Diodes Patents (Class 365/175)
  • Patent number: 8537598
    Abstract: A nonvolatile semiconductor memory device includes: a plurality of memory cell arrays stacked on a semiconductor substrate and including a plurality of first wires, a plurality of second wires and memory cells disposed at intersections of the first wires and the second wires and having a rectifier element and a variable resistive element are connected in series; and a control circuit configured to selectively drive the first wires and the second wires. The control circuit executes a resetting operation to change a state of the variable resistive element from a low resistance state to a high resistance state. At a time of executing the resetting operation, the control circuit increases a pulse voltage to be applied to the variable resistive element to a first voltage, and then decreases the pulse voltage to a second voltage lower than the first voltage and higher than the ground voltage.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: September 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Maejima, Yuki Okukawa
  • Patent number: 8531866
    Abstract: A nonvolatile memory according to an embodiment includes at least one memory cell including: a variable resistance memory comprising one end connected to a first terminal, and the other end connected to a second terminal, a drive voltage being applied to the first terminal; and a diode comprising a cathode connected to the second terminal, and an anode connected to a third terminal, a ground potential being applied to the third terminal. An output of the memory cell is output from the second terminal, the output of the memory cell depends on a resistance state of the variable resistance memory.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: September 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutaka Ikegami, Atsuhiro Kinoshita, Daisuke Hagishima
  • Patent number: 8531871
    Abstract: An 8-transistor SRAM cell which includes two pull-up transistors and two pull-down transistors in cross-coupled inverter configuration to form two inverters for storing a single data bit, wherein each of the inverters includes a Schottky diode; first and second pass gate transistors having a gate terminal coupled to a write word line and a source or drain of each of the pass gate transistors coupled to a write bit line; and first and second read transistors coupled to the two pull-up and two pull-down transistors, one of the read transistors having a gate terminal coupled to a read word line and a source or a drain coupled to a read bit line. In a preferred embodiment, the 8-transistor SRAM cell has column select writing enabled for writing a value to the 8-transistor SRAM cell without inadvertently also writing a value to another 8-transistor SRAM cell.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: September 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8531861
    Abstract: One time programming memory and methods of storage and manufacture of the same are provided. Examples relate to microelectronic memory technology and manufacture. The one time programming memory includes a diode (10) having a unidirectional conducting rectification characteristic and a variable-resistance memory (20) having a bipolar conversion characteristic. The diode (10) having the unidirectional conducting rectification characteristic and the variable-resistance memory (20) having the bipolar conversion characteristic are connected in series. The one time programming memory device of this example takes the bipolar variable-resistance memory (20) as a storage unit, programming the bipolar variable-resistance memory (20) into different resistance states so as to carry out multilevel storage, and takes the unidirectional conducting rectification diode (10) as a gating unit.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 10, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Ming Liu, Qingyun Zuo, Shibing Long, Changqing Xie, Zongliang Huo
  • Patent number: 8531868
    Abstract: According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 10, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Prashant B. Phatak, Tony P. Chiang
  • Patent number: 8526228
    Abstract: An 8-transistor SRAM cell which includes two pull-up transistors and two pull-down transistors in cross-coupled inverter configuration for storing a single data bit; first and second pass-gate transistors having a gate terminal coupled to a write word line and a source or drain of each of the pass-gate transistors coupled to a write bit line through a series outer diode between the pass-gate and the write bit line oriented to block charge transfer from the write bit line into the cell; and first and second read transistors coupled to the two pull-up and two pull-down transistors, one of the read transistors having a gate terminal coupled to a read word line and a source or a drain coupled to a read bit line. The 8-transistor SRAM cell is adapted to prevent the value of the bit stored in the cell from changing state.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: September 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Isaac Lauer, Chung-Hsun Lin, Jeffrey W. Sleight
  • Patent number: 8493773
    Abstract: The invention contained herein provides electrical circuits and driving methods to operate a memory cell comprising a capacitance coupled to a breakover conduction switch such as a thyristor, DIAC or one or more complementary transistor pairs. The memory cell comprises a cell capacitance for storing a memory state and for capacitively coupling an applied voltage to the switch. During operation, pulses are applied to write, read or maintain the cell's memory state. An illumination cell comprises an LED, OLED or electroluminescent material in series with each memory cell. Breakover conduction charge passes through the switch and the emissive element to charge the cell capacitance. A memory array of breakover conduction memory cells may be organized into rows and columns for reading and writing an addressable array memory cells. An organic light emitting display memory array may be fabricated using organic light emitting devices and/or materials.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: July 23, 2013
    Inventor: Robert G Marcotte
  • Patent number: 8488364
    Abstract: Polysilicon diodes fabricated in standard CMOS logic technologies can be used as program selectors for a programmable resistive device, such as electrical fuse, contact/via fuse, anti-fuse, or emerging nonvolatile memory such as MRAM, PCM, CBRAM, or RRAM. The diode can be constructed by P+/N+ implants on a polysilicon as a program selector. By applying a high voltage to a resistive element coupled to the P terminal of a diode and switching the N terminal of a diode to a low voltage for proper time, a current flows through a resistive element may change the resistance state. On the polysilicon diode, the spacing and doping level of a gap between the P+ and N+ implants can be controlled for different breakdown voltages and leakage currents. The Silicide Block Layer (SBL) can be used to block silicide formation on the top of polysilicon to prevent shorting. If the resistive element is a polysilicon electrical fuse, the fuse element can be merged with the polysilicon diode in one piece to save area.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 16, 2013
    Inventor: Shine C. Chung
  • Patent number: 8482959
    Abstract: A method of repairing a memory device is provided. If an erase process is unsuccessful, a repair process is performed. A programmed state of the memory device is determined, A subsequent erase process dependent on the programmed state is performed. Also, a method of programming and erasing a memory device is provided. The memory device includes first and second electrodes and a switching layer therebetween. A first on-state resistance characteristic of the memory device is provided in programming the memory device by application of a first voltage to the gate of a transistor in series with the memory device. Other on-state resistance characteristics of the memory device, different from the first on-state resistance characteristic, may be provided by application of other voltages, different from the first voltage, to the gate of the transistor.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 9, 2013
    Assignee: Spansion LLC
    Inventors: Swaroop Kaza, Sameer Haddad
  • Patent number: 8482972
    Abstract: Embodiments of programmable memory cells using a plurality of diodes as program selectors are disclosed for memory cells that can be programmed based on direction of current flow. These memory cells are MRAM, RRAM, CBRAM, or other memory cells that have a programmable resistive element coupled to the P-terminal of a first diode and to the N-terminal of a second diode. At least one of the diodes can be a polysilicon diode fabricated using standard CMOS processes. The polysilicon diode can be constructed by P+/N+ implants on a polysilicon substrate as a program selector.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 9, 2013
    Inventor: Shine C. Chung
  • Patent number: 8482971
    Abstract: A memory array includes a cross-point array of bit and source lines. A memory is disposed at cross-points of the cross-point array. The memory unit includes a magnetic tunnel junction data cell electrically coupled to a bit line and a source line. The magnetic tunnel junction data cell is configured to switch between a high resistance state and a low resistance state by passing a polarized write current through the magnetic tunnel junction data cell. A transistor is electrically between the magnetic tunnel junction data cell and the bit line or source line and a diode is in thermal or electrical contact with the magnetic tunnel junction data cell to assist in resistance state switching.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: July 9, 2013
    Assignee: Seagate Technology LLC
    Inventors: Xuguang Wang, Yiran Chen, Dimitar V. Dimitrov, Hongyue Liu, Xiaobin Wang
  • Patent number: 8482973
    Abstract: A memory cell is provided that includes a first conductor, a second conductor, and a semiconductor junction diode between the first and second conductors. The semiconductor junction diode is not in contact with a material having a lattice mismatch of less than 12 percent with the semiconductor junction diode. In addition, no resistance-switching element having its resistance changed by application of a programming voltage by more than a factor of two is disposed between the semiconductor junction diode and the first conductor or between the semiconductor junction diode and the second conductor. Numerous other aspects are provided.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 9, 2013
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Abhijit Bandyopadhyay
  • Patent number: 8477524
    Abstract: Nonvolatile memory devices are provided including a memory cell array having a plurality of stacked memory layers and a rectifier configured to select memory cells constituting each memory layer sharing a word line or a bit line with another adjacent memory layer. The nonvolatile memory devices including a word line driving unit configured to drive a first word line, connected to a first memory cell of a first memory layer to be read, at a first voltage level and drive a second word line, connected to a second memory cell of a second memory layer sharing a first bit line connected to the first memory cell, at a second voltage level. The nonvolatile memory device further includes a bit line biasing unit configured to bias the first bit line at the second voltage level and bias a second bit line, connected to a third memory cell of a third memory layer sharing the first word line, at the first voltage level. Related methods and systems are also provided herein.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: July 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Shoichi Kawamura
  • Patent number: 8477525
    Abstract: According to one embodiment, a nonvolatile semiconductor memory includes word lines, bit lines, memory cells, a dummy word line, a dummy bit line and dummy cells. The word lines and the bit lines cross. The memory cells are provided for each intersection of the word lines and bit lines. Each memory cell includes a first diode and a resistance change memory element. The dummy word line crosses the bit lines. The dummy bit line crosses the word lines. The dummy cells are provided at each intersection of the dummy word line and the bit lines, and at each intersection of the dummy bit line and the word lines. Each dummy cell includes a second diode.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Ito
  • Patent number: 8456904
    Abstract: Various circuits include MOS transistors that have a bulk voltage terminal for receiving a bulk voltage that is different from a supply voltage and ground. The bulk voltage may be selectively set so that some MOS transistors have a bulk voltage set to the supply voltage or ground and other MOS transistors have a bulk voltage that is different. The bulk voltage may be set to forward or reverse bias pn junctions in the MOS transistor. The various circuits include comparators, operational amplifiers, sensing circuits, decoding circuits and the other circuits. The circuits may be included in a memory system.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: June 4, 2013
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Hieu Van Tran, Sang T. Nguyen, Anh Ly, Hung Q. Nguyen
  • Patent number: 8445946
    Abstract: A gated diode memory cell is provided, including one or more transistors, such as field effect transistors (“FETs”), and a gated diode in signal communication with the FETs such that the gate of the gated diode is in signal communication with the source of a first FET, wherein the gate of the gated diode forms one terminal of the storage cell and the source of the gated diode forms another terminal of the storage cell, the drain of the first FET being in signal communication with a bitline (“BL”) and the gate of the first FET being in signal communication with a write wordline (“WLw”), and the source of the gated diode being in signal communication with a read wordline (“WLr”).
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Wing K. Luk, Robert H. Dennard
  • Patent number: 8446749
    Abstract: A resistance change memory device including: a cell array having a resistance change type of memory cells disposed at the cross-points of word lines and bit lines, the resistance value of the memory cell being reversibly settable; a word line driver circuit configured to apply a selecting drive voltage to one selected in the word lines; and a bit line driver circuit configured to drive multiple bit lines in such a manner that a set mode and a reset mode are set simultaneously for multiple memory cells selected by the selected word line, the set mode being for changing a selected memory cell from a first resistance state into a second resistance state while the reset mode is for changing a selected memory cell from the second resistance state into the first resistance state.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: May 21, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Satoru Takase
  • Patent number: 8441849
    Abstract: The present invention provides methods and apparatus for adjusting voltages of bit and word lines to program a two terminal memory cell. The invention may include setting a first line connected to a memory cell to a first voltage from a first line standby voltage, charging a second line connected to the memory cell to a predetermined voltage from a second line standby voltage, and switching the first line from the first voltage to a second voltage. The voltage difference between the first voltage and the predetermined voltage is such that a safe voltage results that does not program the memory cell. A voltage difference between the second voltage and the predetermined voltage is such that a programming voltage operative to program the memory cell results.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 14, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Tyler J. Thorp, Roy E. Scheuerlein
  • Patent number: 8432720
    Abstract: A memory cell array having a 1R structure is composed of nonvolatile variable resistive elements each including a variable resistor formed of a metal oxide film whose resistance changes depending on an oxygen concentration in the film, and first and second electrodes sandwiching the variable resistor. The first electrode and the variable resistor form a rectifier junction through a rectifier junction layer composed of an oxide layer and a layer (oxygen depletion layer) of the metal oxide film having an oxygen concentration lower than a stoichiometric composition. The oxygen moves between the first electrode and the metal oxide film when a voltage is applied, and a thickness of the oxygen depletion layer changes, so that the resistance of the metal oxide film changes and the rectifying properties are provided. A thickness of the oxygen depletion layer is set to allow the variable resistive element to show the sufficient rectifying properties.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 30, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobuyoshi Awaya, Yukio Tamai, Akihito Sawa
  • Patent number: 8422288
    Abstract: The present invention discloses a DRAM cell utilizing floating body effect and a manufacturing method thereof. The DRAM cell includes a P type semiconductor region provided on a buried oxide layer, an N type semiconductor region provided on the P type semiconductor region, a gate region provided on the N type semiconductor region, and an electrical isolation region surrounding the P type semiconductor region and the N type semiconductor region. A diode of floating body effect is taken as a storage node. Via a tunneling effect between bands, electrons gather in the floating body, which is defined as a first storage state; via forward bias of PN junction, electrons are emitted out from the floating body or holes are injected into the floating body, which is defined as a second storage state.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 16, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Deyuan Xiao, Xiaolu Huang, Jing Chen, Xi Wang
  • Patent number: 8422268
    Abstract: A memory element (3) arranged in matrix in a memory device and including a resistance variable element (1) which switches its electrical resistance value in response to a positive or negative electrical pulse applied thereto and retains the switched electrical resistance value; and a current control element (2) for controlling a current flowing when the electrical pulse is applied to the resistance variable element (1); wherein the current control element (2) includes a first electrode; a second electrode; and a current control layer sandwiched between the first electrode and the second electrode; and wherein the current control layer comprises SiNx, and at least one of the first electrode and the second electrode comprises ?-tungsten.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: April 16, 2013
    Assignee: Panasonic Corporation
    Inventors: Koji Arita, Takumi Mikawa, Mitsuteru Iijima, Takashi Okada
  • Patent number: 8411525
    Abstract: A memory circuit includes at least one memory array. At least one sleep transistor is electrically coupled between the at least one memory array and a first power line for providing a first power voltage. At least one diode-connected transistor is electrically coupled between the at least one memory array and the first power line. A back-bias circuit is electrically coupled with a bulk of the at least one diode-connected transistor.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: April 2, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Steven Swei, David B. Scott
  • Patent number: 8379432
    Abstract: A nonvolatile semiconductor storage device includes first and second intersecting wires; a electrically rewritable memory cell disposed at each intersection of the first second wires, including a variable resistor for memorizing a resistance value as data in a nonvolatile manner and a rectifying device are connected in series; and a control circuit which applies a voltage necessary for writing of data to the first and second wires. The control circuit precharges a non-selected second wire to a standby voltage larger than a reference voltage prior to programming a variable resistor connected to selected first and second wires by supplying the reference voltage to a non-selected first wire and the selected second wire, applying to the selected first wire a program voltage for programming of the selected variable resistor and applying to the non-selected second wire a control voltage which prevents the rectifying device from turning ON.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Maejima, Katsuaki Isobe, Hideo Mukai
  • Patent number: 8369131
    Abstract: According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 5, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Prashant B Phatak, Tony Chiang
  • Patent number: 8350262
    Abstract: A nonvolatile memory device having self-presence diode characteristics, and/or a nonvolatile memory array including the nonvolatile memory device may be provided. The nonvolatile memory device may include a lower electrode, a first semiconductor oxide layer on the lower electrode, a second semiconductor oxide layer on the first semiconductor oxide layer, and/or an upper electrode on the second semiconductor oxide layer.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoung-Jae Lee, In-Kyeong Yoo, Eun-Hong Lee, Jong-Wan Kim, Dong-Chul Kim, Seung-Eon Ahn
  • Patent number: 8351241
    Abstract: A method of suppressing propagation of leakage current in an array of switching devices. The method includes providing a dielectric breakdown element integrally and serially connected to a switching element within each of the switching device. A read voltage (for example) is applied to a selected cell. The propagation of leakage current is suppressed by each of the dielectric breakdown element in unselected cells in the array. The read voltage is sufficient to cause breakdown in the selected cells but insufficient to cause breakdown in the serially connected, unselected cells in a specific embodiment. Methods to fabricate of such devices and to program, to erase and to read the device are provided.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: January 8, 2013
    Assignee: The Regents of the University of Michigan
    Inventors: Wei Lu, Sung Hyun Jo
  • Publication number: 20130003440
    Abstract: A memory device includes diode plus resistivity switching element memory cells coupled between bit and word lines, single device bit line drivers with gates coupled to a bit line decoder control lead, sources/drains coupled to a bit line driver, and drains/sources coupled to bit lines, single device word line drivers with gates coupled to a word line decoder control lead, sources/drains coupled to a word line driver output, and drains/sources coupled to word lines, a first bleeder diode coupled between a bit line and a first bleeder diode controller, and a second bleeder diode coupled between a word line and a second bleeder diode controller. The first bleeder diode controller connects the first bleeder diode to low voltage in response to a bit line decoder signal. The second bleeder diode controller connects the second bleeder diode to high voltage in response to a word line decoder signal.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Applicant: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Patent number: 8335100
    Abstract: Methods, systems, structures and arrays are disclosed, such as a resistive memory array which includes access devices, for example, back-to-back Zener diodes, that only allow current to pass through a coupled resistive memory cell when a voltage drop applied to the access device is greater than a critical voltage. The array may be biased to reduce standby currents and improve delay times between programming and read operations.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: December 18, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, David Porter
  • Publication number: 20120300544
    Abstract: A gated diode memory cell is provided, including one or more transistors, such as field effect transistors (“FETs”), and a gated diode in signal communication with the FETs such that the gate of the gated diode is in signal communication with the source of a first FET, wherein the gate of the gated diode forms one terminal of the storage cell and the source of the gated diode forms another terminal of the storage cell, the drain of the first FET being in signal communication with a bitline (“BL”) and the gate of the first FET being in signal communication with a write wordline (“WLw”), and the source of the gated diode being in signal communication with a read wordline (“WLr”).
    Type: Application
    Filed: August 9, 2012
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Wing K. Luk, Robert H. Dennard
  • Patent number: 8310858
    Abstract: According to one embodiment, a plurality of memory cells, each composed of a variable-resistance element and a diode, are arranged at the intersections of a plurality of word lines and a plurality of bit lines. The sense amplifier compares a voltage corresponding to current in a memory cell selected from the plurality of memory cells with a reference voltage to detect data read from the selected memory cell. The controller generates the reference voltage according to the logical value of a signal output from the sense amplifier. The controller, before detecting data in the memory cell, adjusts the reference voltage on the basis of current flowing in one of a plurality of bit lines connected to a plurality of memory cells in a half-selected state detected by the sense amplifier.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: November 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Ito
  • Patent number: 8295074
    Abstract: A memory cell is provided, in which a resistance value is appropriately controlled, thereby a variable resistance element may be applied with a voltage necessary for changing the element into a high or low resistance state. A storage element 10, a nonlinear resistance element 20, and an MOS transistor 30 are electrically connected in series. The storage element 10 has a nonlinear current-voltage characteristic opposite to a nonlinear current-voltage characteristic of the MOS transistor 30, and changes into a high or low resistance state in accordance with a polarity of applied voltage. The nonlinear resistance element 20 has a nonlinear current-voltage characteristic similar to the nonlinear current-voltage characteristic of the storage element 10.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: October 23, 2012
    Assignee: Sony Corporation
    Inventors: Shuichiro Yasuda, Katsuhisa Aratani, Akira Kouchiyama, Tetsuya Mizuguchi, Satoshi Sasaki
  • Patent number: 8289764
    Abstract: A highly-reliable, highly-integrated large-capacity phase-change memory is achieved. For this purpose, for example, memory tiles MT0, MT1 are provided respectively at points of intersection of global bit line GBL0 and global word lines GWL00B, GWL01B. Word lines WL000 of MT0, MT1 are commonly connected to an output from a word-line driving circuit WD0 which is controlled by GWL00B, and word lines WL001 of MT0, MT1 are commonly connected to an output from a word-line driving circuit WD1 controlled by GWL01B. For example, when WD0 is activated in accordance with a rewrite operation, an output from WD0 is connected to GBL0 via any one of four memory cells MC00, MC01 connected to WL000 of MT0, MT1.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: October 16, 2012
    Assignee: Hitachi, Ltd.
    Inventor: Satoru Hanzawa
  • Patent number: 8289747
    Abstract: Provided is a non-volatile memory device that may include a plurality of variable resistors, each of the variable resistors having first and second terminals, the plurality of variable resistors arranged as a first layer of a plurality of layers and having data storage capability, at least one common bit plane arranged as a second layer of the plurality of layers and coupled to the first terminal of each of the variable resistors of the first layer, and a plurality of bit lines coupled to the second terminal of each of the variable resistors of the first layer.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: October 16, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoungjae Lee, Inkyeong Yoo, Youngsoo Park
  • Patent number: 8284589
    Abstract: A memory device includes diode plus resistivity switching element memory cells coupled between bit and word lines, single device bit line drivers with gates coupled to a bit line decoder control lead, sources/drains coupled to a bit line driver, and drains/sources coupled to bit lines, single device word line drivers with gates coupled to a word line decoder control lead, sources/drains coupled to a word line driver output, and drains/sources coupled to word lines, a first bleeder diode coupled between a bit line and a first bleeder diode controller, and a second bleeder diode coupled between a word line and a second bleeder diode controller. The first bleeder diode controller connects the first bleeder diode to low voltage in response to a bit line decoder signal. The second bleeder diode controller connects the second bleeder diode to high voltage in response to a word line decoder signal.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: October 9, 2012
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Patent number: 8284597
    Abstract: A diode memory device has an intermediate structure between the two terminals, such as a p terminal and the n terminal.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: October 9, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Kuo-Pin Chang, Hang-Ting Lue
  • Patent number: 8254166
    Abstract: An integrated circuit includes an array of memory cells. Each memory cell includes a diode. The integrated circuit includes a doped semiconductor line formed in a semiconductor substrate. The doped semiconductor line is coupled to a row of diodes. The integrated circuit includes conductive cladding contacting the doped semiconductor line.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 28, 2012
    Assignee: Qimonda AG
    Inventors: Ulrich Klosterman, Ulrike Gruening-von Schwerin, Franz Kreupl
  • Patent number: 8243509
    Abstract: A nonvolatile memory cell is described, the memory cell comprising a semiconductor diode. The semiconductor material making up the diode is formed with significant defect density, and allows very low current flow at a typical read voltage. Application of a programming voltage permanently changes the nature of the semiconductor material, resulting in an improved diode. The programmed diode allows much higher current flow, in some embodiments one, two or three orders of magnitude higher, at the same read voltage. The difference in current allows a programmed memory cell to be distinguished from an unprogrammed memory cell. Fabrication techniques to generate an advantageous unprogrammed defect density are described. The memory cell of the present invention can be formed in a monolithic three dimensional memory array, having multiple stacked memory levels formed above a single substrate.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: August 14, 2012
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Abhijit Bandyopadhyay
  • Patent number: 8243497
    Abstract: A Phase Change Memory device with reduced programming disturbance and its operation are described. The Phase Change Memory includes an array with word lines and bit lines and voltage controlling elements coupled to bit lines adjacent to an addressed bit line to maintain the voltage of the adjacent bit lines within an allowed range.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 14, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Agostino Pirovano, Augusto Benvenuti, Daniele Vimercati, Andrea Redaelli, Gerald Barkley
  • Patent number: 8213224
    Abstract: A memory cell device includes a semiconductor nanowire extending, at a first end thereof, from a substrate; the nanowire having a doping profile so as to define a field effect transistor (FET) adjacent the first end, the FET further including a gate electrode at least partially surrounding the nanowire, the doping profile further defining a p-n junction in series with the FET, the p-n junction adjacent a second end of the nanowire; and a phase change material at least partially surrounding the nanowire, at a location corresponding to the p-n junction.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Dennis M. Newns, Robert L. Sandstrom
  • Patent number: 8208282
    Abstract: A memory cell is provided that includes a first conductor, a second conductor, a steering element that is capable of providing substantially unidirectional current flow, and a state change element coupled in series with the steering element. The state change element is capable of retaining a programmed state, and the steering element and state change element are vertically aligned with one another. Other aspects are also provided.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: June 26, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, Paul Michael Farmwald, James M. Cleeves
  • Patent number: 8208286
    Abstract: A random access memory includes a plurality of memory cells arrayed in bit-lines and word-lines. Each memory cell comprises a green transistor (gFET) including a gate, a source, and a drain; a switching resistor including a first terminal and a second terminal; and a reference resistor including a third terminal and a fourth terminal. The first terminal of the switching resistor and the third terminal is connected to a bit-line, the second terminal of the switching resistor is connected to the first source of the gFET, the fourth terminal of the reference resistor is connected to the second source of the gFET, and the gate of the gFET is connected to a word-line.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: June 26, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Min-Hwa Chi, Deyuan Xiao
  • Patent number: 8203875
    Abstract: An anti-parallel diode structure and method of fabrication is presently disclosed. In some embodiments, an anti-parallel diode structure has a semiconductor region comprising a first insulator layer disposed between a first semiconductor layer and a second semiconductor layer. The semiconductor region can be bound on a first side by a first metal material and bound on a second side by a second metal material so that current below a predetermined value is prevented from passing through the semiconductor region and current above the predetermined value passes through the semiconductor region.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: June 19, 2012
    Assignee: Seagate Technology LLC
    Inventors: Nurul Amin, Insik Jim, Venugopalan Vaithyanathan, Wei Tian, YoungPil Kim
  • Patent number: 8203864
    Abstract: A method of programming a carbon nanotube memory cell is provided, wherein the memory cell comprises a first conductor, a steering element, a carbon nanotube fabric, and a second conductor, wherein the steering element and the carbon nanotube fabric are arranged electrically in series between the first conductor and the second conductor, and wherein the entire carbon nanotube memory cell is formed above a substrate, the carbon nanotube fabric having a first resistivity, the method including applying a first electrical set pulse between the first conductor and the second conductor, wherein, after application of the first electrical set pulse, the carbon nanotube fabric has a second resistivity, the second resistivity less than the first resistivity. Other aspects are also provided.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: June 19, 2012
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Roy E. Scheuerlein
  • Patent number: 8203865
    Abstract: A non-volatile memory cell and associated method is disclosed that includes a non-ohmic selection layer. In accordance with some embodiments, a non-volatile memory cell consists of a resistive sense element (RSE) coupled to a non-ohmic selection layer. The selection layer is configured to transition from a first resistive state to a second resistive state in response to a current greater than or equal to a predetermined threshold.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: June 19, 2012
    Assignee: Seagate Technology LLC
    Inventors: Wei Tian, Insik Jin, Venugopalan Vaithyanathan, Haiwen Xi, Michael Xuefei Tang, Brian Lee
  • Patent number: 8199557
    Abstract: A nonvolatile semiconductor memory device includes: a plurality of memory cell arrays stacked on a semiconductor substrate and including a plurality of first wires, a plurality of second wires and memory cells disposed at intersections of the first wires and the second wires and having a rectifier element and a variable resistive element are connected in series; and a control circuit configured to selectively drive the first wires and the second wires. The control circuit executes a resetting operation to change a state of the variable resistive element from a low resistance state to a high resistance state. At a time of executing the resetting operation, the control circuit increases a pulse voltage to be applied to the variable resistive element to a first voltage, and then decreases the pulse voltage to a second voltage lower than the first voltage and higher than the ground voltage.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: June 12, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Maejima, Yuki Okukawa
  • Patent number: 8199551
    Abstract: A semiconductor device including a memory cell is provided. The memory cell comprises a transistor and a capacitor, and one of a resistor and a diode. A gate of the transistor is electrically connected to a word line, and one of a source and a drain of the transistor is electrically connected to a bit line. One terminal of the capacitor is electrically connected to the other of the source and the drain of the transistor, and the other terminal of the capacitor is electrically connected to a wiring. One terminal of one of the resistor and the diode is electrically connected to the other of the source and the drain of the transistor, and the other terminal of one of the resistor and the diode is electrically connected to the wiring.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Takanori Matsuzaki
  • Patent number: 8199569
    Abstract: A memory array includes a cross-point array of bit and source lines. A memory is disposed at cross-points of the cross-point array. The memory unit includes a magnetic tunnel junction data cell electrically coupled to a bit line and a source line. The magnetic tunnel junction data cell is configured to switch between a high resistance state and a low resistance state by passing a polarized write current through the magnetic tunnel junction data cell. A transistor is electrically between the magnetic tunnel junction data cell and the bit line or source line and a diode is in thermal or electrical contact with the magnetic tunnel junction data cell to assist in resistance state switching.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: June 12, 2012
    Assignee: Seagate Technology LLC
    Inventors: Xuguang Wang, Yiran Chen, Dimitar V. Dimitrov, Hongyue Liu, Xiaobin Wang
  • Patent number: 8189364
    Abstract: Embodiments of the invention relate generally to semiconductors and semiconductor fabrication techniques, and more particularly, to devices, integrated circuits, memory cells and arrays, and methods to use silicon carbide structures to retain amounts of charge indicative of a resistive state in, for example, a charge-controlled resistor of a memory cell. In some embodiments, a memory cell comprises a silicon carbide structure including a charge reservoir configured to store an amount of charge carriers constituting a charge cloud. The amount of charge carriers in the charge cloud can represent a data value. Further, the memory cell includes a resistive element in communication with the charge reservoir and is configured to provide a resistance as a function of the amount of charge carriers in the charge reservoir. The charge reservoir is configured to modulate the size of the charge cloud to change the data value.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: May 29, 2012
    Assignee: Qs Semiconductor Australia Pty Ltd.
    Inventors: Sima Dimitrijev, Herbert Barry Harrison
  • Patent number: 8189365
    Abstract: A plurality of three-terminal variable resistance switching elements each having a source electrode, a drain electrode, and a gate electrode are connected to each other in series. The source electrode of each of the three-terminal variable resistance switching elements and the drain electrode of its adjacent three-terminal variable resistance switching element are connected to each other through a wiring segment to form a lane. A potential holding section for holding a predetermined potential level is connected to the wiring segment. A column group is configured by selecting one of the three-terminal variable resistance elements in each lane. A common gate line is connected to each of the gate electrodes of the three-terminal variable resistance elements belonging to the column group.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: May 29, 2012
    Assignee: NEC Corporation
    Inventor: Shogo Nakaya
  • Patent number: 8154909
    Abstract: A resistance variable memory apparatus (100) of the present invention includes a current suppressing element (116) which is connected in series with each resistance variable layer (114) and whose threshold voltage is VF, and is configured to apply a first voltage V1 to a first wire (WL) associated with a selected nonvolatile memory element, apply a second voltage V2 to a second wire (BL) associated with the selected nonvolatile memory element, apply a third voltage V3 to a first wire (WL) which is not associated with the selected nonvolatile memory element and apply a fourth voltage V4 to a second wire (BL) which is not associated with the selected memory element when writing data or reading data, wherein V2?V3<V5 and V5<V4?V1 are satisfied and (V1?V4)<VF or (V3?V2)<VF is satisfied when V5=(V1+V2)/2 is a fifth voltage V5.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 10, 2012
    Assignee: Panasonic Corporation
    Inventors: Ryotaro Azuma, Kazuhiko Shimakawa, Satoru Fujii