In Horizontal Head Configuration Patents (Class 360/318.1)
  • Patent number: 8116042
    Abstract: A device capable of exhibiting the extraordinary magnetoresistance (EMR) effect includes an elongate channel formed of silicon. A conductor comprising heavily doped silicon is connected to the channel along one side of the channel so as to provide a shunt. A gate arrangement including a gate electrode is provided on the channel. Applying a bias of appropriate polarity and sufficient magnitude to the gate electrode results in the formation of an inversion layer in the channel.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: February 14, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Susumu Ogawa, Andrew Troup, David Williams, Hiroshi Fukuda
  • Patent number: 7839605
    Abstract: An electrical signal processing device includes at least one thin film flux generator and at least one thin film magnetic sensor. Each flux generator includes at least one conductive induction line that is connected to at least one lead of a pair of input leads, and a yoke that surrounds the conductive induction line. The yoke has at least one pair of pole tips, and a gap is disposed between the end surfaces of each pair of pole tips. A magnetic sensor is disposed in the gap, and a pair of output leads is connected to the sensor. An alternative embodiment may include two or more conductive induction lines that are connected to respective separate pairs of input leads. Alternatively, two or more conductive induction lines may connect to one another to form an induction coil. The flux generator and magnetic sensor are preferably formed on a single substrate to create an integrated device.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: November 23, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Michael Andrew Parker
  • Publication number: 20080278860
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Application
    Filed: May 11, 2007
    Publication date: November 13, 2008
    Inventors: Thomas Dudley Boone, JR., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Patent number: 7414816
    Abstract: A magnetic head (slider) which requires no lapping is described. The head is fabricated with an air bearing surface that is parallel to the wafer surface. The saw cuts used to separate the individual sliders from the rest of the wafer are perpendicular to the air-bearing surface and do not pass through any critical features. The read and write components are formed from thin films disposed parallel to the air bearing surface and can be side-by-side or tandem in relation to the recording track. The stripe height of the read sensor is controlled by the deposition process rather than by lapping. Various embodiments of the read head include contiguous junction biasing, external hard magnet biasing, and in-stack biasing. In one embodiment a permeable field collector is included below the sensor layer structure. An aperture shield surrounding the sensor at the ABS is included in one embodiment.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: August 19, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Robert E. Fontana, Jr., Kuok San Ho, Ching Hwa Tsang
  • Patent number: 7126795
    Abstract: A magnetic recording head, a magnetic reproducing head, a magnetic recording apparatus comprising the magnetic recording head, and a magnetic reproducing apparatus comprising the magnetic reproducing head are described. The magnetic reproducing head having a magnetic gap at a medium-facing surface and includes a pair of magnetic yokes of ferromagnetic material, a magnetoresistance effect film, and a pair of biasing films. One of the pair of magnetic yokes has a magnetic tip at the medium-facing surface and also a rear portion recessed from the medium-facing surface and magnetically coupled to the magnetic tip. The magnetic tip has a first width in a track width direction at the medium-facing surface, and the rear portion has a second width in the track width direction wider than the first width. The magnetoresistance effect film is recessed from the medium-facing surface and is magnetically coupled to the pair of magnetic yokes of ferromagnetic material.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: October 24, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomomi Funayama, Kohichi Tateyama, Michiko Hara, Masatoshi Yoshikawa, Hiroaki Yoda
  • Patent number: 6589436
    Abstract: Provided is a reactive ion etching (RIE) method for use in altering the flatness of a slider, whereby a slider or row of sliders is placed within a RIE apparatus. The apparatus comprises essentially an electrode within a chamber having an inlet and an outlet. The electrode is controlled by a bias power source. A source power is provided to the chamber to generate the plasma, wherein a gas or gas mixture is first introduced to the chamber and the source power is adjusted to maximize the plasma composition of ions and reactive neutral species. The ions and reactive neutral species are generated from reactive chemical species such as CHF3 and other F-containing species. An inert gas such as Argon may also be present. Typically, TiC within the Al2O3 matrix of the slider substrate surface is etched at a faster rate than other substrate species.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: July 8, 2003
    Assignee: International Business Machines Corporation
    Inventors: Jila Tabib, Yiping Hsiao, Richard Hsiao, Richard T. Campbell, Ciaran A. Fox
  • Patent number: 6535361
    Abstract: A hard disk drive head operates in close proximity and dynamic contact with a rapidly spinning rigid disk surface, the head including a transducer with a magnetically permeable path between a poletip disposed adjacent to the disk surface and a magnetoresistive (MR) sensor situated outside the range of thermal noise generated by the surface contact. The magnetically permeable path is the same as that used to write data to the disk, eliminating errors that occur in conventional transducers having MR sensors at a separate location from the writing poletips. Moreover, the magnetically permeable path is preferably formed in a low profile, highly efficient “planar” loop that allows for manufacturing tolerances in throat height and wear of the terminal poletips from disk contact without poletip saturation or poletip smearing. The MR layer is formed in one of the first manufacturing steps atop the substrate, so that the MR layer has a relatively uniform planar template that is free from contaminants.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: March 18, 2003
    Assignee: Censtor Corp.
    Inventors: William C. Cain, Michael E. Devillier, Harold J. Hamilton, Robert D. Hempstead, Darren T. Imai, Dimitre A. Latev
  • Patent number: 6510029
    Abstract: The thin film magnetic head has insulating layers and a MR element section, which has uniform thickness and which can be formed on a surface of a magnetizable substrate with enough insulating strength. In the thin film magnetic head, a magnetizable metal layer is formed on a surface of the magnetizable substrate. A first insulating layer is formed on a surface of the magnetizable metal layer. The MR element section for reproducing data is formed on a surface of the first insulating layer. A second insulating layer is formed on the MR element section so as to sandwich the MR element section between the first insulating layer and the second insulating layer. A shielding layer is formed on a surface of the second insulating layer.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: January 21, 2003
    Assignee: Fujitsu Limited
    Inventors: Toshio Umehara, Hiroya Kamiizumi
  • Patent number: 6417989
    Abstract: Read and write performance in a magnetic thin-film head is improved by forming a highly compact multiple-gap head with separate magnetic core and coil structures for a read head and a write head that are respectively designed to improve reading and writing performance. A thin film magnetic head includes a thin-film magnetic core including a read core portion and an interconnected write core portion, a thin-film read coil encircling the read core portion, and a thin-film write coil encircling the write core portion. The read core portion is separated by a read magnetic gap and the write core portion being separated by a write magnetic gap. The read gap and write gap are mutually combined in close proximity in abutting sections of the read core portion and the write core portion respectively so that a magnetic medium is accessible to the read gap and the write gap simultaneously.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: July 9, 2002
    Assignee: AIWA Co., Ltd.
    Inventor: Kuo-Nan Yang
  • Patent number: 6388846
    Abstract: According to the invention, the magnetoresistance (25) is coupled to a secondary air gap (15) formed by two hollowed out magnetic parts (12-1, 12-2). Applicable to the measurement of magnetic fields.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: May 14, 2002
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Baptise Albertini, Marc Aid
  • Publication number: 20020024777
    Abstract: A magnetic recording head, a magnetic reproducing head, a magnetic recording apparatus comprising the magnetic recording head, and a magnetic reproducing apparatus comprising the magnetic reproducing head are described. The magnetic reproducing head having a magnetic gap at a medium-facing surface and includes a pair of magnetic yokes of ferromagnetic material, a magnetoresistance effect film, and a pair of biasing films. One of the pair of magnetic yokes has a magnetic tip at the medium-facing surface and also a rear portion recessed from the medium-facing surface and magnetically coupled to the magnetic tip. The magnetic tip has a first width in a track width direction at the medium-facing surface, and the rear portion has a second width in the track width direction wider than the first width. The magnetoresistance effect film is recessed from the medium-facing surface and is magnetically coupled to the pair of magnetic yokes of ferromagnetic material.
    Type: Application
    Filed: August 27, 2001
    Publication date: February 28, 2002
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomomi Funayama, Kohichi Tateyama, Michiko Hara, Masatoshi Yoshikawa, Hiroaki Yoda
  • Publication number: 20010053051
    Abstract: The thin film magnetic head has insulating layers and a MR element section, which has uniform thickness and which can be formed on a surface of a megnetizable substrate with enough insulating strength. In the thin film magnetic head, a magnetizable metal layer is formed on a surface of the magnetizable substrate. A first insulating layer is formed on a surface of the magnetizable metal layer. The MR element section for reproducing data is formed on a surface of the first insulating layer. A second insulating layer is formed on the MR element section so as to sandwich the MR element section between the first insulating layer and the second insulating layer. A shielding layer is formed on a surface of the second insulating layer.
    Type: Application
    Filed: December 19, 2000
    Publication date: December 20, 2001
    Applicant: FUJITSU LIMITED
    Inventors: Toshio Umehara, Hiroya Kamiizumi
  • Patent number: 6212047
    Abstract: An information storage system having a ring head in such close proximity to a rigid magnetic storage disk that the magnetic field felt by the media layer or layers of the disk has a larger perpendicular than longitudinal component so that data is stored in a perpendicular mode. Reading of data is accomplished with a magnetoresistive sensor which may be coupled to the magnetically permeable core of the ring head far from the poletips, which may contact the disk. The media preferably has a high perpendicular anisotropy, and may be formed in a plurality of films with crystalline structures traversing the films.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: April 3, 2001
    Assignee: Censtor Corporation
    Inventors: Alexander P. Payne, William C. Cain, Michael E. Devillier, Harold J. Hamilton, Robert D. Hempstead, Darren T. Imai, Dimitre A. Latev, Mark A. Lauer, David D. Roberts
  • Patent number: 6198607
    Abstract: A hard disk drive head operates in close proximity and dynamic contact with a rapidly spinning rigid disk surface, the head including a transducer with a magnetically permeable path between a poletip disposed adjacent to the disk surface and a magnetoresistive (MR) sensor situated outside the range of thermal noise generated by the surface contact. The magnetically permeable path is the same as that used to write data to the disk, eliminating errors that occur in conventional transducers having MR sensors at a separate location from the writing poletips. Moreover, the magnetically permeable path is preferably formed in a low profile, highly efficient “planar” loop that allows for manufacturing tolerances in throat height and wear of the terminal poletips from disk contact without poletip saturation or poletip smearing. The MR layer is formed in one of the first manufacturing steps atop the substrate, so that the MR layer has a relatively uniform planar template that is free from contaminants.
    Type: Grant
    Filed: October 2, 1996
    Date of Patent: March 6, 2001
    Assignee: Censtor Corporation
    Inventors: William C. Cain, Michael E. Devillier, Harold J. Hamilton, Robert D. Hempstead, Darren T. Imai, Dimitre A. Latev