Liquid Electrolytic Capacitor Patents (Class 361/503)
  • Patent number: 8385052
    Abstract: A capacitor containing an electrochemical cell that includes ruthenium oxide electrodes and an aqueous electrolyte containing a polyprotic acid (e.g., sulfuric acid) is provided. More specifically, the electrodes each contain a substrate that is coated with a metal oxide film formed from a combination of ruthenium oxide and inorganic oxide particles (e.g., alumina, silica, etc.). Without intending to be limited by theory, it is believed that the inorganic oxide particles may enhance proton transfer (e.g., proton generation) in the aqueous electrolyte to form hydrated inorganic oxide complexes (e.g., [Al(H2O)63+] to [Al2(H2O)8(OH2)]4+). The inorganic oxide thus acts as a catalyst to both absorb and reversibly cleave water into protons and molecular bonded hydroxyl bridges. Because the anions (e.g.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: February 26, 2013
    Assignee: AVX Corporation
    Inventors: Jessica M. Smith, Lee Shinaberger, Bob Knopsnyder, Gang Ning, Bharat Rawal, Dirk Dreissig
  • Patent number: 8379367
    Abstract: Provided is a hybrid super capacitor using a composite electrode that may enhance equivalent series resistance (ESR) using a carbon nanotube chain. The hybrid super capacitor includes: an anode 11 including an anode oxide layer 11a and an activated carbon layer applied 11b on the anode oxide layer 11a; and a cathode 21 being disposed to face the anode 11. The cathode 21 may include a silicon oxide layer 21a, a lithium titanium oxide layer 21b disposed on the silicon oxide layer 21a, and a carbon nanotube chain CT formed to pass through the silicon oxide layer 21a and the lithium titanium oxide layer 21b to thereby be electrically connected to each other, thereby enhancing ESR and expanding an output density and a lifespan of the hybrid super capacitor.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 19, 2013
    Assignee: Samhwa Capacitor Co., Ltd.
    Inventors: Young Joo Oh, Jung Rag Yoon, Kyung Min Lee, Du Hee Lee
  • Publication number: 20130040229
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 14, 2013
    Inventors: Leonid GRIGORIAN, Sean Imtiaz BRAHIM
  • Patent number: 8373970
    Abstract: A capacitor consisting of two essentially parallel planar L-shaped or C-shaped metal brackets, formed from a thermally and electrically conductive metal and arranged in such a way as to face inwards, between which two or more capacitor elements are connected electrically and thermally, each containing one or more holes for allowing fixing the capacitor to a heat-sink by a mounting bolt. Each of the brackets may have one or more holes drilled in their parallel members.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: February 12, 2013
    Assignee: Celem Passive Components Ltd.
    Inventor: Albert Jakoubovitch
  • Patent number: 8373971
    Abstract: An electrochemical double layer capacitor utilizing nano-fibers in the electrodes for increased performance. The use of nano-fibers significantly increase the surface area of the opposing electrodes for greater levels of specific energy compared to traditional double layered capacitors using activated carbon.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: February 12, 2013
    Inventor: Karl S. Young
  • Patent number: 8372300
    Abstract: An additive of the formula (1) for use in electrolytic solutions wherein A is —CH(X)— or —C?C(X)—, X being hydrogen, halogen, alkyl having 1 to 4 carbon atoms, alkoxycarbonyl having 2 to 5 carbon atoms, benzoyl or alkoxycarbonylalkyl having 3 to 9 carbon atoms, Q1 and Q2 are the same or different and are each alkyl having 1 to 6 carbon atoms, alkoxyl having 1 to 4 carbon atoms, alkoxycarbonylalkyl having 3 to 9 carbon atoms or amino having as a substituent alkyl having 1 to 4 carbon atoms, and A, Q1 and Q2 may form a ring structure.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: February 12, 2013
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Akinori Oka, Hiroaki Shima, Shoji Hiketa, Yoshinobui Abe, Akihiro Nabeshima, Masatoshi Uetani
  • Patent number: 8363384
    Abstract: Metal getter systems for use in electronic devices are provided. The getter systems taught herein include compartmentalized, metal getter systems for use in electrolytic environments present within electrolytic devices, such as electrolytic capacitors, without the problem of getter passivation. Such systems (50) can include a composite getter system (10) inserted into a central portion of an electrolytic capacitor (50) having a container (51), electrodes (52), and electrical contacts (54,54?).
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: January 29, 2013
    Assignee: Saes Getters S.p.A.
    Inventors: Ronald O. Petersen, Richard C. Kullberg, Luca Toia, Sergio Rondena, Johnny Mio Bertolo
  • Publication number: 20130010401
    Abstract: A three-dimensional network aluminum porous body in which the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction, and a current collector and an electrode each using the aluminum porous body, and a manufacturing method thereof. In such a sheet-shaped three-dimensional network aluminum porous body for a current collector, the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction. For example, in the case where a cross section in the thickness direction of the three-dimensional network aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, each region is configured so that the average of the amounts of aluminum in the region 1 and the region 3 differs from the amount of aluminum in the region 2.
    Type: Application
    Filed: May 30, 2012
    Publication date: January 10, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihisa HOSOE, Kazuki OKUNO, Hajime OTA, Koutarou KIMURA, Kengo GOTO, Hideaki SAKAIDA, Junichi NISHIMURA
  • Patent number: 8345409
    Abstract: Provided is a high-voltage solid electrolytic capacitor having a rated voltage of several hundreds of volts. After an anodic oxide film layer is formed on a roughened surface of an aluminum foil by way of a first conversion treatment, a hydrated film is formed by way of boiling water immersion; the hydrated film is provided with a second conversion treatment at a formation voltage lower than that of the first conversion treatment such that an anodic foil is formed; and a conductive polymeric layer is formed on a surface of the anodic foil.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 1, 2013
    Assignee: Nippon Chemi-Con Corporation
    Inventors: Lawrence A. Dominey, Alex D. Smith
  • Patent number: 8345407
    Abstract: Disclosed is an ionic liquid: wherein: n is 1 or 2; R1 is selected from H and (C1-C6)alkyl; R2 is selected from —(CH2)wO[(CH2)xO(CH2)y]m(CH2)zCH3 and wherein w is 1 to 6, x is 1 to 6, y is 0 to 6, z is 0 to 6, m is 0 to 3 and [w+m(x+y)+z] is less than or equal to 12; and R3 is selected from H and methyl, wherein if n is 1 then R3 is methyl, and if n is 2 then R3 is H. Also disclosed are electrochemical devices and devices employing such electrochemical devices as energy sources.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: January 1, 2013
    Assignee: Invista North America S.A R.L.
    Inventors: Kenneth Richard Seddon, Tayeb Belhocine, Alberto V. Puga, Keith Whiston
  • Patent number: 8345406
    Abstract: An electric double layer capacitor that contains at least one electrochemical cell is provided. The cell contains electrodes (e.g., two electrodes) that each contain a porous matrix of electrochemically-active particles (e.g., carbon). An aqueous-based electrolyte is disposed in contact with the porous matrix. In accordance with the present invention, the electrolyte is provided with an anionic polymer that serves as binding agent for the electrochemically active particles and thus reduces electrolyte loss, especially at higher temperatures. Because the polymer is anionic in nature, it is generally hydrophilic and thus can retain its binding properties in the presence of water. The anionic nature of the polymer also allows it to remain stable in the presence of a corrosive polyprotic acid, which is employed in the electrolyte to enhance charge density. Thus, as a result of the present invention, a capacitor may be formed that is capable of exhibiting good electrical performance (e.g.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: January 1, 2013
    Assignee: AVX Corporation
    Inventors: Dirk H. Dreissig, Jonathan R. Knopsnyder, Jessica M. Smith, Lee Shinaberger, Bharat Rawal
  • Patent number: 8339769
    Abstract: A method of making an electrolytic capacitor includes providing a first electrode that includes a metal substrate, a carbide layer, and a carbonaceous material. The metal substrate includes a metal selected from the group consisting of titanium, aluminum, tantalum, niobium, zirconium, silver, steel, and alloys and combinations thereof. The method further includes providing a second electrode and an electrolyte.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 25, 2012
    Assignees: Medtronic, Inc., Kemet Electronics Corporation
    Inventors: Joachim Hossick Schott, Brian Melody, John Tony Kinard
  • Patent number: 8339768
    Abstract: An electrode for a super-capacitor, a super-capacitor including the electrode, and a method of preparing the electrode in which the electrode includes a conductive substrate; metal nano structures formed on the conductive substrate; and a metal oxide coated on the metal nano structures. The electrode for the super-capacitor increases the capacitance of the super-capacitor.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: December 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-hwan Park, Sung-ho Park, Tae-yeon Shin
  • Patent number: 8318037
    Abstract: Disclosed are hydroxy terminated alkylsilane ethers with oligoethylene oxide substituents. They are suitable for use as electrolyte solvents and particularly well suited for use with aqueous environment electrolytic capacitors. Methods for synthesizing these compounds are also disclosed.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: November 27, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Robert C. West, Jose A. Pena Hueso
  • Publication number: 20120293915
    Abstract: A capacitor includes a plurality of nanochannels formed in a dielectric material. A conductive film is formed over interior surfaces of the nanochannels, and a charge barrier is formed over the conductive film. An electrolytic solution is disposed in the nanochannels. An electrode is coupled to the electrolytic solution in the nanochannels to form the capacitor.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 22, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard A. Haight, Stephen M. Rossnagel
  • Patent number: 8315039
    Abstract: A surface-modified nano graphene platelet (NGP), comprising: (a) a nano graphene platelet having a thickness smaller than 10 nm; and (b) discrete, non-continuous, and non-metallic bumps or nodules bonded to a surface of the graphene platelet to serve as a spacer. When multiple surface-modified NGP sheets are stacked together to form an electrode, large numbers of electrolyte-accessible pores are formed, enabling the formation of large amounts of double layer charges in a supercapacitor, which exhibits an exceptionally high specific capacitance.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Zenning Yu, Chen-guang Liu, Bor Z. Jang
  • Patent number: 8305733
    Abstract: A super-capacitor electrode is provided, which comprises a metal foil as a current collector, an active material, a conductive agent, and an organic adhesive agent. The metal foil is an uncorroded smooth metal foil. The super-capacitor electrode further comprises a silane coupling agent for binding the organic adhesive agent and the uncorroded smooth metal foil, so that the active material is adhered to the uncorroded smooth metal foil. In comparison with a case that only organic adhesive agent is used in a super-capacitor electrode, since the silane coupling agent is used in the super-capacitor electrode of the present invention to bind the organic adhesive agent and the uncorroded smooth metal foil, the binding strength of the active material on the uncorroded smooth metal foil is improved without increasing the amount of the agent used for adhering, so that the super-capacitor electrode of the present invention attains perfect overall performance.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: November 6, 2012
    Assignee: Starzeon Electronics (Dongguan) Co., Limited
    Inventors: Lok Yan Lorraine Chan, Rui Li, Fanghui Zhao
  • Patent number: 8300385
    Abstract: Composite carbon electrodes for use in, for example, Capacitive Deionization (CDI) of a fluid stream or, for example, an electric double layer capacitor (EDLC) are described. Methods of making the composite carbon electrodes are also described. The composite carbon electrode comprises an electrically conductive porous matrix comprising carbon; and an electric double layer capacitor, comprising an activated carbonized material, dispersed throughout the pore volume of the electrically conductive porous matrix.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: October 30, 2012
    Assignee: Corning Incorporated
    Inventors: Adra Smith Baca, Roy Joseph Bourcier, Todd P St Clair, Prantik Mazumder, Andrew R Nadjadi, Vitor Marino Schneider
  • Patent number: 8295030
    Abstract: A composite membrane for a capacitor, comprising: a carrier; a mixture of a catalytic material for catalyzing hydrogen and oxygen, and a dispersion resin. The catalytic material is selected from the group consisting of a precious metal in Group VIII of the periodic table of elements and their alloys, and a rare earth metal of the La group of rare earth metals and their alloys. The carrier is a film formed by at least one of the following: polypropylene, polyethylene, polytetrafluoroethylene and polyamide. The carrier can include asbestos fibers, polypropylene fibers, or their mixture. The dispersion resin can be one of the following: ethylene, Nafion™, polyvinyl alcohol, polyethylene, CMC, and the like. The present disclosure also provides a method for making a composite membrane, and a capacitor with the composite membrane.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 23, 2012
    Assignees: Shanghai Aowei Technology Development Co., Ltd., Sinautec Automobile Technologies, L.L.C.
    Inventors: Li Hua, Xiao Li Miao, Xiao Lin Chen
  • Patent number: 8295031
    Abstract: There is provided an electric double layer capacitor including: an exterior case having a housing space provided therein and formed of insulating resin; first and second external terminals buried in the exterior case, each having a first surface exposed to the housing space and a second surface exposed to an outside of the exterior case; and a chip-type electric double layer capacitor cell disposed in the housing space and electrically connected to the first surface. The chip-type electric double layer capacitor cell includes first and second electrodes facing each other and having electricity of opposite polarities applied thereto, at least one induction electrode layer disposed between the first and second electrodes and having no electricity applied thereto, and first and second separators disposed between the first electrode and the induction electrode layer and between the second electrode and the induction electrode layer, respectively.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: October 23, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sang Kyun Lee, Ill Kyoo Park, Seung Heon Han, Jung Eun Noh
  • Publication number: 20120262127
    Abstract: The present application is generally directed towards electrochemical energy storage devices. The devices comprise electrode material suspended in an appropriate electrolyte. Such devices are capable of achieving economical $/kWh(cycle) values and will enable much higher power and cycle life than currently used devices.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Applicant: EnerG2 Technologies, Inc.
    Inventors: Aaron Feaver, Richard Varjian, Chad Goodwin
  • Patent number: 8289676
    Abstract: A multilayer composite getter, a method for its manufacturing and electrochemical devices for energy storage employing said multilayer composite getters are described.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: October 16, 2012
    Assignee: SAES Getters S.p.A.
    Inventors: Roberto Giannantonio, Alessandra Fernicola, Paolo Vacca, Enea Rizzi
  • Patent number: 8284539
    Abstract: The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: October 9, 2012
    Assignee: ADA Technologies, Inc.
    Inventors: Wen Lu, Kent Douglas Henry
  • Publication number: 20120251858
    Abstract: Provided is a laminated type energy device which can enhance the sealing ability and the adhesibility between the layered structure and the sealing body which houses the layered structure, and the degree of space-saving, and uses the sealing means with sufficient productivity and reliability. The laminated type energy device includes: at least two layers of layered structure 80 in which a positive electrode and a negative electrode are alternately laminated so that positive and negative extraction electrodes 32a and 32b are exposed, inserting a separator 30 in which an electrolysis solution and ion pass therethrough between positive and negative active material electrodes 10 and 12; laminate sheets 40a and 40b overlaid from front and back surfaces of the layered structure 80 to compressively seal the layered structure 80; and contact holes 20a and 20b for use in spot bonding of the laminated type energy device to a module substrate 100.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 4, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Tomohiro KATO, Daichi TOMITA
  • Patent number: 8279579
    Abstract: Electronic components and electrodes for transforming, storing and shielding devices have ablated femtosecond pulsed laser machined with developed nano structures for substantially increasing surface areas. Storage is multiplied in capacitors and supercapacitors, and small sizes have increased capacity. Supercapacitor heating upon charging and discharging is reduced by femtosecond pulsed laser ablation of inner and outer surfaces of cases. Battery storage capacity and charging time, fuel cell size and capacity, hydrogen generation and storage and seconds are improved by femtosecond pulsed laser machining ablation of electrode surfaces followed by chemical vapor deposition of carbon nano structures.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: October 2, 2012
    Inventor: Victor Rivas Alvarez
  • Patent number: 8279585
    Abstract: A cathode containing a metal substrate that possesses a micro-roughened surface imparted by spark anodization is provided. The surface is formed by contacting the substrate with an electrolytic solution and applying a voltage to form a dielectric sub-oxide layer. The voltage is raised to a sufficiently high level to initiate “sparking” at the surface of the substrate, which is believed to create high local surface temperatures sufficient to etch away the substrate. This results in the formation of a “micro-roughened” surface having a plurality elevated regions. These elevated regions can increase the effective surface area and thus allow for the formation of capacitors with increased cathode capacitance for a given size and/or capacitors with a reduced size for a given capacitance. The elevated regions may also exhibit excellent adhesion to additional electrochemically-active materials and provide enhanced stability in certain liquid electrolytes.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: October 2, 2012
    Assignee: AVX Corporation
    Inventors: Dirk Dreissig, Bharat Rawal
  • Patent number: 8274781
    Abstract: Advanced ultracapacitor construction of irregular shape is provided, having higher utilization of the available energy storage shape in various electronic and electromechanical products over the prior art ultracapacitors. Said irregular shape of ultracapacitor is achieved by using flexible and pliable cell materials in layers, blanked into any desired shape, and stacked. The layers may be also bent to follow any contour. More capacity in given irregular volume is thus accomplished.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: September 25, 2012
    Assignee: Optixtal, Inc.
    Inventor: Sagar N. Venkateswaran
  • Patent number: 8274780
    Abstract: The present invention provides a polarizable electrode for an electrical double layer capacitor which has good high-temperature storage characteristics and can prevent a decrease in electrostatic capacity and increase in internal resistance, and also provides an electrical double layer capacitor using the electrode. A polarizable electrode is formed by mixing Ketjen black, active charcoal and a polytetrafluoroethylene (PTFE) aqueous solution. An etched aluminum foil is used for the collector, and this etched aluminum foil is dipped in a phosphoric acid aqueous solution or an ammonium phosphate or other phosphate aqueous solution to thereby retain 15 to 115 mg/m2 of phosphorus on the surface of the etched aluminum foil. The electrostatic capacity per unit area on the surface of this etched aluminum foil is 50 to 350 ?F/cm2.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: September 25, 2012
    Assignee: Nippon Chemi-Con Corporation
    Inventors: Shin Watanabe, Masayuki Hagiya, Naoya Nishina, Osamu Nakamura
  • Patent number: 8270143
    Abstract: A capacitor provides a plurality of selectable capacitance values, by selective connection of six concentrically wound capacitor sections of a capacitive element each having a capacitance value. The capacitor sections each have a respective section element terminal at a first end of the capacitive element and the capacitor sections have a common element terminal at a second end of the capacitive element. A pressure interrupter cover assembly is sealingly secured to the open end a case for the element and has a deformable cover with a centrally mounted common cover terminal and a plurality of section cover terminals mounted at spaced apart locations. A conductor frangibly connects the common element terminal of the capacitive element to the common cover terminal and conductors respectively frangibly connect the capacitor section terminals to the section cover terminals.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: September 18, 2012
    Assignee: American Radionic Company, Inc.
    Inventor: Robert M. Stockman
  • Patent number: 8264818
    Abstract: Provided is an electric double layer capacitor capable of simply connecting a current collector to an external electrode at a low cost and ensuring a sealing property of a container. The electric double layer capacitor includes: a container in which an opening of a concave portion is sealed; an electrolytic solution and a pair of electrode active materials which are accommodated inside the container; and a pair of conductive films which is respectively and electrically connected to the pair of electrode active materials and is formed from a bottom surface of the concave portion to a surface of the container through an opening edge.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: September 11, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Tsuneaki Tamachi, Hiroaki Uetake, Shunji Watanabe
  • Patent number: 8254086
    Abstract: A process to deposit a conformal coating of manganese oxide nanocrystals within a high surface area connected pore structure of a carbon paper electrode. A two-step process is utilized. In the first step the carbon paper electrode is immersed in an alkaline manganese oxide solution to form a nanocrystal seed layer on the surface and within the pores of the carbon paper. In the second step the seeded carbon paper is immersed in an acidic manganese oxide solution. The result is a densely packed continuous conformal nanocrystal coating both on the surface of the carbon and deep within its pores. The carbon paper is highly suitable for use as an electrode in a supercapacitor.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: August 28, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Michael A Mastro, Francis J. Kub
  • Patent number: 8254084
    Abstract: The present invention provides a chip type electric double layer capacitor including: a lower case having an internal space of which an upper surface is opened and an external terminal of which portions exposed to a bottom of the internal space and the outside are connected to each other; an electric double layer capacitor cell disposed in the internal space of the lower case to be electrically connected to the portion of the external terminal, which is exposed to the bottom of the internal space; and an upper cap mounted on the lower case to cover the internal space, and a method for manufacturing the same.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: August 28, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Sup Park, Ill Kyoo Park, Chang Ryul Jung, Sang Kyun Lee, Yeong Su Cho, Sung Ho Lee
  • Patent number: 8248756
    Abstract: An electrochemical device includes four or more electrodes which are laminated with separators provided between the respective electrodes, an electrolyte filled between the respective electrodes, and a sealing member which covers the periphery. The electrodes are arranged so that the polarities alternately change in the lamination direction, and each of the electrodes has projections projecting from diagonally opposite positions on the peripheral edge so that the positions of the projections of the electrodes of different polarities are opposite to each other in the lateral direction and the projections of the electrodes of the same polarity are aligned and connected with each other.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: August 21, 2012
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Naoto Higawara, Katsuei Ishida
  • Patent number: 8248758
    Abstract: A coin-type electrochemical element enables the external lead terminal portions to be accurately and reliably attached to a first lid portion and to a second lid portion of the coin-type electrochemical element, and a method of its production. A coin-type electric double layer capacitor includes a first lid portion and a second lid portion. External lead terminal portions, each having a nearly triangular shape, are separately connected to the outer surfaces of the lid portions. Upon providing the external lead terminal portions having the triangular shape, a welded portion is allowed to have an increased area enabling the coin-type electrochemical element of even a small size to be accurately and reliably welded and making it possible to provide the coin-type electrochemical element having excellent reliability.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: August 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Masatoshi Tasei, Nario Niibo, Masashige Ashizaki, Yukio Nishioka
  • Patent number: 8243420
    Abstract: A porous conducting metal oxide electrode prepared by depositing a porous conducting metal oxide film containing a conducting metal oxide film layer having a network structure of nanofibers, containing nanograins or nanoparticles, on at least one surface of a current collector, and a conducting metal oxide coating layer on the network layer of the porous conducting metal oxide through a constant current method or a cyclic voltammetric method; and a high-speed charge/discharge and ultrahigh-capacity supercapacitor using the porous conducting metal oxide electrode are provided.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: August 14, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: Il Doo Kim, Jae-Min Hong, Seong Mu Jo, Dong Young Kim
  • Patent number: 8236191
    Abstract: The present invention provides an electrical double layer capacity comprising a non-aqueous electrolytic solution comprising (A) a solvent comprising a specific fluorine-containing cyclic carbonate and (B) an electrolyte salt comprising a cyclic quaternary onium salt comprising cyclic quaternary onium cation and PF6?, (CF3SO2)2N? or (C2F5SO2)2N?, and (C) a polarizable electrode, and having high withstanding voltage and assuring excellent solubility in a wide range of solvents for dissolving an electrolyte salt.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: August 7, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Meiten Koh, Akiyoshi Yamauchi, Rumi Takeuchi, Michiru Tanaka
  • Patent number: 8233266
    Abstract: Energy storage modules generally include a housing with component parts arranged therein. The component parts are in this case either capacitors, for example double-layer capacitors and/or electrolyte capacitors. According to the invention, a filler is provided in the housing and binds electrolyte liquid occurring in the even of damage or else electrolyte gases. Beds of material with a large specific surface area, such as zeolites or else active carbons, are suitable as fillers. The surfaces are also possibly catalytically coated.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: July 31, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hans Heinrich Ebeling, Walter Ehrhardt, Andreas Fuchs, Markus Matthias Gaudenz, Alexander Hahn, Armin Keβler, Jochen Neutz, Karsten Rechenberg, Manfred Waidhas
  • Patent number: 8223473
    Abstract: An electrolytic capacitor that contains an anodically oxidized porous anode, cathode, and an electrolyte that contains an alkali metal salt and ionically conductive polymer is provided. The alkali metal salt forms a complex with the ionically conductive polymer and thereby improves its ionic conductivity, particularly at higher temperatures. The electrolyte also contains an organic solvent that reduces the viscosity of the electrolyte and helps lower the potential barrier to metal ion transport within the electrolyte to improve conductivity. By selectively controlling the relative amount of each of these components, the present inventors have discovered that a highly ionically conductive electrolyte may be formed that is also in the form of a viscous liquid. The liquid nature of the electrolyte enables it to more readily enter the pores of the anode via capillary forces and improve specific capacitance. Further, although a liquid, its viscous nature may inhibit the likelihood of leakage.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: July 17, 2012
    Assignee: AVX Corporation
    Inventors: Dirk H. Dreissig, John Galvagni
  • Publication number: 20120177986
    Abstract: An electrochemical cell includes a positive electrode, a negative electrode, and an electrolyte solution. The positive electrode and/or the negative electrode includes a penetrating portion that penetrates the electrodes in the thickness direction. Further, an electrochemical capacitor includes a positive electrode, a negative electrode, and an electrolyte solution. In a plane of projection in which a region carrying a negative electrode active material of the negative electrode is projected onto a region carrying a positive electrode active material of the positive electrode along a opposed direction, the ratio of an area carrying the positive electrode active material to an area carrying the negative electrode active material is less than 1.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 12, 2012
    Applicant: DAIHATSU MOTOR CO., LTD.
    Inventors: Taira Aida, Ichiro Murayama
  • Patent number: 8216445
    Abstract: A nanoporous insulating oxide deionization device, method of manufacture and method of use thereof for deionizing a water supply (such as a hard water supply), for desalinating a salt water supply, and for treating a bacteria-containing water supply. The device contains two composite electrodes each constructed from a conductive backing electrode and a composite oxide layer being an insulating oxide or a non-insulating oxide and an intermediate porous layer. The composite layer being substantially free of mixed oxidation states and nanoporous and having a median pore diameter of 0.5-500 nanometers and average surface area of 300-600 m2/g. The composite layer made from a stable sol-gel suspension containing particles of the insulating oxide, the median primary particle diameter being 1-50 nanometers.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 10, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Marc A. Anderson, Kevin C. Leonard
  • Publication number: 20120170171
    Abstract: An electrical component includes an inkjet-printed graphene electrode. Graphene oxide flakes are deposited on a substrate in a graphene oxide ink using an inkjet printer. The deposited graphene oxide is thermally reduced to graphene. The electrical properties of the electrode are comparable to those of electrodes made using activated carbon, carbon nanotubes or graphene made by other methods. The electrical properties of the graphene electrodes may be tailored by adding nanoparticles of other materials to the ink to serve as conductivity enhancers, spacers, or to confer pseudocapacitance. Inkjet-printing can be used to make graphene electrodes of a desired thickness in preselected patterns. Inkjet printing can be used to make highly-transparent graphene electrodes. Inkjet-printed graphene electrodes may be used to fabricate double-layer capacitors that store energy by nanoscale charge separation at the electrode-electrolyte interface (i.e., “supercapacitors”).
    Type: Application
    Filed: November 21, 2011
    Publication date: July 5, 2012
    Inventors: Woo Young Lee, Linh Le, De Kong, Matthew Henderson Ervin, James L. Zunino, III, Brian E. Fuchs
  • Patent number: 8213157
    Abstract: A supercapacitor comprising a cathode, an anode, a first single-walled carbon nanotube (SWNT) film electrode adjacent the cathode, a second SWNT film electrode adjacent the anode, and separator disposed between the first and second electrodes. The SWNT film electrodes may be manufactured by a non-filtration process comprising depositing the SWNT film on a foil via CVD; separating the SWNT film from the foil; heating the SWNT film; treating the SWNT film with an acid solution; washing the SWNT film; and excising the electrodes from the SWNT film.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: July 3, 2012
    Assignee: University of Delaware
    Inventors: Bingqing Wei, Charan Masarapu
  • Publication number: 20120162859
    Abstract: According to one embodiment, an electrolytic capacitor includes a first electrode foil, a second electrode foil and an insulating member. The first electrode foil is formed like a loop and configured in such a manner that a first terminal is connected to a predetermined position. The second electrode foil is formed like a loop in such a manner that an outer periphery of the second electrode foil lies opposite an inner periphery of the first electrode foil. An insulating member is formed like a loop interposed between the inner periphery of the first electrode foil and the outer periphery of the second electrode foil.
    Type: Application
    Filed: September 28, 2011
    Publication date: June 28, 2012
    Inventor: Hideo Yokoo
  • Patent number: 8203826
    Abstract: A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C?(F/g), and weight of the negative electrode active material is W?(g), a value of (C?×W?)/(C+×W+) is 5 or more.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 19, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kohei Matsui, Atsuro Shirakami, Nobuo Ando, Shinichi Tasaki, Risa Miyagawa, Osamu Hatozaki, Yukinori Hato
  • Publication number: 20120148921
    Abstract: Disclosed are an electrode for a low-resistance energy storage device, a method of manufacturing the same, and an energy storage device using the same. In detail, the electrode for an energy storage device is manufactured by forming electrode materials on a metal layer having a dendrite formed thereon. The energy storage device using the electrode for an energy storage device has low resistance characteristics.
    Type: Application
    Filed: May 20, 2011
    Publication date: June 14, 2012
    Inventors: Sang Kyun Lee, Bae Kyun Kim, Ji Sung Cho
  • Patent number: 8199459
    Abstract: An energy storage device includes a first conductor having a first surface and a second surface. The energy storage device also includes a second conductor and a separator assembly that encloses the first conductor and that is disposed between the first and second conductors. The separator assembly also includes a first portion that covers the first surface and a second portion that covers the second surface. The first and second portions are attached to one another, and at least one of the first and second portions includes a first sheet and a second sheet that are attached to one another. The first sheet includes a first material, and the second sheet includes a second material that is different from the first material.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Frank T. Greenwald
  • Patent number: 8194394
    Abstract: The present invention provides a polarized electrode 12 containing mixed activated carbon composed of at least two activated carbons with different specific surface areas, and the specific surface area of the mixed activated carbon is not less than 900 m2/g and less than 1900 m2/g. By setting the specific surface area of the mixed activated carbon to less than 1900 m2/g, the resistance reduction ratio of the polarized electrode 12 rapidly increases.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: June 5, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takeshi Fujino, Byoungju Lee, Minoru Noguchi, Takahiro Takeshita, Hiroto Kobayashi, Kazuma Inoue, Nozomu Sugo, Yoshifumi Egawa
  • Publication number: 20120120552
    Abstract: An electrochemical capacitor capable of improving discharge characteristics is provided. A cathode and an anode are laminated with a separator in between. The cathode includes a cathode active material layer on one surface of a cathode current collector, and the anode includes an anode active material layer on one surface of an anode current collector. Both of the cathode active material layer and the anode active material layer include both of an ionic liquid and a polymer compound together with the active materials. Since the ionic liquid is retained by the polymer compound in the cathode and the anode, discharge capacity is less likely to be reduced.
    Type: Application
    Filed: July 13, 2010
    Publication date: May 17, 2012
    Applicant: SONY CORPORATION
    Inventors: Kanako Ito, Shinichi Uesaka
  • Patent number: 8174818
    Abstract: The present subject matter includes a first capacitor stack including a first plurality of anode layers and a first plurality of cathode layers and a second capacitor stack including a second plurality of anode layers and a second plurality of cathode layers. In various embodiments, a flexible bus is welded to the first capacitor stack and to the second capacitor stack. The flexible bus is adapted to conduct electricity between the first capacitor stack and the second capacitor stack. Also, the present subject matter includes embodiments where the first capacitor stack and the second capacitor stack are disposed in a case filled with an electrolyte.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: May 8, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gregory J. Sherwood
  • Publication number: 20120106028
    Abstract: Advanced ultracapacitor construction of irregular shape is provided, having higher utilization of the available energy storage shape in various electronic and electromechanical products over the prior art ultracapacitors. Said irregular shape of ultracapacitor is achieved by using flexible and pliable cell materials in layers, blanked into any desired shape, and stacked. The layers may be also bent to follow any contour. More capacity in given irregular volume is thus accomplished.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 3, 2012
    Inventor: Sagar N. Venkateswaran