phase across the recompressed pulse and further adjusting the deviation of the measured spectral phase from that of the TL pulse by generating a corrective signal. The corrective signal is applied to the array of actuators coupled to respective segments of one of the BGs which are selectively actuated to induce the desired phase change, with the one BG thus operating as both stretcher/compressor and pulse shaper.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 13, 2022
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alex Yusim, Bruce Jenket, Anton Drozhzhin, George Venus, Igor Samartsev, Dmitry Pestov, Anton Ryabtsev
  • Patent number: 11418255
    Abstract: The present disclosure relates to a method, a system and a computer readable storage medium for controlling protection switching on an optical network. The method for controlling protection switching on an optical network includes: determining a low-frequency signal for service protection, and modulating the low-frequency signal for service protection to a transmission channel of a service signal to be protected and transmitting the low-frequency signal; detecting the low-frequency signal over the transmission channel and acquiring transmission quality information of the low-frequency signal; and determining whether to perform protection switching according to the transmission quality information of the low-frequency signal.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: August 16, 2022
    Assignee: ZTE Corporation
    Inventor: Jianguo Liu
  • Patent number: 11362475
    Abstract: Impingement cooling devices for a laser disk include a carrier plate on the front side of which the laser disk can be secured, and a supporting structure, on the front side of which the rear side of the carrier plate is secured. The supporting structure has a plurality of cooling liquid feed lines from which the cooling liquid emerges in the direction of the rear side of the carrier plate and a plurality of cooling liquid return lines. The feed and return lines run parallel to one another in the longitudinal direction of the supporting structure, and the supporting structure includes a plurality of cutouts or the rear side of the carrier plate that are open toward the supporting structure, and the cooling liquid feed lines lead into and the cooling liquid return lines lead away from the plurality of cutouts.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 14, 2022
    Assignee: TRUMPF LASER GMBH
    Inventors: Alexander Killi, Vincent Kuhn
  • Patent number: 11353773
    Abstract: Disclosed are ideas to produce an add-on device which turns widely used high repetition rate lasers used for 2-photon microscopy into a light source which can be used for 3-photon microscopy. The add-on encompasses a device to reduce the pulse repetition rate of the high repetition rate (>50 MHz) laser source (laser or OPO) to less than 10 MHz which allows for higher pulse energies while maintaining reasonable average powers. If the high repetition sources operate below 1250 nm the add-on shifts or broadens the seed light to cover 1.3 ?m to 1.8 ?m before amplification. If the high repetition rate source operates at or around 1.3 ?m the add-on only needs to amplify the pulse after downshifting the repetition rate. In another implementation the add-on shifts or broadens the 1.3 ?m light to cover the spectral range out to 1.8 ?m before amplification.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: June 7, 2022
    Assignee: Thorlabs, Inc.
    Inventor: Peter Fendel
  • Patent number: 11262514
    Abstract: The present disclosure relates to a hybrid opto-electrical module apparatus. The apparatus may have a module substrate having a plurality of electrically conductive circuit traces for carrying electrical signals, and at least one waveguide element for carrying optical signals. A waveguide substrate is in optical communication with the waveguide element. A transducer is supported on the waveguide substrate and in electrical communication with the circuit traces. The waveguide substrate has at least one three dimensional (3D) waveguide formed within its interior volume for routing optical signals between the waveguide element and the transducer. A first optical wirebond interfaces the waveguide element to the 3D waveguide, and a second optical wirebond interfaces the 3D waveguide to the transducer.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: March 1, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Susant Patra, Razi-Ul Muhammad Haque, Komal Kampasi, Ian Seth Ladner
  • Patent number: 11228822
    Abstract: A transmission device, includes a first wavelength converter configured to convert a second wavelength-multiplexed signal in a first wavelength band to a second wavelength band different from the first wavelength band, and a multiplexer configured to transmit, after the conversion, a wavelength-multiplexed signal obtained through multiplexing of a first wavelength-multiplexed signal in the first wavelength band, a first supervisory control signal light ray that is a control signal for the first wavelength-multiplexed signal, the second wavelength-multiplexed signal in the second wavelength band, and a second supervisory control signal light ray that is a control signal for the second wavelength-multiplexed signal, wherein the first supervisory control signal light ray and the second supervisory control signal light ray each have a wavelength in a wavelength band different from the first wavelength band and the second wavelength band.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 18, 2022
    Assignee: FUJITSU LIMITED
    Inventors: Masahiro Yuki, Shingo Hara, Takeshi Sakamoto
  • Patent number: 11222734
    Abstract: A method for increasing the MeV hot electron yield and secondary radiation produced by short-pulse laser-target interactions with an appropriately high or low atomic number (Z) target. Secondary radiation, such as MeV x-rays, gamma-rays, protons, ions, neutrons, positrons and electromagnetic radiation in the microwave to sub-mm region, can be used, e.g., for the flash radiography of dense objects.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: January 11, 2022
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Jeffrey D. Bude, David A. Alessi, Maurice B. Aufderheide, John E. Heebner, Andreas J. Kemp, Otto L. Landen, Andrew J. Mackinnon, Raluca A. Negres, Craig W. Siders, Scott C. Wilks, Wade H. Williams, Steven T. Yang, Thomas M. Spinka
  • Patent number: 11199393
    Abstract: There is described a method for interrogating optical fiber comprising fiber Bragg gratings (“FBGs”), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 14, 2021
    Assignee: HiFi Engineering Inc.
    Inventors: Brian H. Moore, Walter Jeffrey Shakespeare, Phillip William Wallace, Viet Hoang, Chris Henrikson, Ajay Sandhu, Adrian Dumitru, Thomas Clement, Dongliang Huang, Seyed Ehsan Jalilian
  • Patent number: 11194024
    Abstract: A LIDAR arrangement comprising a laser transmitter for transmitting pulses of a laser radiation to a measurement object, and a receiver for receiving pulses of the laser radiation backscattered from the measurement object, wherein the laser transmitter is configured to transmit a pulse sequence in which successive pulses respectively comprise a particular optical frequency shift to each other and wherein the receiver either includes a dispersive element for separating the pulses in time depending on the optical frequency by a frequency-based deflection, and a position resolution optical matrix transmitter on which the pulses separated in time by the dispersive element are mapped, or includes a frequency analyzer for the frequency-based separation of the pulses by superimposition with a reference radiation.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 7, 2021
    Assignee: Airbus Defence and Space GmbH
    Inventors: Nikolaus Schmitt, Thorsteinn Halldorsson
  • Patent number: 11181702
    Abstract: A coupling structure includes a single mode active device and a planar optical waveguide. Specifically, the planar optical waveguide includes a silica waveguide for transmitting an optical signal, where the silica waveguide includes a coupling section and a conduction section; the coupling section is of a regular trapezoidal structure or an inverted trapezoidal structure, where a surface of the coupling section coupled to the single mode active device is a trapezoid top, and a surface of the coupling section connected with the conduction section is a trapezoid bottom; and a coupling gap is preset between the single mode active device and the planar optical waveguide.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: November 23, 2021
    Assignee: Wuhan Telecommunication Devices Co., Ltd.
    Inventors: Ben Chen, Xuerui Liang, Baiquan Hu, Chenggang Liu, Di Zhang, Yongan Fu, Liping Sun, Weidong Ma, Xianghong Yu
  • Patent number: 11163111
    Abstract: A multi-clad optical fiber design is described in order to provide low optical loss, a high numerical aperture (NA), and high optical gain for the fundamental propagating mode, the linearly polarized (LP) 01 mode in the UV and visible portion of the optical spectrum. The optical fiber design may contain dopants in order to simultaneously increase the optical gain in the core region while avoiding additional losses during the fiber fabrication process. The optical fiber design may incorporate rare-earth dopants for efficient lasing. Additionally, the modal characteristics of the propagating modes in the optical core promote highly efficient nonlinear mixing, providing for a high beam quality (M2<1.5) output of the emitted light.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: November 2, 2021
    Assignee: Nuburu, Inc.
    Inventors: Mark S. Zediker, Robert A. Stegeman, James P. Tucker, Jean-Philippe Feve
  • Patent number: 11139633
    Abstract: A system includes a processor communicatively coupled to an Amplifier Stimulated Emission (ASE) source and an optical receiver, wherein the processor is configured to cause transmission of one or more shaped ASE signals, from the ASE source, on an optical fiber, obtain received spectrum of the one or more shaped ASE signals from the optical receiver connected to the optical fiber, and characterize the optical fiber based in part on a nonlinear skirt and/or center dip depth in the received spectrum of the one or more shaped ASE signals. The one or more shaped ASE signals can be formed by the ASE source communicatively coupled to a Wavelength Selective Switch (WSS) that is configured to shape ASE from the ASE source to form the one or more shaped ASE signals with one or two or multiple peaks and with associated frequency.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: October 5, 2021
    Assignee: Ciena Corporation
    Inventors: Yinqing Pei, David W. Boertjes
  • Patent number: 11114815
    Abstract: A method and apparatus for a silicon photonics chip and a rare-earth-ion-doped waveguide amplifier chip, wherein the rare-earth ion-doped waveguide amplifier is proximate to and optically coupled to the silicon photonics chip.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 7, 2021
    Assignee: Acacia Communications, Inc.
    Inventors: Li Chen, Christopher Doerr
  • Patent number: 11092392
    Abstract: In one aspect, a transparent heat exchanger includes a first transparent substrate optically attached to a heat source, one or more fins to transfer heat from the heat source, the one or more fins comprising transparent material and further comprising one of a manifold coupled to the first transparent substrate or a facesheet coupled to the first transparent material.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: August 17, 2021
    Assignee: Raytheon Company
    Inventors: Christopher R. Koontz, David Filgas
  • Patent number: 11038316
    Abstract: The invention can include an optical pulse source apparatus that includes the nonlinear generation of wavelengths, wherein the optical pulse source can comprise an oscillator for producing optical pulses, the optical pulses having a first wavelength; an optical fiber amplifier for amplifying optical pulses having the first wavelength; a nonlinear optical fiber receiving amplified optical pulses having the first wavelength to nonlinearly produce optical pulses that include wavelengths that are different than the first wavelength; and wherein the optical pulse source is configured so as to be operable to reduce the optical pulse frequency of the nonlinearly produced optical pulses.
    Type: Grant
    Filed: February 6, 2016
    Date of Patent: June 15, 2021
    Assignee: NKT PHOTONICS A/S
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas
  • Patent number: 10972188
    Abstract: A transmission apparatus includes a first multiplexer configured to multiplex light of wavelengths of a first wavelength band to output first wavelength multiplex light, a first wavelength converter configured to convert the first wavelength multiplex light into wavelengths of a second wavelength band which is different from the first wavelength band, by using first excitation light, a second multiplexer configured to multiplex light of wavelengths of the first wavelength band which are different from the wavelengths of the first wavelength multiplex light to output second wavelength multiplex light, a second wavelength converter configured to convert the second wavelength multiplex light into wavelengths of the second wavelength band, by using second excitation light, a third multiplexer configured to multiplex the first wavelength multiplex light converted into the wavelengths of the second wavelength band, and the second wavelength multiplex light converted into the wavelengths of the second wavelength ban
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: April 6, 2021
    Assignee: FUJITSU LIMITED
    Inventors: Tomoyuki Kato, Shota Mori, Tomoaki Takeyama
  • Patent number: 10932350
    Abstract: An extreme ultraviolet light (EUV) generation system is configured to improve conversion efficiency of energy of a laser system to EUV energy by improving the efficiency of plasma generation. The EUV generation system includes a target generation unit configured to output a target toward a plasma generation region in a chamber. The laser system is configured to generate a first pre-pulse laser beam, a second pre-pulse laser beam, and a main pulse laser beam so that the target is irradiated with the first pre-pulse laser beam, the second pre-pulse laser beam, and the main pulse laser beam in this order. In addition, the EUV generation system includes a controller configured to control the laser system so that a fluence of the second pre-pulse laser beam is equal to or higher than 1 J/cm2 and equal to or lower than a fluence of the main pulse laser beam.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: February 23, 2021
    Assignee: Gigaphoton Inc.
    Inventors: Tatsuya Yanagida, Osamu Wakabayashi
  • Patent number: 10868405
    Abstract: A method for controlling an electromagnetic radiation source to produce single mode operation having an optimized side-mode suppression ratio over a set of wavelengths within a prescribed temporal profile. The electromagnetic radiation source is configured to output electromagnetic radiation at a given wavelength based upon parameters. The method includes determining a set of parameter combinations that satisfy a condition for a desired set of wavelengths and a minimum side mode suppression ratio over the range of wavelengths. The set of parameter combinations define sub-paths for nearly arbitrary transitions from one wavelength to another wavelength. Combinations of select sub-paths provide a multivariate path for transitioning over the range of wavelengths. The method also includes controlling the semiconductor laser to emit electromagnetic radiation over the range of wavelengths by traversing the multivariate path in a desired manner.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 15, 2020
    Assignee: INSIGHT PHOTONIC SOLUTIONS, INC.
    Inventors: Jason Ensher, Christopher Wood, Michael Minneman
  • Patent number: 10868404
    Abstract: A technology disclosed in the specification of the subject application relates to a laser light source device capable of suppressing loss of optical output power from a semiconductor laser device, and to a method of manufacturing of a laser light source device while the degree of freedom in arrangement of the semiconductor laser device is secured. A laser light source device according to the subject technology includes a semiconductor laser device, and an optical element provided on an optical axis of an emission light emitted from the semiconductor laser device. The optical element separates a portion of a luminous flux of an emission light that is emitted from the semiconductor laser device and that is not separated in a fast axis direction from another portion so as to be separated in the fast axis direction.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: December 15, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Seiji Nakano, Toshihide Seki
  • Patent number: 10849486
    Abstract: It is enabled to more appropriately prevent thermal damage to an area irradiated with illumination light. An image acquisition system is provided including: a first light source unit that emits narrow band light having a peak intensity in a specific band; a second light source unit that emits wide band light having a band wider than the specific band; a generation unit that generates multiplexed light by using the narrow band light and the wide band light; an imaging unit that images an irradiation target of the multiplexed light; a prediction unit that performs prediction of a temperature of an area irradiated with the multiplexed light in the irradiation target; and a control unit that performs control of outputs of the narrow band light and the wide band light on the basis of the prediction.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: December 1, 2020
    Assignee: SONY CORPORATION
    Inventors: Tomoyuki Oki, Akio Furukawa
  • Patent number: 10741720
    Abstract: A light emitting diode includes a square quantum well structure, the quantum well structure including III-V materials. A dielectric layer is formed on the quantum well structure. A plasmonic metal is formed on the dielectric layer and is configured to excite surface plasmons in a waveguide mode that is independent of light wavelength generated by the quantum well structure to generate light.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yaojia Chen, Ning Li, Devendra K. Sadana, Jinghui Yang
  • Patent number: 10727945
    Abstract: An optical filter comprises an array of waveguides fabricated on an optical integrated circuit (PIC). The array comprises individual waveguides, each of which receive light inputs, e.g., individual taps of a multi-tap optical filter used in an interference cancellation circuit. Each individual waveguide comprises an inlet, and an outlet. Typically, the output(s) of the individual waveguides are located at an exit (edge) of the PIC. In one embodiment, at least one second waveguide in the array is patterned on the PIC in a converged configuration such that, relative to a first waveguide, the light transiting these waveguides co-propagates and interacts across given portions of the respective waveguides before exiting the waveguide array along a common facet, thereby generating or inhibiting one of: intermodulation products, and harmonics. This structural configuration enables the generation of various modes of transmission at the PIC exit, enabling more efficient transfer of the energy, e.g.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: July 28, 2020
    Assignee: GenXComm, Inc.
    Inventors: Thien-An Nguyen, Monireh Moayedi Pour Fard, Farzad Mokhtari Koushyar, McKay Bradford, Ke Liu
  • Patent number: 10727639
    Abstract: Impingement cooling devices for a laser disk include a carrier plate on the front side of which the laser disk can be secured, and a supporting structure, on the front side of which the rear side of the carrier plate is secured. The supporting structure has a plurality of cooling liquid feed lines from which the cooling liquid emerges in the direction of the rear side of the carrier plate and a plurality of cooling liquid return lines. The feed and return lines run parallel to one another in the longitudinal direction of the supporting structure, and the supporting structure includes a plurality of cutouts or the rear side of the carrier plate that are open toward the supporting structure, and the cooling liquid feed lines lead into and the cooling liquid return lines lead away from the plurality of cutouts.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: July 28, 2020
    Assignee: TRUMPF LASER GMBH
    Inventors: Alexander Killi, Vincent Kuhn
  • Patent number: 10700789
    Abstract: An optical receiver includes a light receiving element array that includes a plurality of light receiving elements, a plurality of amplifiers that amplify respective currents obtained by the plurality of light receiving elements, a plurality of anode lines arranged in a region between the light receiving element array and the plurality of amplifiers, the plurality of anode lines coupling respective anodes of the plurality of light receiving elements to the plurality of amplifiers, respectively, and a cathode line disposed in a region different from the region between the light receiving element array and the plurality of amplifiers, the cathode line coupling respective cathodes of the plurality of light receiving elements to a bias power supply and a bypass capacitor.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: June 30, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Takashi Shiraishi, Hideki Takauchi
  • Patent number: 10644475
    Abstract: A random distributed Rayleigh feedback fiber laser based on a double-cladding weakly ytterbium-doped fiber includes: a pump laser source, a pump combiner, a cladding power stripper, and a double-cladding weakly ytterbium-doped fiber for simultaneously achieving distributed active gain and random distributed Rayleigh feedback. An output end of the pump combiner is connected with one end of the double-cladding weakly ytterbium-doped fiber, the other end of the double-cladding weakly ytterbium-doped fiber is connected with an input end of the cladding power stripper, and a concentration of ytterbium ions in the double-cladding weakly ytterbium-doped fiber is in a range of 0.5×1023 to 1×1025/m3. The laser provided by the present invention solves the problem that the existing random fiber lasers cannot simultaneously utilize distributed active gain and random distributed Rayleigh feedback with a single type of fiber.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: May 5, 2020
    Assignee: University of Electronic Science and Technology of China
    Inventors: Zinan Wang, Jiaqi Li, Han Wu, Yunjiang Rao
  • Patent number: 10637204
    Abstract: In a planar waveguide laser device (1), a substrate (6) is joined to the upper surface of a waveguide (2). A recess (6a) having a chamfered shape is formed along an edge of an end facet of the substrate (6) on the side of the waveguide (2), the end facet being perpendicular to the direction of laser oscillation. An end facet of the waveguide (2) perpendicular to the oscillation direction of laser light is covered with a coating (7). A wraparound portion (7a) continuing from the coating (7) covers the upper surface of the waveguide (2) facing the recess (6a) of the substrate (6).
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: April 28, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Fumio Shohda, Yojiro Watanabe, Takayuki Yanagisawa
  • Patent number: 10563986
    Abstract: A waveguide optical gyroscope (WOG) is disclosed. One WOG may comprise an amplified spontaneous emission (ASE) source, a sensor comprising a waveguide loop disposed in a first cladding material interposed between layers of at least a second cladding material having an index of refraction lower than an index of refraction of the first cladding material, wherein the sensor is configured to receive an output signal of the ASE source, and a pump source configured to pump the first cladding material with an in-plane pump signal.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: February 18, 2020
    Assignee: LGS Innovations LLC
    Inventor: Inuk Kang
  • Patent number: 10567085
    Abstract: A wavelength tunable optical transmitter apparatus relates to the field of communications technologies and includes a plurality of multi-longitudinal mode lasers (1), a cyclic wavelength demultiplexer/multiplexer (2), and a reflector (3). The multi-longitudinal mode lasers output multi-longitudinal mode signals having a periodically repeated frequency interval, where the period is ?fmode. The cyclic wavelength demultiplexer/multiplexer performs periodically repeated filtering on the multi-longitudinal mode signals input by the multi-longitudinal mode lasers, to obtain single frequency signals, where a repetition period of a filter window is ?fband, ?fmode is different from ?fband, and ?fmode and ?fband are not in an integer-multiple relationship, and then, multiplexes the plurality of single frequency signals and outputs the multiplexed signal. The reflector reflects the multiplexed signal.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: February 18, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jun Luo, Zhiyong Feng
  • Patent number: 10567081
    Abstract: A transmission system includes a plurality of nodes in which respective adjacent nodes are coupled by a first kind of optical fiber compatible with light in a first wavelength band or a second kind of optical fiber compatible with light in a second wavelength band, wherein each of the plurality of nodes includes a transmitting node that generates a wavelength-multiplexed optical signal in the first wavelength band by carrying out wavelength multiplexing of a plurality of optical signals and transmits the wavelength-multiplexed optical signal, a receiving node that demultiplexes the plurality of optical signals from the wavelength-multiplexed optical signal and receives the plurality of optical signals, and one or more relay nodes that relay the wavelength-multiplexed optical signal from the transmitting node to the receiving node through the first kind or the second kind of optical fiber.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: February 18, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Shota Mori, Tooru Matsumoto
  • Patent number: 10490974
    Abstract: A frequency comb generator including a semiconductor, wherein the semiconductor outputs a frequency comb in response to frequency mixing of an optical field and at terahertz field in the semiconductor using a high order sideband (HSG) mechanism. The frequency comb spans a bandwidth sufficient for self-referencing and may be used in optical clock applications, for example.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: November 26, 2019
    Assignee: The Regents of the University of California
    Inventors: Mark Sherwin, Hunter Banks, Darren Valovcin
  • Patent number: 10419149
    Abstract: An amplification device includes an element for splitting an input optical signal into first and second optical signals having first and second polarization modes, first and second amplification stages each including polarized SOAs for amplifying the first and second optical signals depending on driving currents, an intermediate processing stage for compensating optical characteristics of the optical gain bandwidth of the first amplification stage depending on driving currents, an element for combining the first and second optical signals outputted by the second amplification stage to produce an output optical signal, and a control means producing the driving currents depending on information representative of powers of the first and second optical signals before the polarized SOAs of each amplification stage and on a targeted power of the output optical signal.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: September 17, 2019
    Assignee: Alcatel Lucent
    Inventors: Jeremie Renaudier, Gabriel Charlet, Romain Brenot