Utilizing Pulse-width Modulation Patents (Class 363/21.18)
  • Patent number: 8724350
    Abstract: An exemplary power supply circuit for providing a driving voltage to a load includes a pulse width modulation (PWM) control circuit, a transformer, a voltage output terminal, and a temperature compensation circuit. The PWM control circuit is configured for outputting a pulse signal. The transformer is configured for converting a first direct current (DC) voltage to a second DC voltage according to the pulse signal. The voltage output terminal is configured for outputting the driving voltage based on the second DC voltage. The temperature compensation circuit includes a temperature sensor for detecting an operation temperature of the load and correspondingly generating a detecting signal, and a feedback signal transmitter for outputting a feedback signal based on the detecting signal. The PWM control circuit adjusts a duty ratio of the pulse signal according to the feedback signal outputted by the temperature compensation circuit.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 13, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Jian-She Shen, Zhen-Sen Li
  • Patent number: 8724349
    Abstract: An apparatus and method for output voltage calibration of a primary feedback flyback power module extract the difference between the output voltage of the power module and a target value, and according thereto, calibrate a reference voltage which is used in regulation of the output voltage, to thereby calibrate the output voltage to be the target value.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 13, 2014
    Assignee: Richtek Technology Corp.
    Inventors: Chien-Fu Tang, Isaac Y. Chen, Liang-Pin Tai
  • Patent number: 8711583
    Abstract: An exemplary embodiment of a power converter is provided. The power converter includes a transformer, a power device, a switching controller, and a capacitor. The power device is coupled to the transformer for switching the transformer to product output of the power converter. The switching controller receives a feedback signal for generating a switching signal coupled to drive the power device. An input circuit of the switching controller is coupled to the transformer to sample an input signal for generating the feedback signal, and the input signal is correlated to the output of the power converter. The capacitor is coupled to the switching controller to provide frequency compensation for a feedback loop of the power converter. Input of the power converter is without an electrolytic capacitor, and a maximum output current of the power converter is a constant current.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: April 29, 2014
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Jhih-Da Hsu, Ying-Chieh Su, Li Lin
  • Patent number: 8711578
    Abstract: In one embodiment, a power supply controller is configured to adjust a peak value of a primary current through a power switch responsively to a difference between a demagnetization time and a discharge time of the parasitic leakage inductance of a transformer.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: April 29, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Joel Turchi
  • Patent number: 8711584
    Abstract: Disclosed is flyback converter having a controller that performs a startup switching process when the flyback converter is powered up, and then performs normal switching afterward. The controller includes a pulse generator to generate a control signal for normal switching. During startup switching, the controller may generate a control signal by output every Nth pulse from the pulse generator. In another embodiment, the controller may generate pulses based on a sense signal provided from an input section of the flyback converter.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 29, 2014
    Assignee: Marvell World Trade Ltd.
    Inventors: Hong Liang Zhang, Sen Dou, Ravishanker Krishnamoorthy, Biing Long Shu, Wanfeng Zhang
  • Patent number: 8704482
    Abstract: A power conversion device includes a converter-inverter controller for controlling a converter and an inverter. The power conversion device further includes a DC capacitor connected between the converter and the inverter and a DC capacitor voltage detector for detecting a DC capacitor voltage Efc between the connection ends of the DC capacitor. The converter-inverter controller provides variable control on the DC capacitor voltage Efc to the converter on the basis of the motor frequency of an AC motor, the DC capacitor voltage Efc, and a pulse mode. Within a predetermined range of motor frequencies, the converter-inverter controller fixes the PWM modulation factor of the inverter to a value m0 and provides operation control to the inverter, where the value m0 being to reduce a harmonic of a predetermined order included in the output voltage from the inverter.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: April 22, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takafumi Maruyama, Takeo Matsumoto
  • Patent number: 8699241
    Abstract: There is provided a switching mode power supply including: a direct current (DC)/DC converting unit converting a DC power level; an auxiliary power supply unit discharged in a no load mode in which a load is not connected to an output terminal of the DC/DC converting unit; and a controlling unit sensing a change in impedance according to whether or not the load is connected to the output terminal to thereby determine whether or not the switching mode power supply is in the no load mode, and driving a pulse width modulation integrated chip (PWM IC) when a voltage level of the auxiliary power supply unit is at a preset level or less in the no load mode.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Byoung Woo Ryu, Young Woon Choi, Seong Wook Choi
  • Patent number: 8693219
    Abstract: A power factor improvement circuit includes a low frequency filter unit installed between two electrodes of an output terminal of a rectifier unit for adjusting voltage and current inputted to a PWM control IC in-phase, and first and second compensation circuits installed at a current compensation terminal and a voltage compensation terminal of the PWM control IC respectively, and the first and second compensation circuits are provided for reducing the current gain of the phase adjustment unit to avoid any unnecessary action of the PWM control IC, so as to achieve the effect of controlling a power factor to a level over 0.90 when a full voltage of 90-264V is inputted.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 8, 2014
    Assignees: Wafly Ltd.
    Inventor: Jui-Chih Yen
  • Patent number: 8687387
    Abstract: A frequency limitation method used in a quasi-resonant controlled switching regulator is disclosed. The switching frequency is limited by setting a minimum time period, such as a minimum switching period or a minimum OFF time period. The minimum time period is varying according to the difference between the minimum time period of the previous cycle and an offset value, so as to eliminate the audible noise caused by the frequency hopping when the minimum OFF time period is close to the valley of a quasi-resonant signal.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 1, 2014
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventors: Yike Li, Rui Wang, En Li
  • Publication number: 20140071718
    Abstract: A structure of a fly-back power converting apparatus is disclosed. The structure includes a power transistor, a current detector, a pulse width modulation (PWM) signal generator and a current limiter. The power transistor is coupled to an input voltage and receives a PWM signal. The current detector detects a current output from the power transistor and generates a detecting voltage according to the current. The PWM signal generator generates the PWM signal according to a comparing result by comparing the detecting voltage and a standard voltage. The current limiter generates the standard voltage according to a turn-on time of the power transistor.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: EXCELLIANCE MOS CORPORATION
    Inventors: Pao-Chuan Lin, Su-Yuan Lin, Hung-Che Chou
  • Publication number: 20140063868
    Abstract: A power supply apparatus that includes a pulse width modulation (PWM) based power conversion unit and a power factor correction (PFC) conversion unit is provided. The PWM-based power conversion unit is configured to receive a direct current (DC) input voltage and perform pulse width modulation on the received DC input voltage in response to a power supply request of a load, so as to generate a DC output voltage to the load. The PFC conversion unit is coupled to the PWM-based power conversion unit and configured to perform power factor correction on a rectification voltage associated with an alternating current (AC) input voltage, so as to generate the DC input voltage. The PFC conversion unit is further configured to adjust the generated DC input voltage in response to a variation of the load.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 6, 2014
    Applicant: FSP TECHNOLOGY INC.
    Inventors: Yung-Hsiang Shih, Chang-Hsun Chiang
  • Patent number: 8665614
    Abstract: A control device for controlling a switching power supply adapted to convert an input voltage into an output voltage according to a switching rate of a switching element. The control device includes first control means for switching the switching element in a first working mode at a constant frequency and second control means for switching the switching element in a second working mode at a variable frequency, under a maximum frequency, in response to the detection of a predefined operative condition of the switching power supply. The control device further includes means for selecting the first working mode or the second working mode.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 4, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giovanni Lombardo, Claudio Adragna, Salvatore Tumminaro
  • Patent number: 8665620
    Abstract: A timing circuit of a controller generates a clock signal having a switching period for use by a pulse width modulation (PWM) circuit to control a switch of a power supply. The switching period of the clock signal is based on a charging time plus a discharging time of a capacitor included in the timing circuit. A first current source charges the capacitor while the timing circuit is in a normal charging mode. A second current source charges the capacitor while the timing circuit is in an alternative charging mode that is when the on time of the switch exceeds a threshold time. The current provided by the second current source is less than the current provided by the first current source such that the switching period of the clock signal is increased in response to the timing circuit entering the alternative charging mode.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: March 4, 2014
    Assignee: Power Integrations, Inc.
    Inventors: Stefan Bäurle, Guangchao Zhang, Arthur B. Odell, Edward E. Deng
  • Patent number: 8659916
    Abstract: A control circuit for a resonant power converter and a control method thereof are disclosed. The control circuit comprises a first transistor and a second transistor switching a transformer through a resonant tank. A controller receives a feedback signal for generating a first switching signal and a second switching signal coupled to drive the first transistor and the second transistor respectively. The feedback signal is correlated to an output of the resonant power converter. A diode is coupled to the second transistor for detecting the state of the second transistor for the controller. The first switching signal and the second switching signal are modulated to achieve a zero voltage switching (ZVS) for the second transistor.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: February 25, 2014
    Assignee: System General Corp.
    Inventors: Ta-Yung Yang, Tien-Chi Lin
  • Patent number: 8654548
    Abstract: A method and apparatus of primary side output voltage sensing for a flyback power converter preserves secondary-side tranformer isolation without the use of opto-isolators and does not require multiple high-speed sample and hold circuits. A timing circuit measures the duration of the diode conduction interval during a first PWM control cycle and applies this measurement to set the voltage sampling time of the feedback loop during the next PWM cycle. The voltage sampling time for the next PWM cycle is configurable and may be set to occur near the middle of the diode conduction interval or near the end of the diode conduction interval. The cycle-to-cycle PWM duty cycle adjustment step size may be limited to ensure that the diode conduction interval does not vary substantially from cycle to cycle.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 18, 2014
    Assignee: Semtech Corporation
    Inventor: Feng Lin
  • Patent number: 8654546
    Abstract: A control circuit of a resonant power converter is disclosed. The control circuit comprises a first transistor and a second transistor for switching a transformer and a resonant tank comprising a capacitor and an inductor. A controller is configured to receive a feedback signal correlated to the output of the power converter for generating a first switching signal and a second switching signal to drive the first transistor and the second transistor, respectively. A diode coupled to the first transistor and the resonant tank for detecting the state of the first transistor and generating a detection signal for the controller. The detection signal indicates if the transistors are in a zero voltage switching (ZVS) state. If the transistors are not in the ZVS state, the switching frequency of the transistors will be increased.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: February 18, 2014
    Assignee: System General Corp.
    Inventors: Tien-Chi Lin, Hang-Seok Choi, Ta-Yung Yang
  • Patent number: 8649191
    Abstract: A synchronous rectifier for a switching power converter is provided and includes a power transistor, a diode, and a control circuit. The power transistor and the diode are coupled to a transformer and an output of the power converter for the rectification. The control circuit generates a drive signal to switch on the power transistor once the diode is forward biased. The control circuit includes a phase-lock circuit. The phase-lock circuit generates an off signal to switch off the power transistor in response to a pulse width of the drive signal. The pulse width of the drive signal is shorter than a turned-on period of the diode. The phase-lock circuit further reduces the pulse width of the drive signal in response to a feedback signal. The feedback signal is correlated to an output load of the power converter.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: February 11, 2014
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Chou-Sheng Wang, Rui-Hong Lu
  • Publication number: 20140029316
    Abstract: A method for controlling a switching regulator includes defining a waiting time during which a trigger signal corresponding to a recirculation signal of the switching regulator is ignored holding a control switch in an open condition, and detecting a number of local valleys of the recirculation signal during the waiting time. In particular, defining the waiting time is performed for each switching cycle by adding a first value, which is determined on the basis of a load on the regulator, to a second variable value, which is proportional to the number valleys detected during the waiting time of the preceding switching cycle.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 30, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventor: Claudio Adragna
  • Publication number: 20140016378
    Abstract: A flyback-based power conversion apparatus and a power conversion method thereof are provided. By switching first and second detection switches disposed in a control chip and coupled to a multi-function pin of the control chip at different timings, the present invention applies a collocation of a voltage-current detection auxiliary circuit and a current detection circuit at a certain timing to execute a detection of the AC input voltage received by a flyback power conversion circuit, and the present invention applies a collocation of the auxiliary voltage-current detection circuit, an over temperature protection unit and an over voltage protection unit at another timing to execute detections of an over temperature protection and an over voltage protection. As the result, a single multi-function detection pin of the control pin is corresponding to a plurality of related function detections, so as to reduce the production cost of manufacturing the control chip.
    Type: Application
    Filed: March 18, 2013
    Publication date: January 16, 2014
    Applicant: POWER FOREST TECHNOLOGY CORPORATION
    Inventors: Po-Jen Ke, Yun-Chi Chiang, Tso-Min Chen
  • Patent number: 8626349
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: January 7, 2014
    Assignee: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus
  • Patent number: 8619437
    Abstract: A system simplification can be achieved by reducing the number of sensors required to detect currents and voltages when an output current is estimated. A switching power supply device 6 includes a current transformer 12, a switching circuit 13, a rectifying circuit 15, a smoothing circuit 16, an input voltage detecting circuit 18, a control part 19, an output voltage detecting circuit 22 and a PWM signal generating part 30. The control part 19 calculates a duty rate and an average value of voltage of the secondary side voltage of the current transformer 12 detected by the input voltage detecting circuit 18 based on a waveform of the detected voltage. The control part 19 calculates an output current lo based on the calculated duty rate, the calculated average value of voltage and an output voltage Vo detected by the output voltage detecting circuit 22.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 31, 2013
    Assignee: Omron Automotive Electronics Co., Ltd.
    Inventors: Koji Hachiya, Yusaku Ido, Yasumichi Omoto
  • Publication number: 20130343101
    Abstract: A control circuit for a switch mode power supply (SMPS) includes a power switch for coupling to a primary winding of the power supply and a startup resistor coupled to an external input voltage and to a control terminal of the power switch. The control circuit also includes a controller. During startup, the controller is configured to cause the power switch to amplify a startup current from an external input voltage through the startup resistor and provide a startup power to the controller. During normal operation, the controller is configured to provide a power switch control signal to turn on and off the power switch for controlling a current flow in the primary winding and regulating an output of the power supply. The controller is configured to provide a current signal for driving an NPN power switch and to provide a voltage signal for driving an NMOS power switch.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 26, 2013
    Applicant: Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.
    Inventors: MEILING ZHANG, Xiaoru Gao, Chao Chen
  • Publication number: 20130336020
    Abstract: An example power supply regulator includes an energy transfer element, a switch, and a controller. The controller includes a switch signal generator, a modulation circuit, and a multi-cycle modulator circuit. The modulation circuit modulates the period of a modulation switching signal when an equivalent switching frequency is greater than a reference frequency and fixes the switching period when the equivalent switching frequency is less than the reference frequency. The multi-cycle modulator circuit enables the switch signal generator to provide a switch signal uninterrupted if the equivalent switching frequency is greater than the reference frequency and disables the switch signal generator for a first time period and then enables the switch signal generator for a second time period when the equivalent frequency is less than the reference frequency. The multi-cycle modulator circuit varies the first time period to regulate the output.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Applicant: Power Integrations, Inc.
    Inventors: Balu Balakrishnan, Arthur B. Odell
  • Publication number: 20130336021
    Abstract: A timing circuit of a controller generates a clock signal having a switching period for use by a pulse width modulation (PWM) circuit to control a switch of a power supply. The switching period of the clock signal is based on a charging time plus a discharging time of a capacitor included in the timing circuit. A first current source charges the capacitor while the timing circuit is in a normal charging mode. A second current source charges the capacitor while the timing circuit is in an alternative charging mode that is when the on time of the switch exceeds a threshold time. The current provided by the second current source is less than the current provided by the first current source such that the switching period of the clock signal is increased in response to the timing circuit entering the alternative charging mode.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Applicant: Power Integrations, Inc.
    Inventors: Stefan Bäurle, Guangchao Zhang, Arthur B. Odell, Edward E. Deng
  • Patent number: 8611116
    Abstract: An example integrated circuit controller for use in a switching power supply includes a pulse width modulation (PWM) circuit and a timing circuit. The PWM circuit controls a switch to regulate an output of the power supply in response to a switch current flowing through the switch and in response to a clock signal having a switching period. The timing circuit provides the clock signal and increases the switching period in response to an on time of the switch exceeding a threshold time.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: December 17, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Stefan Bäurle, Guangchao Darson Zhang, Arthur B. Odell, Mingming Mao, Michael Yue Zhang, Edward Deng
  • Patent number: 8605468
    Abstract: In a switching power supply, a current detection resistor is connected to a switching unit to detect a current flowing through the switching unit. A diode is connected in parallel to the current detection resistor to reduce heat generated in the switching unit by back electromotive force generated by an inductance component of the current detection resistor.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: December 10, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shinichiro Matsumoto
  • Patent number: 8599581
    Abstract: A switching mode power supply, and a primary-side controlled PFM converter using the primary-side regulated PFM controller are discussed. In present embodiment, the primary side cycle by cycle switch peak current is no longer a constant. The time detector is added to monitor the waveform of primary-side sample voltage and then generate the duty cycle. The transfer function should be selected to satisfy a specific relationship of switching frequency and switch peak current against with output loading current. The new design shows higher switching frequency but lower value of switch peak current at light load condition. This resolves the audible noise and poor transient response issue from the prior art PFM controller.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 3, 2013
    Assignee: Fremont Micro Devices (SZ) Limited
    Inventors: Yuquan Huang, Matthew Man Ho Ku
  • Patent number: 8593834
    Abstract: A controller for use in a power supply includes a clock coupled to output a clock signal. The clock signal determines a frequency. A modulator is coupled to receive the clock signal. The clock signal is divided into N cycles within the power supply. N is an integer greater than one. The modulator is coupled to receive N feedback signals from N output circuits during each respective one of the N cycles to control conduction times of a primary switch during each respective one of the N cycles to regulate N outputs of a power supply. Each of the N feedback signals is representative of a respective one of N output voltages of a respective to one of the N outputs of the power supply.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: November 26, 2013
    Assignee: Power Integrations, Inc.
    Inventor: Rajko Duvnjak
  • Patent number: 8587968
    Abstract: A switching mode power supply (SMPS) includes a transformer having a primary winding, a secondary winding for providing an output voltage, and an auxiliary winding. The SMPS also includes a power switch coupled to the primary winding. A first control circuit is coupled to the secondary winding, and is configured to provide a first electrical signal to the secondary winding when the output voltage of the SMPS is less than a reference voltage during a discontinuous time, whereupon a second electrical signal is induced in the auxiliary winding. A second control circuit is coupled to the auxiliary winding and the power switch. The second control circuit is configured to regulate the output of the SMPS by controlling the power switch in response to a feedback voltage signal from the auxiliary winding, and is further configured to turn on the power switch in response to the second electrical signal.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: November 19, 2013
    Inventors: YaJiang Zhu, Jia Xie, Yongbo Zhang, Chao Chen, Shuzhuang Lv
  • Patent number: 8587966
    Abstract: During a soft start period at the time of startup, a PWM control is carried out. After the soft start period ends, the PWM control is converted into a frequency control, so that stress of a switching element is suppressed and the audible oscillation frequency is removed. As a result, it is possible to obtain a switching power supply device having high power conversion efficiency.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 19, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Masaaki Shimada
  • Patent number: 8588985
    Abstract: Embodiments of the invention relate generally to power management and the like, and more particularly, to an apparatus, a system, a method, and a computer-readable medium for providing power controlling functionality to generate configurable power signals and to deliver power during fault conditions. In at least some embodiments, a power control unit can generate power signals having configurable attributes as a function of a mode of operation, a fault type, and the like.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: November 19, 2013
    Assignee: Global Embedded Technologies, Inc.
    Inventors: Mark Stanley Stanczak, Louis Stephen Smutek, Alan Wayne Brown, David Allen Backus
  • Patent number: 8582329
    Abstract: A switching power converter provides regulated voltage to a load according to a desired regulation voltage. The switching power converter includes a transformer coupled to a switch and a switch controller for generating a control signal to control switching. The switch controller monitors a sensed voltage representing the output voltage of the switching power converter. The switch controller controls switching of the switch to operate the switching power converter in a continuous conduction mode while the sensed output voltage indicates that the output voltage is less than a first threshold voltage. The switch controller controls switching of the switch to operate the switching power converter in a discontinuous conduction mode while the sensed output voltage is above the first threshold voltage.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: November 12, 2013
    Assignee: iWatt Inc.
    Inventors: Xiaolin Gao, Yong Li, Hien Huu Bui, Fuqiang Shi
  • Patent number: 8582324
    Abstract: A pulse width modulation controller and method for output ripple reduction of a jittering frequency switching power supply detect the current of a power switch of the switching power supply to generate a current sense signal, and adjust the gain or the level of the current sense signal according to the switching frequency of the power switch to adjust the on time of the power switch, to reduce the output ripple of the switching power supply caused by the jittering frequency of the switching power supply.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 12, 2013
    Assignee: Richpower Microelectronics Corporation
    Inventors: Kun-Yu Lin, Tzu-Chen Lin, Pei-Lun Huang
  • Patent number: 8576588
    Abstract: The present technology are directed to switching mode power supplies with primary side control. In one embodiment, the switching mode power supply provides an equivalent current signal which represents a load current. The equivalent current signal is then used to control a switching circuit in the switching mode power supply.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 5, 2013
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Naixing Kuang, Lei Du, Junming Zhang, Yuancheng Ren
  • Patent number: 8576586
    Abstract: A switching power converter comprises a transformer (110), a switch (108) coupled to the transformer (110), and a switch controller (200) coupled to the switch (108) for generating a switch drive signal (207) to turn on or off the switch (108). The drive current of the switch drive signal (207) is adjusted dynamically according to line or load conditions within a switching cycle and/or over a plurality of switching cycles. The magnitude of the drive current can be dynamically adjusted within a switching cycle and/or over a plurality of switching cycles, in addition to the pulse widths or pulse frequencies of the drive current.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: November 5, 2013
    Assignee: iWatt Inc.
    Inventors: Junjie Zheng, Jun Zheng, Andrew Kwok-Cheung Lee, John William Kesterson, Allan Ming-Lun Lin, Hien Huu Bui, Carrie Seim, Yong Li
  • Patent number: 8576587
    Abstract: A predictive synchronous rectification controller for controlling at least one synchronous rectification switch is provided. The synchronous rectification controller has a ramp generator, a peak sampling unit, and an output control unit. The ramp generator receives a synchronous signal and generates a ramp signal accordingly. The peak sampling unit generates a predicted reference voltage signal by retrieving a peak voltage of the ramp signal. The output control unit compares the ramp signal with the predicted reference voltage signal to generate a synchronous rectification control signal to control a conducting state of the switch.
    Type: Grant
    Filed: April 23, 2011
    Date of Patent: November 5, 2013
    Assignee: Niko Semiconductor Co., Ltd.
    Inventor: Ta-Ching Hsu
  • Patent number: 8570771
    Abstract: System and method for regulating an output voltage of a power conversion system. The system includes an error amplifier coupled to a capacitor. The error amplifier is configured to receive a reference voltage, a first voltage, and an adjustment current and to generate a compensation voltage with the capacitor. The first voltage is associated with a feedback voltage. Additionally, the system includes a current generator configured to receive the compensation voltage and generate the adjustment current and a first current, and a signal generator configured to receive the first current and a second current. The signal generator is further configured to receive a sensing voltage and to generate a modulation signal. Moreover, the system includes the gate driver directly or indirectly coupled to the signal generator and configured to generate a drive signal based on at least information associated with the modulation signal.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: October 29, 2013
    Assignee: On-Bright Electronics (Shanghai) Co., Ltd.
    Inventors: Xiaomin Huang, Lieyi Fang
  • Patent number: 8542501
    Abstract: A switching power-supply apparatus includes a first converter 3, a second converter 4, an output smoothing capacitor Co1, a series resonance circuit 1 and a control circuit 11. The first converter 3, in which switching elements Q11 and Q12 are connected to both ends of a direct-current power-supply Vin in series, and a capacitor Ci1 and a primary winding Np1 of a transformer T1 including an auxiliary winding Na1 are connected to both ends of the switching element Q12 in series, includes diodes D11 and D12 that rectify voltages generated in secondary windings Ns11 and Ns12 of the transformer T1. The second converter 4, in which switching elements Q21 and Q22 are connected to the both ends of the direct-current power-supply Vin in series, and a capacitor Ci12 and a primary winding Np2 of a transformer T2 are connected to both ends of the switching element Q22 in series, includes diodes D21 and D22 that rectify voltages generated in secondary windings Ns21 and Ns22 of the transformer T2.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: September 24, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Yoichi Kyono
  • Patent number: 8537570
    Abstract: An example controller for use in a power supply regulator includes a switch signal generator, a modulation circuit, and a multi-cycle modulator circuit. The modulation circuit modulates the period of a modulation switching signal when an equivalent switching frequency is greater than a reference frequency and fixes the switching period when the equivalent switching frequency is less than the reference frequency. The multi-cycle modulator circuit enables the switch signal generator to provide a switch signal uninterrupted if the equivalent switching frequency is greater than the reference frequency and disables the switch signal generator for a first time period and then enables the switch signal generator for a second time period when the equivalent frequency is less than the reference frequency. The multi-cycle modulator circuit varies the first time period to regulate the output.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: September 17, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Balu Balakrishnan, Arthur B. Odell
  • Patent number: 8531853
    Abstract: An example integrated circuit controller includes a pulse width modulation (PWM) circuit and a timing circuit. The PWM circuit controls a switch to regulate an output of a power supply in response to a switch current flowing through the switch and in response to a clock signal having a switching period. The timing circuit provides the clock signal and includes a timing capacitor where the switching period of the clock signal is equal to a charging time that the timing capacitor charges to an upper reference voltage plus a discharging time that the timing capacitor discharges to a lower reference voltage. The timing circuit increases the charging time of the timing capacitor by decreasing a rate at which the timing capacitor is charged to increase the switching period of the clock signal if an on time of the switch is greater than or equal to a threshold time.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: September 10, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Stefan Bäurle, Guangchao Darson Zhang, Arthur B. Odell, Edward Deng
  • Patent number: 8526204
    Abstract: A power converter is preferably mounted in a vehicle. The converter has a power converting unit including an electrical switching element electrically switched on and off selectively in response to a duty ratio of PWM (pulse-width modulation) signal given to the switching element. The converter further has a controller including a drive unit that generates the PWM signal, in addition to a controlling unit and a limiting unit. The controlling unit controls the duty ratio of the PWM signal such that a voltage inputted to the power converter is converted to a voltage to be outputted depending on the duty ratio. The limiting unit limits at least one of a time change amount of the duty ratio of the PWM signal and a maximum duty ratio of the PWM signal.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: September 3, 2013
    Assignee: Denso Corporation
    Inventors: Shinya Goto, Kimikazu Nakamura, Kanretsu Kin, Tsuyoshi Yamashita
  • Patent number: 8508206
    Abstract: The present invention discloses an adaptive constant ON time adjustment circuit, which generates a square wave signal having a constant normal ON time during normal operation, for controlling a power stage circuit to convert an input voltage to an output voltage. When the output voltage is shifted from low to high, during the transient period, the ON time is adjusted longer; and when the output voltage is shifted from high to low, during the transient period, the ON time is adjusted shorter.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 13, 2013
    Assignee: Richteck Technology Corporation
    Inventors: Yi-Cheng Wan, Hung-Chun Peng, Jian-Rong Huang, Kuo-Lung Tseng
  • Patent number: 8498132
    Abstract: A power converter control method and apparatus is disclosed. An example control circuit includes a clock signal generator coupled to generate a clock signal to control switching of a power switch to be coupled to the control circuit. A feedback circuit is coupled to receive a feedback signal which is representative of an output of a power converter during a duration of a feedback portion of an off time of the power switch. The feedback circuit is coupled to respond to the feedback signal to control the clock signal generator to regulate a ratio of the duration of the feedback portion of the off time of the power switch divided by a duration of a total power switch switching cycle period.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: July 30, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Chan Woong Park, Leif O. Lund
  • Patent number: 8488348
    Abstract: A switch mode power supply apparatus includes a transformer, a main switching device to adjust a power supply supplied to a primary coil of the transformer, an active clamping circuit to suppress a voltage stress of the main switching device, and a control circuit to control a clamping operation of the active clamping circuit when the switch mode power supply apparatus is in a standby mode. Therewith, it is possible to significantly reduce power consumption of the switch mode power supply apparatus in the standby mode and improve efficiency of the switch mode power supply apparatus.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-won Hong, Joe-hoon Jung
  • Patent number: 8488341
    Abstract: A switching mode power supply (SNIPS) includes a rectifying unit transforming AC power input from outside to DC power, a main transformer transforming and outputting the rectified DC power, a pulse width modulation control unit controlling output voltage by applying a pulse signal to a primary winding of the main transformer, and a feedback control unit controlling an output signal of the pulse width modulation control unit by detecting output voltage of the main transformer, including: a first state transform unit, including: a second photo diode; and a second photo transistor included between an AC power input unit and the pulse width modulation control unit to form a photo coupler with the second photo diode, and a second state transform unit, including: a comparator connected to a secondary winding of the main transformer to apply the output voltage and reference voltage to an inverting terminal and a noninverting terminal, and compare the output voltage with the reference voltage and output the voltage t
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: July 16, 2013
    Assignee: Smart Power Solutions, Inc.
    Inventors: Hyun June Kim, Dae Young Youn, Hyun Soo Park, Sang Min Kim, Hyo Nam Kim
  • Patent number: 8488343
    Abstract: A switching mode power supply apparatus includes a transformer, a main switch to adjust power supplied to a primary coil of the transformer, a passive clamp circuit to suppress a voltage stress of the main switch, and a control circuit to disable a clamping operation of the passive clamp circuit in a standby mode of the switching mode power supply apparatus. Power is not consumed in the passive clamp circuit in a standby mode so that power consumed in the standby mode can be remarkably reduced.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-won Hong, Jee-hoon Jung
  • Patent number: 8482229
    Abstract: The present invention relates to a method for charging accumulation means via an external electrical network via at least a first (A) and a second (B) switching arm respectively comprising two switches (12), said method comprising a step for controlling the switches (12) of the switching arms (A, B) by transmission of pulse width modulation control signals, characterized in that the switches (12) of the second switching arm (B) are controlled by adapting the pulse width of the control signals so as to generate an alternating voltage (Vx) in phase opposition relative to the voltage at the terminals of a compensation inductance (7?) connected on the one hand to the second arm (B) and on the other hand to the neutral (N) of said network, so that the voltage (VN) between the neutral (N) of said network and ground is a direct voltage. The invention also relates to a charging device for implementing such a charging method.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: July 9, 2013
    Assignee: Valeo Systemes de Controle Moteur
    Inventors: Boris Bouchez, Luis De Sousa
  • Patent number: 8482937
    Abstract: A switching control circuit for a switching power converter is provided. The switching control circuit is coupled to a switching device and an auxiliary winding of a transformer. The switching control circuit includes a valley detecting circuit, a valley lock circuit, and a PWM circuit. The valley detecting circuit is coupled to receive a reflected voltage signal from the auxiliary winding of the transformer for outputting a control signal in response to the reflected voltage signal. The valley lock circuit is coupled to receive the control signal for outputting a judging signal in response to the control signal during a first period and a second period following the first period. The PWM circuit outputs a switching signal in response to the judging signal.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: July 9, 2013
    Assignee: System General Corporation
    Inventors: Chao-Chih Lin, Ying-Chieh Su, Jhih-Da Hsu, Chia-Yo Yeh, Wei-Ting Wang
  • Publication number: 20130169182
    Abstract: Disclosed herein are a PWM control circuit, a flyback converter, and a PWM control method. The PWM control circuit includes: a peak storing and reference signal generating unit storing a peak value of one period of a feedback signal from a secondary side output and inverting the peak signal arid outputting the inverted peak signal as a reference signal; and a PWM control signal generating unit generating a PWM control signal by using an output obtained by comparing the reference signal with a reference waveform from the peak storing and reference signal generating unit. In addition, the flyback converter including the same and the method for controlling PWM are proposed.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: SAMSUNG ELECTRO-MECHANICS CO., LTD.
  • Patent number: 8472214
    Abstract: A flyback power converter includes a power switch connected to a primary side of a transformer, and a sensing signal is provided for a control circuit to switch the power switch so as for the transformer to convert an input voltage into an output voltage. The sensing signal is a function of the input voltage, and the control circuit extracts a variation of the sensing signal during a preset time period. The variation of the sensing signal is used to prevent the output ripple and the green mode entry point of the flyback power converter from varying with the input voltage.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: June 25, 2013
    Assignee: Richtek Technology Corp.
    Inventors: Pei-Lun Huang, Yu-Ming Chen, Tzu-Chen Lin