Having Feedback Winding Inductively Coupled To Inverter Inductive Device (e.g., Tertiary Winding, Etc.) Patents (Class 363/21.16)
  • Patent number: 8576587
    Abstract: A predictive synchronous rectification controller for controlling at least one synchronous rectification switch is provided. The synchronous rectification controller has a ramp generator, a peak sampling unit, and an output control unit. The ramp generator receives a synchronous signal and generates a ramp signal accordingly. The peak sampling unit generates a predicted reference voltage signal by retrieving a peak voltage of the ramp signal. The output control unit compares the ramp signal with the predicted reference voltage signal to generate a synchronous rectification control signal to control a conducting state of the switch.
    Type: Grant
    Filed: April 23, 2011
    Date of Patent: November 5, 2013
    Assignee: Niko Semiconductor Co., Ltd.
    Inventor: Ta-Ching Hsu
  • Patent number: 8570771
    Abstract: System and method for regulating an output voltage of a power conversion system. The system includes an error amplifier coupled to a capacitor. The error amplifier is configured to receive a reference voltage, a first voltage, and an adjustment current and to generate a compensation voltage with the capacitor. The first voltage is associated with a feedback voltage. Additionally, the system includes a current generator configured to receive the compensation voltage and generate the adjustment current and a first current, and a signal generator configured to receive the first current and a second current. The signal generator is further configured to receive a sensing voltage and to generate a modulation signal. Moreover, the system includes the gate driver directly or indirectly coupled to the signal generator and configured to generate a drive signal based on at least information associated with the modulation signal.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: October 29, 2013
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Xiaomin Huang, Lieyi Fang
  • Patent number: 8564974
    Abstract: In a switching power source of a flyback converter system according to the present invention, large electric power can be applied, by reducing loss of a switching element, a coil, and an output smoothing circuit, input voltage is applied to a primary coil of a transformer, and switching drive of the input voltage is carried out by a switching element, so that direct-current electric power is outputted from a secondary coil of the transformer through a rectifier circuit. The power source apparatus includes a trigger-control circuit which detects direct-current output voltage to control an “on” period, detects that current of the secondary coil becomes zero based on a voltage signal from a control coil, and turns on the switching element, and a timer circuit which is operated according to the voltage signal of the control coil, and gives an ON signal to the trigger-control circuit according to a timing signal.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: October 22, 2013
    Assignee: Shindengen Electric Manufacturing Co., Ltd.
    Inventor: Shigeru Hisada
  • Patent number: 8564975
    Abstract: AC-DC converter is provided which comprises an auxiliary winding 8c in a transformer 8, a voltage detector 21 for detecting a voltage VN appearing on auxiliary winding 8c of transformer 8 by on-off operation of a main switching element 9 in a DC-DC converter 10 to produce an output signal VCP1 when voltage VN on auxiliary winding 8c has a negative polarity, a waveform shaper 23 for generating chopping signals VRC from output signal VCP1 of voltage detector 21, and a PWM circuit 27 for comparing output voltage VRC from waveform shaper 23 and output voltage VCH from a boosting chopper 3 to supply drive signals VG1 to step-up switching element 5 in boosting chopper 3 when output voltage VRC from waveform shaper 23 exceeds output voltage VCH from boosting chopper 3. While controlling fluctuation in output voltage from boosting chopper with respect to fluctuation in AC input voltage, the converter can improve input power factor relative to AC voltage and also reduce consumption power during light load period.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: October 22, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Makoto Sato, Mitsutaka Sato
  • Patent number: 8559200
    Abstract: A startup circuit for a switching-mode power supply (SMPS) includes a first voltage detector configured to trigger the switching-mode power supply from a first operation mode to a second operation mode when an input supply voltage exceeds a first threshold voltage, a current consumption in the first voltage detector in the first operation mode being determined by a reverse leakage current of a diode. A feedback circuit is coupled to the first voltage detector and being capable of maintaining a positive feedback loop. A second voltage detector is coupled to the first voltage detector and the feedback circuit, and is configured to trigger the switching-mode power supply to switch from the second operation mode to the first operation mode when the input supply voltage is below a second threshold voltage.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 15, 2013
    Assignee: BCD Semiconductor Manufacturing Limited
    Inventors: Qiang Zong, Shaohua Fang, Reixia Fei, Jia Xie
  • Publication number: 20130250628
    Abstract: A sampling circuit of the power converter according to the present invention comprises an amplifier circuit receiving a reflected voltage for generating a first signal. A first switch and a first capacitor are utilized to generate a second signal in response to the reflected voltage. A sample-signal circuit generates a sample signal in response to a falling edge of a switching signal. The switching signal is generated in accordance with a feedback signal for regulating an output of the power converter. The feedback signal is generated in accordance with the second signal. The sample signal is utilized to control the first switch for sampling the reflected voltage. The sample signal is disabled once the first signal is lower than the second signal. The sampling circuit precisely samples the reflected voltage of the transformer of the power converter for regulating the output of the power converter.
    Type: Application
    Filed: March 21, 2013
    Publication date: September 26, 2013
    Applicant: SYSTEM GENERAL CORP.
    Inventors: CHIN-YEN LIN, JUNG-SHENG CHEN, LI LIN, YUE-HONG TANG
  • Patent number: 8537573
    Abstract: System and method for providing control for switch-mode power supply. According to an embodiment, the present invention provides a system for regulating a power converter. The system comprises a signal processing component that is configured to receive a first voltage and a second voltage, to process information associated with the first voltage and the second voltage, to determine a signal based on at least information associated with the first voltage and the second voltage, and to send the signal to a switch for a power converter. The switch is regulated based on at least information associated with the signal. The signal processing component is further configured to determine the signal to be associated a first mode, if the first voltage is higher than a first threshold.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: September 17, 2013
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Jun Ye, Zhen Zhu, Shifeng Zhao, Zhiliang Chen, Lieyi Fang
  • Patent number: 8526203
    Abstract: System and method for regulating a power converter. The system includes a first signal generator configured to receive at least an input signal and generate at least a first output signal associated with demagnetization and a second output signal associated with sampling. Additionally, the system includes a sampling component configured to receive at least the input signal and the second output signal, sample the input signal based on at least information associated with the second output signal, and generate at least a third output signal associated with one or more sampled magnitudes. Moreover, the system includes an error amplifier configured to receive at least the third output signal and a first threshold voltage and generate at least a fourth output signal with a capacitor, the capacitor being coupled to the error amplifier.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: September 3, 2013
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Xiaomin Huang, Yaming Cao, Xiuhong Zhang, Lieyi Fang
  • Publication number: 20130223107
    Abstract: System and method for protecting a power conversion system. An example system controller includes a protection component and a driving component. The protection component is configured to receive a demagnetization signal generated based on at least information associated with a feedback signal of the power conversion system, process information associated with the demagnetization signal and a detected voltage generated based on at least information associated with the feedback signal, and generate a protection signal based on at least information associated with the detected voltage and the demagnetization signal. The driving component is configured to receive the protection signal and output a driving signal to a switch configured to affect a primary current flowing through a primary winding of the power conversion system. The detected voltage is related to an output voltage of the power conversion system. The demagnetization signal is related to a demagnetization period of the power conversion system.
    Type: Application
    Filed: April 5, 2013
    Publication date: August 29, 2013
    Applicant: ON-BRIGHT ELECTRONICS (SHANGHAI) CO., LTD.
    Inventor: ON-BRIGHT ELECTRONICS (SHANGHAI) CO. LTD.
  • Patent number: 8519693
    Abstract: A control circuit includes a drive signal generator controlling switching of a power switch to regulate a flow of energy to one or more loads coupled to a power converter output. A regulator circuit charges a capacitor to a first voltage and stops charging the capacitor if an energy requirement of the one or more loads falls below a threshold. The regulator again charges the capacitor after the capacitor is discharged from the first voltage to a second voltage. An unregulated dormant mode control circuit renders dormant the drive signal generator and the regulator circuit while the capacitor is discharged from the first voltage to the second voltage causing the regulation of the flow of energy to the power converter output to cease. The drive signal generator and the regulator circuit are powered up after the capacitor is discharged from the first voltage to the second voltage.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Power Integrations, Inc.
    Inventor: David Michael Hugh Matthews
  • Patent number: 8514594
    Abstract: A power converter includes a primary winding for providing a primary current, a secondary winding for providing an output current and an output voltage, and a current sense node for receiving a current sense signal related to the primary current. The power converter also includes a control circuit configured to limit the current sense signal to be lower than or equal to a predetermined reference peak current. Moreover, the power converter includes a first circuit configured to modify the current sense signal using a first signal related to the output voltage to cause an variation in the output current.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: August 20, 2013
    Assignee: BCD Semiconductor Manufacturing Limited
    Inventors: Quanqing Wu, Kwok Pun Ho
  • Patent number: 8508960
    Abstract: A voltage detector includes a zener diode having a cathode connected to a detect terminal of the voltage detector, a junction field effect transistor having an input terminal connected to an anode of the zener diode, and a resistor connected between an output terminal and a control terminal of the junction field effect transistor. When the voltage on the detect terminal is higher than the breakdown voltage of the zener diode, the junction field effect transistor produces a current flowing through the resistor, and thereby a detection signal can be obtained from the voltage across the resistor.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Richpower Microelectronics Corporation
    Inventors: Yu-Ming Chen, Pei-Lun Huang, Kuo-Chin Chiu
  • Patent number: 8503197
    Abstract: The power supply apparatus for obtaining a direct current from an alternating voltage source includes a first DC/DC converter for outputting a first direct current and a second DC/DC converter for a second direct current lower than the first direct current from the first DC/DC converter, and the output voltage of the first DC/DC converter is changed to a lower direct current and the second DC/DC converter is driven in a continuously-conducting state.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 6, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Minoru Hayasaki, Keisuke Samejima
  • Patent number: 8498132
    Abstract: A power converter control method and apparatus is disclosed. An example control circuit includes a clock signal generator coupled to generate a clock signal to control switching of a power switch to be coupled to the control circuit. A feedback circuit is coupled to receive a feedback signal which is representative of an output of a power converter during a duration of a feedback portion of an off time of the power switch. The feedback circuit is coupled to respond to the feedback signal to control the clock signal generator to regulate a ratio of the duration of the feedback portion of the off time of the power switch divided by a duration of a total power switch switching cycle period.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: July 30, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Chan Woong Park, Leif O. Lund
  • Patent number: 8493752
    Abstract: A primary side current controller for a power supply is disclosed. The primary side current controller includes a waveform detection unit, a calculation unit, and a switching controller. The waveform detection unit is used for detecting a waveform signal of the power supply and generating a captured signal. The calculation unit is coupled to the waveform detection unit and used for generating a selected voltage according to the captured signal and a feedback signal of the power supply. The switching controller is coupled to the calculation unit and used for generating a modulation signal according to the selected voltage and the feedback signal.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: July 23, 2013
    Assignee: Noveltek Semiconductor Corp.
    Inventors: Chin-Yen Lin, Min-Chu Chien
  • Patent number: 8488341
    Abstract: A switching mode power supply (SNIPS) includes a rectifying unit transforming AC power input from outside to DC power, a main transformer transforming and outputting the rectified DC power, a pulse width modulation control unit controlling output voltage by applying a pulse signal to a primary winding of the main transformer, and a feedback control unit controlling an output signal of the pulse width modulation control unit by detecting output voltage of the main transformer, including: a first state transform unit, including: a second photo diode; and a second photo transistor included between an AC power input unit and the pulse width modulation control unit to form a photo coupler with the second photo diode, and a second state transform unit, including: a comparator connected to a secondary winding of the main transformer to apply the output voltage and reference voltage to an inverting terminal and a noninverting terminal, and compare the output voltage with the reference voltage and output the voltage t
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: July 16, 2013
    Assignee: Smart Power Solutions, Inc.
    Inventors: Hyun June Kim, Dae Young Youn, Hyun Soo Park, Sang Min Kim, Hyo Nam Kim
  • Patent number: 8488342
    Abstract: System and method for regulating a power converter. The system includes a first signal generator configured to receive a first sensed signal and generate an output signal associated with demagnetization. The first sensed signal is related to a first winding coupled to a secondary winding for a power converter, and the secondary winding is associated with at least an output current for the power converter. Additionally, the system includes a ramping signal generator configured to receive the output signal and generate a ramping signal, and a first comparator configured to receive the ramping signal and a first threshold signal and generate a first comparison signal based on at least information associated with the ramping signal and the first threshold signal. Moreover, the system includes a second comparator configured to receive a second sensed signal and a second threshold signal and generate a second comparison signal.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: July 16, 2013
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Yunchao Zhang, Yaming Cao, Xiaomin Huang, Xiuhong Zhang, Lieyi Fang
  • Patent number: 8482937
    Abstract: A switching control circuit for a switching power converter is provided. The switching control circuit is coupled to a switching device and an auxiliary winding of a transformer. The switching control circuit includes a valley detecting circuit, a valley lock circuit, and a PWM circuit. The valley detecting circuit is coupled to receive a reflected voltage signal from the auxiliary winding of the transformer for outputting a control signal in response to the reflected voltage signal. The valley lock circuit is coupled to receive the control signal for outputting a judging signal in response to the control signal during a first period and a second period following the first period. The PWM circuit outputs a switching signal in response to the judging signal.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: July 9, 2013
    Assignee: System General Corporation
    Inventors: Chao-Chih Lin, Ying-Chieh Su, Jhih-Da Hsu, Chia-Yo Yeh, Wei-Ting Wang
  • Patent number: 8477516
    Abstract: A controller for a power supply having a primary side and a secondary side includes a mapping circuit for generating a feedback signal corresponding to an output current of the secondary side, a power switch coupled to the primary side for conducting a connection according to a modulation signal, a constant current block, for generating a first current signal according to the feedback signal; and a control unit, for generating the modulation signal to control the power switch according to the first current signal.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: July 2, 2013
    Assignee: Noveltek Semiconductor Corp.
    Inventors: Min-Chu Chien, Chin-Yen Lin
  • Publication number: 20130155728
    Abstract: An electronic system and method include a controller to actively control power transfer from a primary winding of a switching power converter to an auxiliary-winding of an auxiliary power supply. The switching power converter is controlled and configured such that during transfer of power to the auxiliary-winding, the switching power converter does not transfer charge to one or more secondary-windings of the switching power converter. Thus, the switching power converter isolates one or more secondary transformer winding currents from an auxiliary-winding current. By isolating the charge delivered to the one or more secondary-windings from charge delivered to the auxiliary-winding, the controller can accurately determine an amount of charge delivered to the secondary-windings and, thus, to a load.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 20, 2013
    Applicant: CIRRUS LOGIC, INC.
    Inventor: Cirrus Logic, Inc.
  • Publication number: 20130148387
    Abstract: A switch-mode power supply (SMPS) includes a transformer having a primary winding coupled to a power switch, a secondary winding for providing an output of the power supply, and a controller. The controller includes a first input terminal for receiving a current sensing signal related to a current in the primary winding, a second input terminal for receiving a feedback signal related to a current in the secondary winding, and an output terminal for providing a control signal to turn on and off the power switch. When the feedback signal is higher than a first reference voltage, the controller is configured to cause the SMPS to maintain a constant output current at a first current magnitude. When the feedback signal is lower than the first reference voltage, the controller is configured to cause the SMPS to provide a second output current at a second current magnitude higher than the first current magnitude.
    Type: Application
    Filed: December 28, 2011
    Publication date: June 13, 2013
    Applicant: BCD Semiconductor Manufacturing Limited
    Inventors: Xuegang Ren, Jianhua Duan, Siyuan Xu, Na Liu, Zeqiang Chen
  • Publication number: 20130141948
    Abstract: A control circuit includes a feedback circuit, a drive signal generator, an unregulated dormant mode and output reset control circuit, and a counter. The feedback circuit generates an enable signal and in response, the drive signal generator regulates the output of the power converter. The unregulated dormant mode and output reset control circuit powers down the drive signal generator such that the regulation is ceased when the energy requirement at the output has fallen below a threshold. The drive signal generator is then powered up after a first period of time such that the regulation resumes. The counter then counts cycles of a clock signal for which the enable signal indicates an increase in the energy requirement at the output. The counter disables the drive signal generator when a count of the counter reaches a threshold number to discharge the output to less than a regulation output voltage value.
    Type: Application
    Filed: February 4, 2013
    Publication date: June 6, 2013
    Applicant: POWER INTEGRATIONS, INC.
    Inventor: Power Integrations, Inc.
  • Publication number: 20130141947
    Abstract: A flyback type switching power supply includes between P and N of a direct current output a sudden load change detector circuit, which normally has no power consumption, that detects only a transient fluctuation of a direct current output voltage, and starts the switching of a primary side semiconductor switch when there is no load or a light load, even when the semiconductor switch is in an off state, thereby enabling the detection of the direct current output voltage in a tertiary winding, and suppressing a drop in the direct current output voltage.
    Type: Application
    Filed: November 14, 2012
    Publication date: June 6, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: FUJI ELECTRIC CO., LTD.
  • Publication number: 20130141946
    Abstract: A switching power supply device and method for control thereof, including an input voltage generating unit, a transformer, an output voltage generating unit, a MOS transistor, an output voltage detecting unit, a switching control unit, and a power supply unit. The output voltage detecting unit detects a transformer tertiary winding voltage, compares it with a first reference value, compares the differentiated tertiary winding voltage with a second reference value, and determines the start and end of a detection period based on the two comparisons. The output voltage detecting unit also samples and holds the voltage with two sampling pulses within the detection period, selects one of the two sampled and held voltages, and outputs the selected voltage when the detection period ends.
    Type: Application
    Filed: November 13, 2012
    Publication date: June 6, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: FUJI ELECTRIC CO., LTD.
  • Patent number: 8456872
    Abstract: A switching power supply includes a switching unit, a driving signal generator, and a control circuit. The driving signal generator is configured for providing a driving signal including a plurality of acting voltage parts. The plurality of acting voltage parts is used to turn on the switching unit. Each of the acting voltage parts may be one of a high level voltage and a low level voltage. The control circuit is connected between the driving signal generator and the switching unit. The control circuit turns off the switching unit when a duration of one of the plurality of acting voltage parts is longer than a preset time period.
    Type: Grant
    Filed: March 28, 2010
    Date of Patent: June 4, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Jian-Hui Lu
  • Patent number: 8456871
    Abstract: One example controller for a power supply includes an oscillator, a drive signal generator, and a restart circuit. The oscillator generates a clock signal and the drive signal generator controls switching of a switch to regulate an output of the power supply in response to the clock signal. The restart circuit generates a restart signal in response to a current through the switch and in response to an absolute maximum on time period. The oscillator generates the clock signal to have a fixed maximum frequency in response to the restart signal indicating that the current through the switch reaches a current limit threshold within the absolute maximum on time period. The oscillator also generates the clock signal to have a variable minimum frequency in response to the restart signal indicating that the current through the switch has not reached the current limit threshold within the maximum on time period.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: June 4, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Chan Woong Park, Alex B. Djenguerian, Kent Wong
  • Patent number: 8451635
    Abstract: The switching power supply device includes: an input unit which receives an input voltage; a transformer which includes a primary winding and a secondary winding; an output unit which provides an output voltage; a switching element; and a control circuit. The control circuit includes: a T2on measuring unit which measures a secondary-side conduction time period; a frequency control circuit which provides a second signal used for changing an on-frequency of the switching element in order to narrow a difference between the measured secondary-side conduction time period and a reference value; a primary current detecting circuit which detects a primary current; a current comparing circuit which provides a third signal used for turning the switching element off when the detected primary current becomes equal to a threshold value; and an oscillation control circuit which controls on-off switching of the switching element according to the second signal and the third signal.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: May 28, 2013
    Assignee: Panasonic Corporation
    Inventor: Kazuhiro Murata
  • Patent number: 8446746
    Abstract: This invention relates to SMPS controllers employing primary side sensing. We describe a system for identifying a knee point in a sensing waveform, at which the output voltage of the SMPS may be sampled accurately on the primary side. The system identifies the knee point, broadly speaking, by tracking a portion of a power transformer voltage waveform, and samples the voltage waveform at the knee point to determine the SMPS output voltage. In preferred embodiments this technique is implemented using a circuit akin to a decaying peak detector, providing a timing signal indicating detection of the knee point. Sample/hold and error amplifier circuits may be employed to achieve output voltage regulation.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 21, 2013
    Assignee: Cambridge Semiconductor Limited
    Inventors: David Robert Coulson, Johan Piper, David Michael Garner
  • Patent number: 8441237
    Abstract: Consistent with an example embodiment, a circuit comprises a power factor correction stage having a DC input, a ground input, a DC output and a ground output. The circuit further includes a capacitor; a diode; and a discharge circuit. A first terminal of the diode is connected to an input of the power factor correction stage, a second terminal of the diode is connected to the first plate of the capacitor; and the second plate of the capacitor is connected to the other input of the PFC stage. The discharge circuit is connected to the capacitor and is configured to discharge the capacitor such that it contributes to the output of the PFC stage when the level of a signal at the input of the PFC stage falls below a threshold value.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: May 14, 2013
    Assignee: NXP B.V.
    Inventors: Markus Schmid, Johann Baptist Daniel Kuebrich, Thomas Antonius Duerbaum, Gian Hoogzaad, Peter Laro, Frans Pansier
  • Patent number: 8437154
    Abstract: An example power supply controller includes a switch duty cycle controller coupled to receive a feedback signal and a duty cycle adjust signal. The switch duty cycle controller is coupled to generate a drive signal coupled to control switching of a switch, which is coupled to an energy transfer element, to regulate energy delivered from an input of a power supply to an output of the power supply. The power supply controller also includes a gain selector circuit coupled to receive an input voltage signal, which is representative of an input voltage to the power supply, to generate the duty cycle adjust signal received by the switch duty cycle controller. The duty cycle of the drive signal to be varied in response to a plurality of linear functions over a range of values of the input voltage signal.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: May 7, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Stefan Bäurle, Zhao-Jun Wang
  • Patent number: 8427850
    Abstract: A switching power supply device including: a power transformer including a primary winding, a secondary winding, and an auxiliary winding; a switching element which is connected to the primary winding; an output voltage generation circuit which converts, into a direct-current voltage, a voltage induced in the secondary winding; a secondary-side on-time signal generation circuit which generates a secondary-side on-time signal indicating a secondary-side on-time; and a switching control circuit which controls a switching operation of the switching element so that the second direct-current voltage falls within a specified range, wherein the switching control circuit controls the switching operation so that the direct-current voltage becomes equal to or below an overvoltage specified value when the secondary-side on-time becomes smaller than a set value.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: April 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Naohiko Morota, Tetsuyuki Fukushima, Kazuhiro Murata
  • Publication number: 20130094254
    Abstract: Power controllers and related primary-side control methods are disclosed. A disclosed power controller has a comparator and an ON-triggering controller. The comparator compares a feedback voltage with an over-shot reference voltage. Based on an inductance-coupling effect, the feedback voltage represents a secondary-side voltage of a secondary winding. Coupled to the comparator, the ON-triggering controller operates a power switch at about a first switching frequency when the feedback voltage is lower than the over-shot reference voltage. The ON-triggering controller operates the power switch at about a second switching frequency when the feedback voltage exceeds the over-shot reference voltage. The second switching frequency is less than the first switching frequency.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 18, 2013
    Applicant: LEADTREND TECHNOLOGY CORP.
    Inventor: Leadtrend Technology Corp.
  • Patent number: 8422252
    Abstract: An integrated circuit (IC) forming a pulse-width modulator controls the switching operation of an output stage of a switching power supply. A snubber capacitor that is coupled to a primary winding of a transformer of the output stage is used for producing a capacitive coupled charging current. The capacitive coupled charging current is coupled to a filter or charge storage second capacitor for producing in the second capacitor a first portion of a second power supply voltage. During a portion of a switching cycle of the output stage, the snubber capacitor is coupled to an inductor to form a resonant circuit. The resonant circuit produces in the second capacitor a second portion of the second power supply voltage for energizing the IC. The second power supply voltage is used for energizing the IC.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: April 16, 2013
    Assignee: Thomson Licensing
    Inventor: Anton Werner Keller
  • Patent number: 8422253
    Abstract: A circuit regulator is used to generate a pulse-width-modulation signal, so as to control a power to be selectively input or not input to a primary side of a switching power supply. The circuit regulator includes a synchronous timing pulse generation circuit, outputs a starting pulse after performing signal process of time delay, timing pulse regulation, and synchronization control on a pulse-width-modulation signal and a discharging time signal of a secondary side, and accordingly effectively controls a pulse starting time of the pulse-width-modulation signal. Therefore, the synchronous timing pulse generation circuit can be applied to the circuit regulator, so as to further effectively prevent an inductor current of the switching power supply from entering a Continuous Conduction Mode (CCM).
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 16, 2013
    Assignee: Macroblock, Inc.
    Inventors: Lon-Kou Chang, Chang-Yu Wu, Hsing-Fu Liu
  • Publication number: 20130088898
    Abstract: A switching mode power supply (SMPS) includes a power transistor coupled to the primary winding of transformer and a resistor coupled between the input power source and a control terminal of the power transistor for triggering a primary current flow through the power transistor for providing startup power. A primary side control circuit is configured to regulate the output of the SMPS. A secondary side control circuit is coupled to the secondary winding and being configured to provide a first electrical signal to the secondary winding when an output voltage of the SMPS is less than a first reference voltage, whereupon an awakening signal is induced in the auxiliary winding and causes the primary side control circuit to provide a turn-on signal to the power transistor. The primary side control circuit is configured to enter a standby mode or a normal operating mode in response to the awakening signal.
    Type: Application
    Filed: March 30, 2012
    Publication date: April 11, 2013
    Applicant: BCD Semiconductor Manufacturing Limited
    Inventors: XIAORU GAO, YAJIANG ZHU, CHAO CHEN, MEILING ZHANG
  • Publication number: 20130077357
    Abstract: Methods and apparatuses are disclosed for generating an adjustable bias current. The value of the adjustable bias current may be determined based in part on an error signal representative of a difference between an actual output value and a desired output value of a power converter. When the error signal is below a lower threshold voltage, the adjustable bias current may be set to a first value. When the error signal is above an upper threshold voltage, the adjustable bias current may be set to a second, higher value. When the error signal is between the lower threshold voltage and the upper threshold voltage, the adjustable bias current may change linearly with the error signal.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: Power Integrations, Inc.
    Inventors: Michael Zhang, Yury Gaknoki, Mingming Mao
  • Patent number: 8395911
    Abstract: A circuit for operating a household appliance includes a controller that controls processes of a household appliance, a switching power supply that supplies current to the controller, a pushbutton that couples the switching power supply to a supply grid, an electronic controller connected parallel to the pushbutton that is actuable by the switching power supply by a control connection, and a voltage storage connected between the control connection of the electronic controller and a reference potential.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: March 12, 2013
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Holger Helmschmidt, Anton Hertlein
  • Patent number: 8391027
    Abstract: In one embodiment, a quasi-resonant power supply controller is configured to select particular valley values of a switch voltage to determine a time to enable a power switch. The valleys values are selected responsively to a range of values of a feedback signal.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 5, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Petr Lidak, Christophe Basso, Stephanie Conseil, Frantisek Sukup
  • Patent number: 8391030
    Abstract: Switching mode power supplies and associated methods of control are disclosed herein. In one embodiment, a method for controlling a switching mode power supply includes determining whether the switching mode power supply is in a burst mode. If the switching mode power supply is in the burst mode, the method includes recording a switching time with and without switching pulses to obtain a current value of an equivalent frequency and generating a peak current limit that decreases as a load becomes lighter based on the equivalent frequency, thereby maintaining the equivalent frequency at the current value above an audible range. If the switching mode power supply is not in the burst mode, the method includes continuing to monitor whether the switching mode power supply is in the burst mode.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 5, 2013
    Assignee: Monolithic Power Systems, Inc.
    Inventors: En Li, Junming Zhang
  • Patent number: 8385088
    Abstract: An implementation of an unregulated dormant mode with an output reset controller in a power converter is disclosed. An example method for controlling an output of a power converter includes generating a drive signal with a drive signal generator to regulate a flow of energy to one or more loads coupled to an output of the power converter in response to an energy requirement of the one or more loads. The drive signal generator is rendered dormant to cease for a first time period the regulation of energy flow to the one or more loads when the energy requirement of the one or more loads falls below a threshold value. The energy requirement of the one or more loads is not responded to during the first time period. The drive signal generator is then powered up to resume after the first time period has elapsed the regulation of energy flow to the one or more loads. After the first time period has elapsed, it is identified whether there is an increase in the energy requirement of the one or more loads.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: February 26, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Douglas J. Bailey, David Michael Hugh Matthews
  • Patent number: 8379414
    Abstract: A power transistor chip with built-in enhancement mode metal oxide semiconductor field effect transistor and application circuit thereof provides an enhancement mode metal oxide semiconductor field effect transistor in association with two series connected resistors to act as a start-up circuit for the AC/DC voltage converter. The start-up circuit can be shut off after the pulse width modulation circuit of the AC/DC voltage converter circuit works normally and still capable of offering a function of brown out detection for the pulse width modulation circuit as well. Besides, the enhancement mode metal oxide semiconductor field effect transistor is built in the power transistor chip without additional masks and processes during the power transistor chip being fabricated such that the entire manufacturing process is simplified substantively with the economical production cost.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 19, 2013
    Assignee: Richtek Technology Corp.
    Inventors: Chih-Feng Huang, Kuang-Ming Chang
  • Patent number: 8379415
    Abstract: Switch mode power converter system and method thereof. The system includes one or more isolation boxes including at least a first isolation box, an input primary winding for receiving an input signal for the switch mode power converter system, and an output secondary winding for generating an output signal for the switch mode power converter system. The switch mode power converter system is configured to convert the input signal to the output signal. One of the input primary winding and the output secondary winding is substantially enclosed in the first isolation box, and the other of the input primary winding and the output secondary winding is not enclosed in the first isolation box. The first isolation box is conductively connected to a constant-voltage source.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: February 19, 2013
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Zhiliang Chen, Xiuhong Zhang, Jun Ye, Shifeng Zhao, Lieyi Fang
  • Patent number: 8378962
    Abstract: An LCD backlight driving device with an isolating transformer comprises a DC power supply, a square wave generator, a square wave controller, said isolating transformer and a driver transformer; wherein said isolating transformer has a primary side connected to said square wave generator and a secondary side connected to said driver transformer, since said isolating transformer is placed between said square wave generator and said driver transformer, it helps to effectively shorten a safety distance required for setting up said driver transformer; the present invention uses said isolating transformer to shorten the safety distance required than that of using said driver transformer directly and to decrease an area in implementing a circuit board and to cut cost of said device.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 19, 2013
    Assignee: Logah Technology Corp.
    Inventors: Cheng-Chia Hsu, Yu-Cheng Pan, Ho-Wen Chen
  • Patent number: 8374004
    Abstract: An isolated alternating current (AC)-direct current (DC) converter is disclosed. The isolated AC-DC converter comprises a slave control circuit including a slave driver module configured to receive a command and to control coupling of the slave control circuit to a primary-side inductor of a transformer based on the command, a master control circuit coupled to a secondary-side inductor of the transformer, the master control circuit including a master control module configured to sense a feedback voltage across a load and to generate the command based on the feedback voltage and a reference voltage, and a coupler configured to communicate the command from the master control module to the slave driver module and to provide isolation between the master control module and the slave driver module.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: February 12, 2013
    Assignee: Marvell World Trade Ltd.
    Inventors: Sehat Sutardja, Ravishanker Krishnamoorthy, Wanfeng Zhang
  • Patent number: 8374002
    Abstract: An isolated switching power supply apparatus includes a direct-current input power supply, a power transmission transformer including a primary winding and a secondary winding, at least one main switching element configured to perform switching control on a direct-current voltage applied to the primary winding of the power transmission transformer, a rectification circuit that includes at least one rectification switching element and is connected to the secondary winding of the power transmission transformer, a smoothing circuit connected to the secondary winding of the power transmission transformer, a power conversion circuit configured to obtain an output voltage from the smoothing circuit, and a control circuit configured to control an operation of the power conversion circuit.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 12, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tadahiko Matsumoto
  • Patent number: 8374003
    Abstract: A control IC including a full-bridge circuit is disposed on a primary side and a secondary side. Bidirectional communication is performed between the primary side and the secondary side in a state in which they are isolated. A control signal output from the primary side or the secondary side earlier is preferentially processed. As a result, the authority to control a switching element can be freely given to a primary-side control IC or a secondary-side control IC, and any control processing can be performed with software.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: February 12, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tadahiko Matsumoto
  • Patent number: 8369111
    Abstract: A power converter with low power consumption during a standby operating condition. An example power controller includes a main converter coupled to a dc input of the power converter to control a transfer of energy from the dc input of the power converter to a main output of the power converter. A standby converter is also included and is coupled to the dc input of the power converter to control a transfer of energy from the dc input of the power converter to a standby output of the power converter during a standby operating condition of the power converter. A standby circuit is also included and is coupled to the dc input of the power converter and coupled to the main converter. The standby circuit decouples the main converter from the dc input of the power converter during the standby operating condition of the power converter.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: February 5, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Balu Balakrishnan, David Michael Hugh Matthews
  • Publication number: 20130027989
    Abstract: Switching-mode power conversion system and method thereof. The system includes a primary winding configured to receive an input voltage, and a secondary winding coupled to the primary winding and configured to, with one or more first components, generate, at an output terminal, an output voltage and an output current. Additionally, the system includes an auxiliary winding coupled to the secondary winding and configured to, with one or more second components, generate, at a first terminal, a detected voltage. Moreover, the system includes an error amplifier configured to receive the detected voltage and a first reference voltage and generate an amplified voltage based on at least information associated with a difference between the detected voltage and the first reference voltage. Also, the system includes a compensation component configured to receive the amplified voltage and generate a second reference voltage based on at least information associated with the amplified voltage.
    Type: Application
    Filed: October 5, 2012
    Publication date: January 31, 2013
    Applicant: ON-BRIGHT ELECTRONICS (SHANGHAI) CO., LTD.
    Inventor: ON-BRIGHT ELECTRONICS (SHANGHAI) CO., LT
  • Patent number: 8363430
    Abstract: A flyback DC-DC converter is disclosed herein. The flyback DC-DC converter includes a transformer, a voltage divider and a controller. The transformer receives a DC input voltage and converts the DC input voltage to a DC output voltage. The voltage divider is coupled to a first secondary winding of the transformer, and generates a feedback signal indicative of the DC output voltage. The controller is coupled to the transformer via an input switching circuit and controls the input switching circuit to regulate the DC output voltage according to the feedback signal. A skip operation is triggered if the voltage of the feedback signal is higher than a preset reference voltage at the end of a turn-off period of the input switching circuit, and the voltage of the feedback signal is changed to zero during the skip operation.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: January 29, 2013
    Assignee: O2Micro Inc.
    Inventor: Zhibin Ye
  • Patent number: 8355266
    Abstract: A controller for use in a power converter includes a control circuit to be coupled to a current controller coupled to an energy transfer element. A first, second or third current is enabled in the current controller in response to the control circuit. The first current is substantially zero, the second current is greater than the third current, and the third current is greater than the first current. The third current only partially discharges a capacitance coupled to a terminal coupled between the energy transfer element and the current controller. A first feedback circuit coupled to the control circuit generates a first feedback signal after a full discharge pulse of current through the current controller. A second feedback circuit coupled to the control circuit generates a second feedback signal after a partial discharge pulse of current through the current controller.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: January 15, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Alex B. Djenguerian, Arthur B. Odell, Henson Wu