Liquid Electrolytic Capacitor Patents (Class 361/503)
  • Patent number: 11948741
    Abstract: An electrolytic solution for an electrochemical device a solvent, an ionic substance, and an additive agent, the additive agent containing ?-methyl-?-butyrolactone and ?-valerolactone.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 2, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Keisuke Masunaga, Hideo Sakata, Nao Miyaguchi
  • Patent number: 11866331
    Abstract: Apparatuses and methods for preparing carbon nanostructure sheets are provided. The apparatuses may include a casting body including a substrate configured to move along a first direction, a slurry reservoir configured to contain a slurry, a dispenser connected to the slurry reservoir and configured to dispense the slurry onto a surface of the substrate and a doctoring member that extends in a second direction traversing the first direction and that is positioned above the surface of the substrate. The slurry may include carbon nanostructures, and/or one or more functional materials. The doctoring member may be spaced apart from the surface of the substrate by a predetermined distance.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: January 9, 2024
    Assignee: Khalifa University of Science and Technology
    Inventors: Rahmat Agung Susantyoko, Zainab Karam, Saif Almheiri, Ibrahim Husein Salim Mustafa
  • Patent number: 11777317
    Abstract: A system for delivering electrical energy to a chargeable unit of an electrically powered object characterised by comprising: •at least one input line for delivering electricity from a grid and/or a source of renewable electrical energy; •optionally a first converter disposed within the input line(s) for converting alternating current to direct current; •at least one reservoir of electrical energy connected to the input line(s) and including (a) a plurality of supercapacitors arranged in series or parallel and (b) a means for delivering an output voltage and current therefrom; •at least one second converter adapted to step-up or down the output voltage from the reservoir(s) to a charging voltage of the chargeable unit and •at least one dispensing means connected to the systems and adapted to cooperate with a corresponding connector means on the object to enable the charging voltage to charge the chargeable unit.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: October 3, 2023
    Assignee: Oxcion Limited
    Inventor: Stephen David Voller
  • Patent number: 11626581
    Abstract: Part of an electrode, specifically a current collector and an active material layer, for a secondary battery is subjected to cutting processing to have a complex shape. For example, a stack of the first current collector and the first active material layer has a first slit and a second slit. Each of the first slit and the second slit passing across the first current collector and the first active material layer and extending from an edge of the first current collector. Another stack of the second current collector and the second active material layer has a third slit and a fourth slit. Each of the third slit and the fourth slit passing across the second current collector and the second active material layer and extending from an edge of the second current collector.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: April 11, 2023
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masaaki Hiroki, Ryota Tajima
  • Patent number: 11600450
    Abstract: Provided is a capacitor, and more preferably a hybrid capacitor, and a method of making the capacitor. The capacitor comprises an anode, with a dielectric on the anode, and a cathode with a barrier layer on the cathode. A separator, conductive polymer, liquid electrolyte and stabilizer are between the anode and cathode.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: March 7, 2023
    Assignee: KEMET Electronics Corporation
    Inventors: Victor Andoralov, Vania Pais, Débora Sá, Miguel Evaristo, Rui A. Monteiro
  • Patent number: 11495413
    Abstract: A film capacitor includes a first film, a second film, a first electrode part, and a second electrode part. The first electrode part is disposed on a first film surface of the first film. The second electrode part is disposed on a second film surface of the first film or the second film. The first film surface has a first non-electrode part extending along a longitudinal direction of the first film surface. The second film surface has a second non-electrode part extending along a longitudinal direction of the second film surface. A first region having a light transmittance ranging from 30% to 80%, inclusive, is disposed between the first electrode part and the first non-electrode part. A second region having a light transmittance ranging from 30% to 80%, inclusive, is disposed between the second electrode part and the second non-electrode part. A width of each of the first region and the second region is less than or equal to 0.5 mm.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: November 8, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Masahito Sano
  • Patent number: 11380492
    Abstract: A solid electrolytic capacitor comprising a capacitor element that contains a sintered porous anode body formed from a valve metal powder having a specific charge of about 50,000 ?F*V/g or more, a dielectric that overlies the anode body, and a solid electrolyte that overlies the dielectric that includes a conductive polymer is provided. The capacitor exhibits an anomalous charging current of about 0.25 amps or less when charged at a constant voltage rate increase of 120 volts per second, determined at a temperature of 23° C. and voltage of 16 volts.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 5, 2022
    Assignee: KYOCERA AVX Components Corporation
    Inventors: Pavel Kucharczyk, Miloslav Uher, Jan Petrzilek
  • Patent number: 11189425
    Abstract: An apparatus includes a case capable of receiving a plurality of capacitive elements, each capacitor element having at least two capacitors, and each capacitor having a capacitive value. The apparatus also includes a cover assembly with a peripheral edge secured to the case. The cover assembly includes, for each of the plurality of capacitive elements, a cover terminal that extends upwardly from the cover assembly generally at a central region of the cover assembly. Each cover terminal is connected to one of the at least two capacitors of the respective one of the plurality of capacitive elements. The cover assembly also includes, for each of the plurality of capacitive elements, a cover terminal that extends upwardly from the cover assembly at a position spaced apart from the cover terminal generally at the central region of the cover assembly.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: November 30, 2021
    Assignee: AmRad Manufacturing, LLC
    Inventors: Robert M. Stockman, Richard W. Stockman, Michael B. Tricano, Jonathan Charles
  • Patent number: 11114250
    Abstract: A solid electrolytic capacitor containing a capacitor element is provided. The capacitor element contains a sintered porous anode body, a dielectric that overlies the anode body, a solid electrolyte that overlies the dielectric that includes conductive polymer particles that contain a complex formed from a thiophene polymer and a copolymer counterion, and an external polymer coating that overlies the solid electrolyte and includes conductive polymer particles.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: September 7, 2021
    Assignee: AVX Corporation
    Inventors: Kiyofumi Aoki, Jan Petrzilek
  • Patent number: 11017955
    Abstract: A cathode subassembly for use in an electrolytic capacitor may include a first separator sheet including a surface having first and second regions, where the second region extends from a perimeter of the first region to a first peripheral edge of the first sheet, a second peripheral edge of a second sheet is substantially aligned with the first peripheral edge, a conductive foil is sandwiched between the first and second sheets and disposed within the first region, the first and second sheets are adhered to each other in a sealing region extending from the second region to a region of a surface of the second sheet facing the second region, and the first sheet includes at least one first recessed portion at the first peripheral edge aligned with at least one second recessed portion at the second peripheral edge of the second sheet.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: May 25, 2021
    Assignee: Pacesetter, Inc.
    Inventors: David R. Bowen, Ralph Jason Hemphill, Thomas F. Strange, Troy L. McCurry, Peter Fernstrom
  • Patent number: 11004618
    Abstract: Capacitors having electrodes made of interconnected corrugated carbon-based networks (ICCNs) are disclosed. The ICCN electrodes have properties that include high surface area and high electrical conductivity. Moreover, the electrodes are fabricated into an interdigital planar geometry with dimensions that range down to a sub-micron scale. As such, micro-supercapacitors employing ICCN electrodes are fabricated on flexible substrates for realizing flexible electronics and on-chip applications that can be integrated with micro-electromechanical systems (MEMS) technology and complementary metal oxide semiconductor technology in a single chip. In addition, capacitors fabricated of ICCN electrodes that sandwich an ion porous separator realize relatively thin and flexible supercapacitors that provide compact and lightweight yet high density energy storage for scalable applications.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: May 11, 2021
    Assignee: The Regents of the University of California
    Inventors: Maher F. El-Kady, Veronica A. Strong, Richard B. Kaner
  • Patent number: 10892108
    Abstract: An electrochemical device has a positive electrode, a negative electrode, separators, and an electrolyte. The negative electrode has a first and second negative-electrode active-material layers and a negative-electrode collector which has (i) a first principal face on which the first negative-electrode active-material layer is formed, and (ii) a second principal face having a coated area where the second negative-electrode active-material layer is formed, and an uncoated area where no second negative-electrode active-material layer is formed. The negative-electrode collector has multiple through holes that interconnect the first and second principal faces wherein the boundary of the coated area and the uncoated area intersects the opening of at least one of the multiple through holes.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: January 12, 2021
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Yuki Kawai, Koji Kano
  • Patent number: 10763051
    Abstract: An electric double-layer ultracapacitor configured to maintain desired operation at an operating voltage of three volts, where the capacitor includes a housing component, a first and a second current collector, a positive and a negative electrode electrically coupled to one of the first and second current collectors, and a separator positioned between the positive and the negative electrode. At least one of the positive electrode and the negative electrode can include a treated carbon material, where the treated carbon material includes a reduction in a number of hydrogen-containing functional groups, nitrogen-containing functional groups and/or oxygen-containing functional groups.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: September 1, 2020
    Assignee: Maxwell Technologies, Inc.
    Inventors: Priya Bendale, Robert Crawford, Porter Mitchell, Jeffrey Nelson, Doug Schafer, Xiaomei Xi
  • Patent number: 10727002
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (A) a pseudocapacitance cathode comprising a cathode active material that contains a conductive carbon material and a porphyrin compound, wherein the porphyrin compound is bonded to or supported by the carbon material to form a redox pair for pseudocapacitance, wherein the carbon material is selected from activated carbon, activated carbon black, expanded graphite flakes, exfoliated graphite worms, carbon nanotube, carbon nanofiber, carbon fiber, a combination thereof; (B) a battery-like anode comprising lithium metal, lithium metal alloy, or a prelithiated anode active material (e.g. prelithiated Si, SiO, Sn, SnO2, etc.), and (C) a lithium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: July 28, 2020
  • Patent number: 10707026
    Abstract: An energy storage device, such as a sodium ion capacitor, including an anode and a cathode, at least one of the anode and the cathode including a nitrogen and oxygen functionalized carbon (NOFC). The NOFC has a nitrogen content greater than 4 wt %, such as 13 wt %, an oxygen content greater than 8 wt %, such as 11 wt %, and a surface area greater than 800 m2g?1, such as 945 m2g?1. The energy storage device has favorable reversible and rate capability, such as 437 mAhg?1 at 100 mAg?1, and 185 mAhg?1 at 1600 mA g?1.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: July 7, 2020
    Assignee: Sparkle Power LLC
    Inventors: David Mitlin, Jia Ding
  • Patent number: 10504658
    Abstract: The invention pertains to a conductive material formulation comprising: (a) a conductive polymer material; and (b) an insulation material, wherein the conductive polymer material is derived from a conductive polymer and a polyanion and has a weight average molecular weight ranging from 3,000 to 30,000; and wherein the (b) insulation material is present in an amount of 0.01 part to 200 parts by weight based on 100 parts by weight of the (a) conductive polymer material. The conductive material formulation according to the invention is useful for the preparation of solid capacitors.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: December 10, 2019
    Assignee: ETERNAL MATERIAL CO., LTD.
    Inventor: Shinn-Horng Chen
  • Patent number: 10333178
    Abstract: The invention relates to an electrolyte composition containing (i) at least one aprotic polar organic solvent having a flash point above 80° C. and a dielectric constant above 10 at 25° C.; (ii) at least one flame retardant and/or non-flammable solvent; (iii) at least one compound of formula (I) R1—O(O)C—(CH2)n—C(O)O—R2 (I) wherein R1 and R2 are independently from each other selected from C1-C6 alkyl and n is 1, 2 or 3; (iv) at least one conducting salt; (v) at least one aprotic organic solvent having a dynamic viscosity below 1 mPa s at 25° C.; and (vi) optionally one or more additives.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: June 25, 2019
    Assignee: Gotion Inc.
    Inventors: Rene Schmitz, Lucas Montag, Diana Fuerst
  • Patent number: 10302586
    Abstract: A class of devices enabled by ionic conductors is highly stretchable, fully transparent to light of all colors, biocompatible or biodegradable, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts. These devices enabled by ionic conductors can be used as large strain actuators, full-range loudspeakers, as strain or pressure sensors and as stretchable interconnects. The electromechanical transduction is achieved without electrochemical reaction. When large stretchability and high optical transmittance are required, the ionic conductors have lower sheet resistance than all existing electronic conductors.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 28, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Jeong Yun Sun, Christoph Matthias Keplinger, Zhigang Suo, George M. Whitesides
  • Patent number: 10204745
    Abstract: The method of making a supercapacitor using porous activated carbon from cow dung includes converting cow dung to porous activated carbon by, in a first step, preparing the dung waste by washing and drying the dung waste, and heating the dung waste in a vacuum environment to form pre-carbonized carbon. In a second step, the pre-carbonized carbon is impregnated with phosphoric acid to form a slurry, which is dried, ground, and heated in a vacuum to between 600-900° C. to form porous activated carbon. The porous activated carbon is mixed with a binder, acetylene black, and an organic solvent to form a paste, which is dried on a conductive metal foil to form an electrode. Two such electrodes (an anode and cathode) are coated with an electrolyte gel (e.g., aqueous potassium hydroxide) and separated by a polymer (e.g., PTFE) membrane to form the supercapacitor.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: February 12, 2019
    Assignee: King Saud University
    Inventors: Jothi Ramalingam Rajabathar, Hamad Abdullah Al-Lohedan, Judith J. Vijaya, M. Sivachidambaram
  • Patent number: 10080891
    Abstract: An extra-cardiovascular medical device is configured to select a capacitor configuration from a capacitor array and deliver a low voltage, pacing pulse by discharging the selected capacitor configuration across an extra-cardiovascular pacing electrode vector. In some examples, the medical device is configured to determine the capacitor configuration based on a measured impedance of the extra-cardiovascular pacing electrode vector.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: September 25, 2018
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Mark T. Marshall, Thomas H. Spear
  • Patent number: 10014126
    Abstract: As an object to provide a lithium-ion supercapacitor having a high energy density and a high power density, capable of being charged and discharged many times, and having a long product life, there is provided a lithium-ion supercapacitor using a graphene/CNT composite electrode, the lithium-ion supercapacitor including: an anode; a cathode that is arranged to be separated from the anode; and a lithium ion electrolytic solution that fills in a space between the anode and the cathode, wherein either or both of the cathode and the anode are formed by a graphene/CNT composite, and a CNT concentration in the graphene/CNT composite is 17 wt % or more and 33 wt % or less.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: July 3, 2018
    Assignee: National Institute for Materials Science
    Inventors: Jie Tang, Faxiang Qin, Luchang Qin
  • Patent number: 10003085
    Abstract: Provided are a supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material that, when used as a carrier for a solid polymer fuel cell catalyst, have excellent power generation performance in high-humidity conditions, which are conditions in which solid polymer fuel cells are operated. A supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material characterized in being a porous carbon material, the hydrogen content being 0.004-0.010% by mass, the nitrogen adsorption BET specific surface area being 600 m2/g-1500 m2/g, and the relative intensity ratio (ID/IG) between the peak intensity (ID) in the range of 1200-1400 cm?1 known as the D-band and the peak intensity (IG) in the range of 1500-1700 cm?1 known as the G-band, obtained from the Raman spectrum, being 1.0-2.0.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 19, 2018
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Katsumasa Matsumoto, Takashi Iijima, Masataka Hiyoshi, Hiroyuki Hayashida, Kazuhiko Mizuuchi, Takumi Kouno, Masakazu Higuchi, Masakazu Katayama
  • Patent number: 9947479
    Abstract: A wet electrolytic surface mount capacitor has a body defining an interior area and having a fill port formed through a wall of the body. A capacitive element is positioned in an interior of the body and is isolated from the body. A surface mount anode termination is in electrical communication with the capacitive element and isolated from the body. A surface mount cathode termination is in electrical communication with the body. An electrolyte is contained in the interior area of the body, and is introduced into the interior area of the body through the fill port. A fill port plug is positioned adjacent the fill port. A fill port cover compresses the fill port plug against the fill port to seal the fill port, and may be welded in place. A method of forming the capacitor is also provided.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: April 17, 2018
    Assignee: VISHAY SPRAGUE, INC.
    Inventors: Alex Eidelman, Pavel Vaisman, Gabi Shilo, Evgeny Petukhov, Andrey Mitiagin
  • Patent number: 9941055
    Abstract: A method for preparing a solid electrolytic capacitor and an improved solid electrolytic capacitor is provided. The method includes providing an anode, forming a dielectric on the anode, forming a cathode on the dielectric and forming subsequent layers on the cathode wherein the cathode and subsequent layers preferably comprise interlayers. At least one interlayer comprises a monomer, oligomer or polymer with multifunctional or multiple reactive groups and an adjacent layer comprises a molecule with crosslinkable functionality. The oligomer or polymer with multifunctional or multiple reactive groups on one layer react with the crosslinkable functionality in the adjacent layer.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: April 10, 2018
    Assignee: KEMET Electronics Corporation
    Inventors: Antony P Chacko, Danny Yiu Kai Hui
  • Patent number: 9887048
    Abstract: Provided is a stretchable supercapacitor and a method of manufacturing the same. The stretchable supercapacitor includes a separator between first and second current collectors. The first and second current collectors each including an active material. The second current collector is on the first current collector. The separator includes an electrolyte. Each of the separator, the first current collector and the second current collector includes an elastic polymer layer. The first and second current collectors may each have a 3-dimensional nano-pore structure. The stretchable supercapacitor may further include a first electrode in contact with the first current collector and a second electrode in contact with the second current collector. The elastic polymer layers may include at least one of styrene-b-butadiene-b-styrene (SBS), polyurethane, polyurethane acrylate, acrylate polymer, acrylate terpolymer, and silicone-based polymer.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: February 6, 2018
    Assignees: SAMSUNG ELECTRONICS CO., LTD., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Taeho Kim, Jangwook Choi, Yonghee Lee
  • Patent number: 9875855
    Abstract: A wet tantalum capacitor of either a single anode design or of multiple anode configurations having cathode active material supported on the casing and sealed in its own separator material is described. The separator “covers’ the cathode active material and is adhered directly to the casing. For a multiple anode design, an inner cathode foil positioned between opposed anode pellets is sealed in its own separator bag. Preferably, a polymeric restraining device prevents the anode from contacting the casing. The completed anode/cathode electrode assembly is sealed in the casing, which is filled with electrolyte thru a port. The fill port is hermetically sealed to complete the capacitor.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: January 23, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Anthony C. Perez, Barry C. Muffoletto, Jason T. Hahl, Mark T. Muffoletto
  • Patent number: 9824829
    Abstract: A capacitor is described. A casing for the capacitor comprises a container having a face wall joined to a surrounding sidewall extending to a annular edge defining an open end of the container. An inwardly extending protrusion is located intermediate the face wall and the annular edge at the container open end. A partition plate is supported on the protrusion to thereby provide a first capacitor enclosure bounded by the face wall, the surrounding sidewall and the partition plate. A cover plate is secured to the annular edge to close the open end of the container and provide a second capacitor enclosure bounded by the partition plate, the surrounding sidewall and the cover plate. An anode, for example of tantalum, and a cathode active material, for example of ruthenium oxide, reside in capacitive association with each other inside each of the first and second capacitor enclosures. A working electrolyte is also contained in the capacitor enclosures.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: November 21, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Barry C. Muffoletto, Anthony C. Perez
  • Patent number: 9786445
    Abstract: One embodiment is an EDLC with a capacitor cell that includes two electrodes of opposite polarity aligned in parallel, and a peptide separator disposed between the electrodes. The separator may be a peptide coating on an electrode surface. Another embodiment is an electrode for an electrochemical energy storage device, such as an EDLC, the electrode including graphene and coated with peptide. The peptide may act as a separator for the EDLC. A further embodiment is an electrode for an electrochemical energy storage device, the electrode-unit including: two graphene layers, CNTs, and electrolyte. The graphene layers are arranged separated along a first axis and aligned with parallel surfaces, where at least one graphene layer is coated with peptide. The CNTs are arranged along a second axis orthogonal to the first axis and disposed between the graphene layers. The electrolyte is impregnated within the volume defined between the graphene layers and CNTs.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 10, 2017
    Assignee: Elbit Systems Land and C41 Ltd.
    Inventors: Ervin Tal-Gutelmacher, Erez Schreiber
  • Patent number: 9379418
    Abstract: A lithium-ion battery structure with a third electrode as reference electrode is disclosed. The reference electrode may be fabricated from lithium metal, lithiated carbon, or a variety of other lithium-containing electrode materials. A porous current collector allows permeation of reference lithium ions from the reference electrode to the cathode or anode, enabling voltage monitoring under actual operation of a lithium-ion battery. The reference electrode therefore does not need to be spatially between the battery anode and cathode, thus avoiding a shielding effect. The battery structure includes an external reference circuit to dynamically display the anode and cathode voltage. The battery structure can result in improved battery monitoring, enhanced battery safety, and extended battery life.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: June 28, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: John Wang, Ping Liu, Elena Sherman, Souren Soukiazian, Mark Verbrugge
  • Patent number: 9355786
    Abstract: The invention relates to electrical engineering. The multi-element electrochemical capacitor of this invention comprises at least one layer of electrical insulation film with alternating opposite-polarity electrode films placed thereon in succession and interspaced by a porous ion-permeable separator, coiled into a roll. Each electrode sheet is a substrate of nonwoven polymer material at a high pore ratio, with at least one electrode in the form of an electrochemically active layer attached to one side or both sides thereof, or embedded within the same. The capacitor also comprises contact electrodes.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 31, 2016
    Assignee: UG INVESTMENTS LTD.
    Inventors: Yuriy Midhatovich Ginatulin, Andrey Viktorovich Desyatov, Anton Vladimirovich Asseyev, Aleksandr Petruvich Kubyshkin, Sergey Ivanovich Sirotin, Lyubov Vladimirovna Bulibekova, Lyubov Densunovna Li
  • Patent number: 9324503
    Abstract: A capacitor for use in relatively high voltage environments is provided. The solid electrolyte is formed from a plurality of pre-polymerized particles in the form of a dispersion. In addition, the anode is formed such that it contains at least one longitudinally extending channel is recessed therein. The channel may have a relatively high aspect ratio (length divided by width), such as about 2 or more, in some embodiments about 5 or more, in some embodiments from about 10 to about 200, in some embodiments from about 15 to about 150, in some embodiments from about 20 to about 100, and in some embodiments, from about 30 to about 60.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 26, 2016
    Assignee: AVX Corporation
    Inventors: Martin Biler, Jan Petrzilek
  • Patent number: 9208954
    Abstract: An electrolytic capacitor includes a capacitor element, an electrolyte solution with which the capacitor element is impregnated, and an outer package enclosing the capacitor element and the electrolyte solution. The capacitor element includes an anode foil having a dielectric layer on a surface thereof, a cathode foil, a separator disposed between the anode foil and the cathode foil, and a solid electrolyte layer in contact with the dielectric layer of the anode foil and the cathode foil. The electrolyte solution contains a low-volatile solvent that is at least one of polyalkylene glycol and a derivative of polyalkylene glycol.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: December 8, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Hiroyuki Matsuura, Shigetaka Furusawa, Hidehiro Sasaki, Tatsuji Aoyama
  • Patent number: 9208958
    Abstract: Provided is a lithium ion capacitor having a low internal resistance, a high energy density, and a high capacity retention rate. The lithium ion capacitor includes a positive electrode having a positive electrode active material layer formed on a roughened positive electrode current collector, a negative electrode having a negative electrode active material layer containing graphite-based particles formed on a negative electrode current collector, and an electrolytic solution containing a solution of a lithium salt in an aprotic organic solvent, wherein the total thickness of the positive electrode active material layer is 50 ?m to 140 ?m, and the ratio of mass of the positive electrode active material layer to the sum of the mass of the positive electrode active material layer and that of the negative electrode active material layer is 0.4 to 0.5.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: December 8, 2015
    Assignee: JM Energy Corporation
    Inventors: Teruaki Tezuka, Toshihiro Hayashi, Nobuo Ando, Yuu Watanabe, Makoto Taguchi, Naoshi Yasuda
  • Patent number: 9105925
    Abstract: An anode active material including a porous transition metal oxide; an anode including the anode active material; a lithium battery including the anode; and a method of preparing the anode active material.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: August 11, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Han-su Kim, Chan-ho Pak, Ji-man Kim, Jeong-kuk Sohn, Soo-sung Kong
  • Patent number: 9090986
    Abstract: Electrode foils suitable for use in electrolytic capacitors, including those having multiple configurations, have improved strength, reduced brittleness, and increased capacitance compared to conventional anode foils for electrolytic capacitors. Exemplary methods of manufacturing an anode foil suitable for use in an electrolytic capacitor include forming a pattern of etch resist on a surface of a substrate; etching a first area of the surface substantially enclosed by the pattern and a second area in intervals between the pattern to form tunnels in first and second areas of the surface; and removing the resist material revealing a non-etched frame. The resist material may be deposited, for example, by ink-jet printing, stamping or screen printing. Additionally, an etch resist pattern may be used to form strength lines on the substrate surface.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: July 28, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, David R. Bowen, Troy L. McCurry
  • Patent number: 9036332
    Abstract: The present disclosure is related to hybrid capacitors specifically to PbO2/Activated Carbon hybrid ultracapacitors. The present disclosure is also related to hybrid capacitors specifically to PbO2/Activated Carbon hybrid ultracapacitors with an inorganic thixotropic-gelled-polymeric-electrolyte. The hybrid ultracapacitors of the present disclosure is simple to assemble, bereft of impurities and can be fast charged/discharged with high faradiac-efficiency.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: May 19, 2015
    Assignee: Indian Institute of Science
    Inventors: Ashok Kumar Shukla, Anjan Banerjee, Musuwathi Krishnamoorthy Ravikumar, Shaik Abdul Gaffoor
  • Publication number: 20150132682
    Abstract: The present invention relates to a method for producing an electrochemical cell, such as in particular a secondary battery, a double-layer capacitor, an electrolytic capacitor or a fuel cell, in which a cell vessel containing two electrodes of one-piece or multi-part design and at least one separator is filled with free-flowing electrolyte. The object of the invention is to match the quantity of electrolyte in an electrochemical cell as exactly as possible to the free volume actually present. The object is achieved in that, before the filling with the electrolyte, the quantity of electrolyte to be put in is determined at least while taking into account the actual thicknesses and the actual weights of the electrodes in the cell vessel and of the separator in the cell vessel.
    Type: Application
    Filed: April 29, 2013
    Publication date: May 14, 2015
    Applicant: Evonik Litarion GmbH
    Inventor: Thomas Hecht
  • Patent number: 9030803
    Abstract: An electrochemical energy storage system includes a positive electrode, a negative electrode disposed proximally to and not in contact with the positive electrode, and a non-aqueous electrolyte, wherein the positive electrode and the negative electrode are immersed in the non-aqueous electrolyte, and a case is presented in the energy storage system to accommodate the non-aqueous electrolyte, the positive electrode, and the negative electrode. The positive electrode has a porous matrix having a plurality of micrometer sized pores and nanostructured metal oxides, wherein the porous matrix is a 3-dimensional (3D) mesoporous metal or a 3D open-structured carbonaceous material, and the nanostructured metal oxides are coated inside the plurality of pores of the porous matrix. The non-aqueous electrolyte includes organic salts having acylamino group and lithium salts characterized as LiX, wherein Li is lithium and X comprises ClO4?, SCN?, PF6?, B(C2O4)2?, N(SO2CF3)2?, CF3SO3?, or the combination thereof.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: May 12, 2015
    Assignee: National Synchrotron Radiation Research Center
    Inventors: Ming Jay Deng, Jeng Kuei Chang, Jin Ming Chen, Kueih Tzu Lu
  • Patent number: 9025316
    Abstract: An electrical component includes an inkjet-printed graphene electrode. Graphene oxide flakes are deposited on a substrate in a graphene oxide ink using an inkjet printer. The deposited graphene oxide is thermally reduced to graphene. The electrical properties of the electrode are comparable to those of electrodes made using activated carbon, carbon nanotubes or graphene made by other methods. The electrical properties of the graphene electrodes may be tailored by adding nanoparticles of other materials to the ink to serve as conductivity enhancers, spacers, or to confer pseudocapacitance. Inkjet-printing can be used to make graphene electrodes of a desired thickness in preselected patterns. Inkjet printing can be used to make highly-transparent graphene electrodes. Inkjet-printed graphene electrodes may be used to fabricate double-layer capacitors that store energy by nanoscale charge separation at the electrode-electrolyte interface (i.e., “supercapacitors”).
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: May 5, 2015
    Assignees: The Trustees of The Stevens Institute of Technology, The United States of America, as Represented by The Secretary of The Army
    Inventors: Woo Young Lee, Linh Le, De Kong, Matthew Henderson Ervin, James L. Zunino, III, Brian E. Fuchs
  • Patent number: 9025312
    Abstract: A collector for an electric double layer capacitor including a conductive sheet, and a film adhered on surface of the conductive sheet and including carbon fine particle and polysaccharide and/or cross-linked polysaccharide. An electrode for an electric double layer capacitor including a collector having a conductive sheet and a film adhered on surface of the conductive sheet, and a film including activated carbon and adhered on surface of the film of the collector. The film of the collector includes carbon fine particle and polysaccharide and/or cross-linked polysaccharide. An electric double layer capacitor including an electrode, a separator, and an electrolyte. The electrode includes a collector having a conductive sheet and a film adhered on surface of the conductive sheet, and a film including activated carbon and adhered on surface of the film of the collector. The film of the collector includes carbon fine particle and polysaccharide and/or cross-linked polysaccharide.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 5, 2015
    Assignee: Showa Denko K.K.
    Inventor: Masahiro Ohmori
  • Patent number: 9025315
    Abstract: Electrochemical energy storage devices such as electric double layer capacitors include a flexible metal contact current collector establishing electrical contact with a conductive housing at numerous contact points. The flexible current collector simplifies manufacturing of the device and avoids laser welding on the conductive housing. The manufacture devices are operable with a reduced direct current resistance by virtue of the flexible current collector.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 5, 2015
    Assignee: Cooper Technologies Company
    Inventors: Cyrus Sam Rustomji, Kyle Yun-Su Kim
  • Patent number: 9011709
    Abstract: The present invention relates to an electrolyte of an energy storage device. An electrolyte composition in accordance with an embodiment of the present invention includes an electrolyte salt, a carbonate solvent, and at least one nitrile solvent of acetonitrile and propionitrile.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jae Hoon Choi, Ji Sung Cho, Eun Sil Kim, Se Woong Paeng, Bae Kyun Kim
  • Patent number: 9013860
    Abstract: An asymmetric supercapacitor includes a first structure and a second structure spaced apart from said second structure. One of the structures comprises an anode, and the other of the first and second structures comprises a cathode, wherein the first structure comprises an activated carbon electrode, and the second structure comprises a nanocomposite electrode. The nanocomposite electrode comprises a first network of nanowires that are interpenetrating with a second network of carbon nanotubes.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: April 21, 2015
    Assignee: The Regents of the University of California
    Inventors: Zheng Chen, Yunfeng Lu
  • Patent number: 9013861
    Abstract: In one embodiment a charge storage device includes first (110) and second (120) electrically conductive structures separated from each other by a separator (130). At least one of the first and second electrically conductive structures includes a porous structure containing multiple channels (111, 121). Each one of the channels has an opening (112, 122) to a surface (115, 125) of the porous structure. In another embodiment the charge storage device includes multiple nanostructures (610) and an electrolyte (650) in physical contact with at least some of the nanostructures. A material (615) having a dielectric constant of at least 3.9 may be located between the electrolyte and the nanostructures.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 21, 2015
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Eric C. Hannah, Rong Chen, John L. Gustafson
  • Patent number: 9007742
    Abstract: Capacitors containing novel electrodes and electrolytes are described. One electrode composition comprises an oxide of Mn and Fe in a Mn:Fe molar ratio of 3:1 to 5:1. Another electrode composition comprises an oxide comprising Ni, Co, and Fe; wherein the Ni and Co are present in a Ni/Co molar ratio in the range of 0.5 to 2 and a Fe and Ni are present in a Ni/Fe molar ratio in the range of 1.0 to 10. The resulting capacitors can be characterized by superior properties. Methods of forming the electrodes from gels are also described. An electrolyte comprising a Li salt in a carbonate solution, wherein the carbonate solution comprises 10-30% ethylene carbonate and 70-90% propylene carbonate is also described.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 14, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Steven M. Risser, Vincent D. McGinniss, Bing Tan, Kevin B. Spahr, Homero Castenada-Lopez
  • Patent number: 9001496
    Abstract: An electrode for electric double-layer capacitor includes a collector with a protective layer containing phosphorous on its surface, and a polarizable electrode layer that is formed on this collector and can adsorb and desorb ions. An amount of a phosphorous compound per unit surface area of the collector, eluted when the collector is immersed into water, is not greater than 1.35 mg/m2 in terms of phosphorous equivalent. An electric double-layer capacitor employs this electrode for at least one of a positive electrode and a negative electrode.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: April 7, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Tomohiro Okuzawa, Motonori Morikazu
  • Patent number: 9001495
    Abstract: An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: April 7, 2015
    Assignee: FASTCAP Systems Corporation
    Inventors: Fabrizio Martini, Nicolo Michele Brambilla, Riccardo Signorelli
  • Patent number: 8976509
    Abstract: An aluminum material, a dielectric layer and an interposing layer formed in at least one part of a region of the surface of the aluminum material between the aluminum material and the dielectric layer and includes aluminum and carbon, wherein the dielectric layer includes dielectric particles including a valve metal, and an organic substance layer formed on at least one part of a surface of the dielectric particle.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 10, 2015
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Nakayama, Zenya Ashitaka, Hidetoshi Inoue
  • Patent number: 8976507
    Abstract: A method of increasing the area of carbon nanotubes used in fabricating capacitors is described. The method involves reacting carbon nanotubes with electrically conductive ions, molecules or nanoparticles that increase the surface area of the nanotubes. The capacitance and the energy stored in the capacitor can be increased by such treatment. Devices constructed from such treated materials and their properties are described.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 10, 2015
    Assignee: California Institute of Technology
    Inventors: Adrianus Indrat Aria, Bradley Lyon, Morteza Gharib
  • Patent number: RE49299
    Abstract: A method for creating a metal-carbon composite.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: November 15, 2022
    Assignee: Powermers Inc.
    Inventors: Mikhail P. Karushev, Svetlana A. Belous, Tatyana S. Lavrova, Irina A. Chepurnaya, Alexander M. Timonov, Semyon Kogan