Injection Patents (Class 372/44.01)
  • Publication number: 20110129227
    Abstract: An apparatus comprising a laser transmitter having a first side and a second side, a filter coupled to the first side, a detector coupled to the second side, and a temperature controller coupled to the laser transmitter and the detector. Also disclosed is an apparatus comprising at least one processor configured to implement a method comprising receiving a photocurrent of a backward light from a laser, determining a wavelength shift offset between a wavelength of the output light and a filter transmission peak, and adjusting a temperature of the laser to substantially reduce the wavelength shift and align the wavelength of the output light with the filter transmission peak.
    Type: Application
    Filed: December 2, 2009
    Publication date: June 2, 2011
    Applicant: Futurewei Technologies, Inc.
    Inventors: Yang Jing Wen, Jizhong Liu, Yu Sheng Bai
  • Patent number: 7944567
    Abstract: A semiconductor light emitting element is equipped with a layered structure including an active layer, and electrode layers at the upper and lower surfaces thereof. At least one of the upper and lower electrode layers is divided into at least two electrodes, which are separated in the wave guiding direction of light. The active layer is structured to have different gain wavelengths along the wave guiding direction, to emit light having different spectra from each region corresponding to each of the at least two electrodes. The spectral distribution of output light is enabled to be varied by individually varying the current injected by each of the at least two divided electrodes.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: May 17, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Hideki Asano
  • Publication number: 20110103418
    Abstract: An optoelectronic device, comprising an active region and a waveguide structure to provide optical confinement of light emitted from the active region; a pair of facets on opposite ends of the device, having opposite surface polarity; and one of the facets which has been roughened by a crystallographic chemical etching process, wherein the device is a nonpolar or semipolar (Ga,In,Al,B)N based device.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 5, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Matthew T. Hardy, You-Da Lin, Hiroaki Ohta, Steven P. DenBaars, James S. Speck, Shuji Nakamura, Kathryn M. Kelchner
  • Patent number: 7933303
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 26, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Yohei Enya, Takashi Kyono, Masahiro Adachi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Shinji Tokuyama, Koji Katayama, Takao Nakamura, Takatoshi Ikegami
  • Patent number: 7933304
    Abstract: It is an object of the present invention to realize a low cost laser light source capable of emitting several mW optical power while the operation current is reduced. In particular, the present invention concerns a 1.3 ?m wavelength band laser device suitable for several to several ten km short distance fiber optic transmission and also a less power consuming optical communication module in which such a laser is preferably mounted. As a laser structure which eliminates the necessity of adding an optical isolator by providing improved immunity to reflected light while lowering the operation current for less power consumption and not lowering the response speed, a short cavity laser which operates in multiple longitudinal modes is introduced. Especially, an angled mirror structure is formed at the laser's emitting edge to change the optical output direction so that the light is emitted from the top or bottom of the substrate.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: April 26, 2011
    Assignee: Opnext Japan, Inc.
    Inventor: Masahiro Aoki
  • Publication number: 20110075693
    Abstract: The present invention provides a semiconductor laser realizing reduced possibility that a wiring layer disposed in the air is broken even under severe environment of a large temperature difference. A trench is provided between adjacent ridges, and a wiring layer electrically connecting an upper electrode and a pad electrode is disposed in the air at least above the trench. The wiring layer in a portion above the trench has a flat shape or a concave shape which dents toward the trench. With the configuration, accumulation of strains in the wiring layer when the wiring layer repeats expansion and shrink under severe environment of a large temperature difference is suppressed.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Applicant: SONY CORPORATION
    Inventors: Hisayoshi Kuramochi, Tomonori Hino, Tatsuhiro Hirata, Yuta Yoshida
  • Publication number: 20110073888
    Abstract: A group III nitride semiconductor optical device includes: a substrate comprising a group III nitride semiconductor; a first group-III nitride semiconductor region on a primary surface of the substrate; a second group-III nitride semiconductor region on the primary surface of the substrate; and an active layer between the first group-III nitride semiconductor region and the second group-III nitride semiconductor region. The primary surface of the substrate tilts at a tilt angle in the range of 63 degrees to smaller than 80 degrees toward the m-axis of the group III nitride semiconductor from a plane perpendicular to a reference axis extending along the c-axis of the group III nitride semiconductor. The first group-III nitride semiconductor region, the active layer, and the second group-III nitride semiconductor region are arranged in the direction of the normal axis to the primary surface of the substrate. The active layer is configured to produce light having a wavelength in the range of 580 nm to 800 nm.
    Type: Application
    Filed: July 16, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Yohei ENYA, Takashi KYONO, Yusuke YOSHIZUMI
  • Patent number: 7907652
    Abstract: In this semiconductor laser device, a semiconductor laser element is so fixed to a base that a distance between a convex side of a warp thereof and the base varies with the warp of the semiconductor laser element at least along a first direction corresponding to an extensional direction of a cavity or a second direction, while a wire bonding portion is provided around a portion of an electrode layer corresponding to the vicinity of a region where the distance between the convex side of the warp of the semiconductor laser element in at least either the first direction or the second direction of the semiconductor laser element and the base is substantially the smallest.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 15, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shingo Kameyama, Yasuhiko Nomura, Masayuki Hata
  • Publication number: 20110058582
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yumi FUKUDA, Masaaki Tamatani, Katsuko Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara
  • Publication number: 20110058583
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yumi FUKUDA, Masaaki Tamanani, Katsuko Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara
  • Patent number: 7899102
    Abstract: A semiconductor laser including: a nitride III-V compound semiconductor substrate configured to have a first planar area, a second planar area, and a third planar area in a major surface, the first planar area being formed of a C-plane, the second planar area being continuous with the first planar area and being formed of a semipolar plane inclined to the first planar area, the third planar area being continuous with the second planar area and being formed of a C-plane parallel to the first planar area; a first cladding layer configured to be composed of a nitride III-V compound semiconductor on the major surface of the nitride III-V compound semiconductor substrate; an active layer configured to be composed of a nitride III-V compound semiconductor that exists on the first cladding layer and contains In; and a second cladding layer configured to be composed of a nitride III-V compound semiconductor on the active layer.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: March 1, 2011
    Assignee: Sony Corporation
    Inventor: Toshiaki Obata
  • Patent number: 7894499
    Abstract: A semiconductor laser device having a smooth cleavage plane is provided. The provided laser device includes a current injection ridge and force distribution ridges formed adjacent to the current injection ridge, which protrudes from an upper surface of a mesa structure. The mesa structure is formed of multi-semiconductor material layers including a laser resonance layer and cladding layers disposed above and below the resonance layer. The current injection ridge and the force distribution ridges distribute a scribing force when cleaving the laser device so that the smooth cleavage planes are obtained. Defects are prevented in the current injection ridge due to the distribution of force when bonding flip chips.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: February 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-ki Choi, Joon-seop Kwak
  • Patent number: 7889773
    Abstract: A semiconductor device includes an InP substrate, an AlGaInAs-based first layer, an AlGaInAs-based second layer, an InGaAsP-based third layer, and an InGaAsP-based fourth layer. The first and second layers have compositions which are same or substantially same as each other on an interface therebetween. The composition of the layer varies such that a band gap continuously increases from the first layer side toward the third layer side. The compositions of the second and third layers are set such that energy levels of a valence band maximum are substantially equal to each other on an interface between the second and third layers. The composition of the third layer varies such that a band gap continuously increases from the second layer side toward the fourth layer side. The compositions of the third and fourth layers are same or substantially same as each other on an interface between the third and fourth layers.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 15, 2011
    Assignee: Fujitsu Limited
    Inventor: Suguru Akiyama
  • Patent number: 7885304
    Abstract: A nitride-based semiconductor laser device includes a nitride-based semiconductor layer formed on a main surface of a substrate and having an emission layer, wherein the nitride-based semiconductor layer includes a first side surface formed by a (000-1) plane and a second side surface inclined with respect to the first side surface, and a ridge having an optical waveguide extending perpendicular to a [0001] direction in an in-plane direction of the main surface of the substrate is formed by a region held between the first side surface and the second side surface.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: February 8, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yasuto Miyake, Ryoji Hiroyama, Masayuki Hata, Yasumitsu Kuno
  • Patent number: 7885303
    Abstract: A nitride semiconductor laser device is formed by growing a group III nitride semiconductor multilayer structure on a substrate. The group III nitride semiconductor multilayer structure has a laser resonator including an n-type semiconductor layer, a p-type semiconductor layer and a light emitting layer held between the n-type semiconductor layer and the p-type semiconductor layer. The laser resonator is arranged to be offset from the center with respect to a device width direction orthogonal to a resonator direction toward one side edge of the device. A wire bonding region having a width of not less than twice the diameter of an electrode wire to be bonded to the device is formed between the laser resonator and the other side edge of the device.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: February 8, 2011
    Assignee: Rohm Co., Ltd.
    Inventors: Shinichi Kohda, Yuji Ishida
  • Patent number: 7881359
    Abstract: A surface-emitting semiconductor laser device includes a semi-insulating substrate, a layer structure with a bottom multilayer reflector, an n-type cladding layer, an active layer structure for emitting laser, a p-type cladding layer and a top multilayer reflector with a dielectric material, consecutively formed on the semi-insulating substrate, the active layer structure, the p-type cladding layer and the top multilayer reflector, configuring a mesa post formed on a portion of the n-type cladding layer, the p-type cladding layer or the p-type multilayer reflector. The surface-emitting semiconductor laser includes a p-side electrode formed on another portion of the p-type cladding layer, and an n-side electrode formed on another portion of the n-type cladding layer. The n-side electrode includes a substantially uniform Au film and AuGeNi film or AuGe film consecutively formed on the n-type cladding layer, and an alloy is formed between said Au film and said AuGeNi film or AuGe film.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: February 1, 2011
    Assignee: The Furukawa Electric Co., Ltd
    Inventors: Noriyuki Yokouchi, Norihiro Iwai
  • Patent number: 7881354
    Abstract: A VCSEL includes a first conductivity-type first semiconductor mirror layer on a substrate, an active region thereon, a second conductivity-type second semiconductor mirror layer thereon, and a current confining layer in proximity to the active region. A mesa structure is formed such that at least a side surface of the current confining layer is exposed. The current confining layer includes a first semiconductor layer having an Al-composition and a second semiconductor layer having an Al-composition and being formed nearer to the active region than the first semiconductor layer does. Al concentration of the first semiconductor layer is higher than that of the second semiconductor layer. When oscillation wavelength of laser light is ?, optical thickness being sum of the thickness of the first and second semiconductor layers is ?/4. The first and second semiconductor layers are selectively oxidized from the side surface of the mesa structure.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: February 1, 2011
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Masahiro Yoshikawa, Masateru Yamamoto, Takashi Kondo
  • Patent number: 7876795
    Abstract: A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: January 25, 2011
    Assignees: Maxion Technologies, Inc., The Research Foundation of State University of New York
    Inventors: Gregory Belenky, John D. Bruno, Mikhail V. Kisin, Serge Luryi, Leon Shterengas, Sergey Suchalkin, Richard L. Tober
  • Patent number: 7876800
    Abstract: A surface emitting laser having a photonic crystal layer 130 on a substrate 105 with an active layer therebetween, in which the photonic crystal layer includes at least a first periodic structure for resonating in an in-plane direction and a second periodic structure for modulating a light intensity distribution in an in-plane direction. The light intensity in the photonic crystal layer is periodically distributed to a region having high light intensity and a region having low light intensity by the second periodic structure. Further, a conductive film 170 for performing current injection into the active layer is selectively provided just above the region having low light intensity. The surface emitting laser provides suppression of light absorption and highly efficient current injection into an active layer to attain a high power.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: January 25, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Mitsuhiro Ikuta
  • Publication number: 20110006334
    Abstract: A white LED lamp including: a conductive portion; a light emitting diode chip mounted on the conductive portion, for emitting a primary light having a peak wavelength of 360 nm to 420 nm; a transparent resin layer including a first hardened transparent resin, for sealing the light emitting diode chip; and a phosphor layer covering the transparent resin layer, the phosphor layer being formed by dispersing a phosphor powder into a second hardened transparent resin, and the phosphor powder receiving the primary light and radiating a secondary light having a wavelength longer than that of the primary light. An energy of the primary light contained in the radiated secondary light is 0.4 mW/lm or less. In the white LED lamp, a backlight, and an illumination device using the white LED lamp an amount of UV light to be contained in the released light and an amount of heat to be generated from the lamp are decreased to be small.
    Type: Application
    Filed: February 19, 2009
    Publication date: January 13, 2011
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Tsutomu Ishii, Hajime Takeuchi, Yasumasa Ooya, Katsutoshi Nakagawa, Yumi Ito, Masaki Toyoshima, Yasuhiro Shirakawa, Ryo Sakai
  • Publication number: 20110007771
    Abstract: This semiconductor laser apparatus includes a support member having a main surface, a first semiconductor laser device bonded onto the main surface through a first bonding layer and a second semiconductor laser device bonded onto the main surface through a second bonding layer to be adjacent to the first semiconductor laser device. The melting point of the second bonding layer is lower than that of the first bonding layer, and a first height from the main surface to a fourth surface of the second semiconductor laser device is larger than a second height from the main surface to a second surface of the first semiconductor laser device.
    Type: Application
    Filed: July 6, 2010
    Publication date: January 13, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Yasuyuki BESSHO, Koji GONSUI, Gen SHIMIZU, Daiki MIHASHI, Kiyoshi OOTA
  • Patent number: 7867798
    Abstract: A semiconductor laser using a nitride type Group III-V compound semiconductor includes: an n-side clad layer; an n-side optical waveguide layer over the n-side clad layer; an active layer over the n-side optical waveguide layer; a p-side optical waveguide layer over the active layer; an electron barrier layer over the p-side optical waveguide layer; and a p-side clad layer over the electron barrier layer. A ridge stripe is formed at an upper part of the p-side optical waveguide layer, the electron barrier layer and the p-side clad layer, and the distance between the electron barrier layer and a bottom surface in areas on both sides of the ridge stripe is not less than 10 nm.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: January 11, 2011
    Assignee: Sony Corporation
    Inventor: Masaru Kuramoto
  • Patent number: 7869480
    Abstract: In a semiconductor laser device, a semiconductor laser element is so fixed to a base that a distance between a convex side of a warp of the semiconductor laser element and the base varies with the warp of the semiconductor laser element along a first direction corresponding to an extensional direction of a cavity while a wire bonding portion is provided around a portion of an electrode layer corresponding to the vicinity of a region where the distance is the largest.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 11, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shingo Kameyama, Yasuhiko Nomura, Masayuki Hata, Kyoji Inoshita
  • Patent number: 7869483
    Abstract: A surface emitting laser which oscillates at a wavelength ? of a blue band, including a photonic crystal layer including a photonic crystal structure, an active layer provided on one surface of the photonic crystal layer, and an electrode provided on the other surface of the photonic crystal layer for injecting electric current into the active layer. The photonic crystal structure has a thickness of 100 nm or more. A laser beam is emitted toward a direction opposite to a side of the photonic crystal layer on which the electrode is provided.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 11, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takeshi Uchida, Yasuhiro Nagatomo, Yuichiro Hori, Mitsuhiro Ikuta
  • Publication number: 20100328806
    Abstract: A near-field light generating element accommodated in a groove of an encasing layer has an outer surface that includes a first end face including a near-field light generating part, a second end face opposite to the first end face, and a coupling portion that couples the first and second end faces. The coupling portion includes a top surface, and first and second side surfaces that decrease in distance from each other with increasing distance from the top surface. The first end face includes a first side located at an end of the first side surface, and a second side located at an end of the second side surface. Each of the first and second sides includes an upper part and a lower part continuous with each other. An angle formed between the respective lower parts of the first and second sides is smaller than that formed between the respective upper parts of the first and second sides.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Shigeki Tanemura, Hironori Araki
  • Publication number: 20100329297
    Abstract: Described herein is a novel technique used to make novel thin III-V semiconductor cleaved facet edge emitting active optical devices, such as lasers and optical amplifiers. These fully processed laser platelets with both top side and bottom side electrical contacts can be thought of as freestanding optoelectronic building blocks that can be integrated as desired on diverse substrates for a number of applications, many of which are in the field of communications. The thinness of these platelets and the precision with which their dimensions are defined using the process described herein makes it conducive to assemble them in dielectric recesses on a substrate, such as silicon, as part of an end-fire coupled, coaxial alignment optoelectronic integration strategy. This technology has been used to integrate edge emitting lasers onto silicon substrates, a significant challenge in the field of silicon optoelectronics.
    Type: Application
    Filed: June 30, 2010
    Publication date: December 30, 2010
    Inventors: Joseph John Rumpler, Clifton G. Fonstad
  • Patent number: 7860137
    Abstract: A VCSEL with undoped top mirror. The VCSEL is formed from an epitaxial structure deposited on a substrate. A doped bottom mirror is formed on the substrate. An active layer that includes quantum wells is formed on the bottom mirror. A periodically doped conduction layer is formed on the active layer. The periodically doped conduction layer is heavily doped at locations where the optical energy is at a minimum when the VCSEL is in operation. A current aperture is used between the conduction layer and the active region. An undoped top mirror is formed on the heavily doped conduction layer.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: December 28, 2010
    Assignee: Finisar Corporation
    Inventors: Ralph H. Johnson, R. Scott Penner, James Robert Biard
  • Patent number: 7860141
    Abstract: One objective of the present invention is to provide a laser device which is capable of scanning beams of a laser light of high output power at a high speed without using mechanical scanning mechanisms. A plurality of the upper electrodes 33 is linearly arranged in the photonic crystal laser provided with an active layer 21 and a two-dimensional photonic crystal layer 23 which are held between upper electrodes 33 and a lower electrode 27. A current is introduced from one upper electrode 33 or the plurality of the upper electrodes 33 disposed adjacently. Therefore, the active layer 21 generates light and the light is intensified by diffraction in the two-dimensional photonic crystal layer 23, so that a stronger laser light is emitted to the outside from around the upper electrodes 33 into which a current is introduced. When the current-injected upper electrodes are sequentially switched, a laser light scan is performed in the direction of the array of the upper electrodes.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: December 28, 2010
    Assignees: Kyoto University, Rohm Co., Ltd.
    Inventors: Susumu Noda, Masahiro Imada, Dai Ohnishi
  • Patent number: 7856042
    Abstract: An intersubband quantum cascade laser structure includes multiple coupled laser stages, wherein each stage has a multilayer structure including an electron injector, an active region with at least one quantum well, and an electron reflector. Electrons injected from the injector into the active region at a high energy level relax to a lower energy level with the emission of a photon at, for example, mid-infrared wavelengths. The reflector reflects electrons at the higher energy level at which they were injected and transmits electrons from the lower energy level after emission of a photon. Multiple layers of semiconductor are formed on each side of the multistage structure to provide conduction across the device and to provide optical confinement of the photons emitted.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: December 21, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Dan Botez, Dapeng P. Xu, Luke J. Mawst
  • Patent number: 7852891
    Abstract: A nitride semiconductor light-emitting device is provided including: a substrate made of a nitride semiconductor; a semiconductor layer made of a nitride semiconductor containing a p-type impurity, the semiconductor layer being formed as contacting an upper surface of the substrate; a first cladding layer made of a nitride semiconductor containing an impurity of a first conductivity type, the first cladding layer being formed on the semiconductor layer; an active layer formed on the first cladding layer; and a second cladding layer made of a nitride semiconductor containing an impurity of a second conductivity type, the second cladding layer being formed on the active layer.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Yoshiaki Hasegawa, Toshiya Yokogawa, Akihiko Ishibashi
  • Patent number: 7848376
    Abstract: A quantum cascade laser structure in accordance with the invention comprises a number of cascades (100), each of which comprises a number of alternately arranged quantum wells (110a to 110j) and barrier layers (105 to 105j). The material of at least one quantum well (110a to 110j) as well as the material of at least one barrier layer (105 to 105j) is under mechanical strain, with the respective strain being either a tensile strain or a compression strain. The quantum wells (110a to 110j) and barrier layers (105 to 105j) are engineered in the quantum cascade laser structure in accordance with the invention so that existing strains are largely compensated within a cascade (100). In the quantum cascade laser structure in accordance with the invention, each material of the quantum wells (110a to 110j) has only one constituent material and the material of at least one barrier layer (105d, 105e, 105f) has at least two constituent materials (111a, 111b, 112a, 112b, 113a, 113b).
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: December 7, 2010
    Assignees: Humboldt-Universtaet Zu Berlin, Forschungszentrum Rossendorf e.V.
    Inventors: William Ted Masselink, Sebastian Dressler, Mykhaylo Petrovych Semtsiv, Nikolai Georgiev, Manfred Helm, Thomas Dekorsy, Mathias Ziegler
  • Patent number: 7843981
    Abstract: A quantum cascade laser is composed of a semiconductor substrate, and an active layer provided on the semiconductor substrate and having a cascade structure formed by multistage-laminating unit laminate structures 16 each of which includes a quantum well light emitting layer 17 and an injection layer 18. The unit laminate structure 16 has, in its subband level structure, an emission upper level 3, an emission lower level 2, and an injection level 4 as an energy level higher than the emission upper level 3, and light h? is generated by means of intersubband transition of electrons from the level 3 to the level 2 in the light emitting layer 17, and electrons through the intersubband transition are injected into the injection level in a unit laminate structure of the subsequent stage via the injection layer 18, and from this injection level, electrons are supplied to the emission upper level. Thereby, a quantum cascade laser which realizes operation with a high output at a high temperature is realized.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: November 30, 2010
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Masamichi Yamanishi, Tadataka Edamura, Naota Akikusa, Kazuue Fujita
  • Patent number: 7843983
    Abstract: In an element wherein a plurality of ridges (16, 36) are arranged in parallel, supports (17, 37) are formed to sandwich each of the ridges (16, 36). More specifically, on an outer side of the ridge (16) in the element, the first support (17a) is formed, and on an inner side in the element, the second support (17b) is formed. On an outer side of the ridge (36) in the element, the first support (37a) is formed, and on an inner side in the element, the second support (37b) is formed. Thus, even when a resist is applied on an element surface and spin-coating is performed at the time of manufacturing the element, the resist on the inner side than the ridges (16, 36) in the element can be prevented from flowing into a groove between the ridges to a certain extent by means of the second supports (17b, 37b), and a resist film thickness on the inner sides of the ridges (16, 36) in the element can be prevented from being considerably small compared with that on the outer sides in the element.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: November 30, 2010
    Assignees: Sanyo Electric Co., Ltd., Tottori Sanyo Electric Co., Ltd.
    Inventors: Hitoshi Saomoto, Manabu Iwamoto
  • Patent number: 7839910
    Abstract: The laser device has a gain medium, first and second clads sandwiching the gain medium in the thickness direction, and a cavity structure for resonating the electromagnetic wave generated in the gain medium. The gain medium includes a plurality of active regions for generating an electromagnetic wave and at lease one connecting region sandwiched among the active regions. The first and second clads are each formed of a negative permittivity medium having a permittivity the real part of which is negative relative to the electromagnetic wave. A potential-adjusting portion is arranged between the connecting region and the first clad and between the connecting region and the second clad for adjusting the electric potential of the connecting region.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 23, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masahiro Asada, Ryota Sekiguchi, Toshihiko Ouchi
  • Patent number: 7839909
    Abstract: The heterostructures are used for creation of semiconductor injection emission sources: injection lasers, semiconductor amplifying elements, semiconductor optical amplifiers that are used in fiber optic communication and data transmission systems, in optical superhigh-speed computing and switching systems, in development of medical equipment, laser industrial equipment, frequency-doubled lasers, and for pumping solid-state and fiber lasers and amplifiers.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: November 23, 2010
    Assignee: General Nano Optics Limited
    Inventor: Vasily Ivanovich Shveykin
  • Patent number: 7829912
    Abstract: Semiconductor devices such as VCSELs, SELs, LEDs, and HBTs are manufactured to have a wide bandgap material near a narrow bandgap material. Electron injection is improved by an intermediate structure positioned between the wide bandgap material and the narrow bandgap material. The intermediate structure is an inflection, such as a plateau, in the ramping of the composition between the wide bandgap material and the narrow bandgap material. The intermediate structure is highly doped and has a composition with a desired low electron affinity. The injection structure can be used on the p-side of a device with a p-doped intermediate structure at high hole affinity.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: November 9, 2010
    Assignee: Finisar Corporation
    Inventor: Ralph H. Johnson
  • Publication number: 20100265976
    Abstract: A III-nitride compound device which has a layer of AlInN (7) having a non-zero In content, for example acting as a current blocking layer, is described. The layer of AlInN (7) has at least aperture defined therein. The layer of AlInN (7) is grown with a small lattice-mismatch with an underlying layer, for example an underlying GaN layer, thus preventing added crystal strain in the device. By using optimised growth conditions the resistivity of the AlInN is made higher than 102 ohm·cm thus preventing current flow when used as a current blocking layer in a multilayer semiconductor device with layers having smaller resistivity. As a consequence, when the AlInN layer has an opening and is placed in a laser diode device, the resistance of the device is lower resulting in a device with better performance.
    Type: Application
    Filed: October 21, 2008
    Publication date: October 21, 2010
    Inventors: Valerie Bousquet, Matthias Kauer, Wei-Sin Tan, Jonathan Heffernan, Koji Takahashi
  • Patent number: 7817691
    Abstract: It is enabled to provide that a light emitting device have an electron blocking layer (106) positioned between tunnel junctions (107, 108) and an active layer (104). The electron blocking layer (106) has an energy of conduction band edge higher than that of the active layer (605), and is composed of a material containing substantially no aluminum. It suppresses leakage of electrons from an n-type layer through a p-layer to an n-type layer. It is also enabled to provide that a light emitting device is capable of preventing the electron blocking layer (106) from being oxidized in the process of manufacturing by using a layer containing no aluminum for the electron blocking layer (106).
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: October 19, 2010
    Assignee: NEC Corporation
    Inventors: Naofumi Suzuki, Kimiyoshi Fukatsu
  • Patent number: 7813396
    Abstract: A method for producing light emission from a semiconductor device includes the following steps: providing a semiconductor base region disposed between a semiconductor emitter region and a semiconductor collector region that forms a tunnel junction adjacent the base region; providing, in the base region, a region exhibiting quantum size effects; providing an emitter terminal, a base terminal, and a collector terminal respectively coupled with the emitter region, the base region, and the collector region; and applying electrical signals with respect to the emitter terminal, the base terminal and the collector terminal to produce light emission from the base region.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: October 12, 2010
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Milton Feng, Nick Holonyak, Jr., Gabriel Walter, Han Wui Then
  • Patent number: 7809038
    Abstract: In a conventional EA/DFB laser, since the temperature dependence of the operation wavelength of the EA portion is substantially different from that of the DFB portion, the temperature range over which a stable operation is possible is small. In the case of using the EA/DFB laser as a light emission device, an uncooled operation is not possible. An EA/DFB laser which does not require a temperature control mechanism is proposed. A quantum well structure in which a well layer made of any one of InGaAlAs, InGaAsP, and InGaAs, and a barrier layer made of either one of InGaAlAs or InAlAs is used for an optical absorption layer of an EA modulator. By properly determining detuning at a temperature of 25° C. and a composition wavelength of the barrier layer in the quantum well structure used for the optical absorption layer, it can be realized to suppress the insertion loss, maintain the extinction ratio, and reduce chirping simultaneously over a wide temperature range from ?5° C. to 80° C.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: October 5, 2010
    Assignee: Opnext Japan, Inc.
    Inventor: Shigeki Makino
  • Publication number: 20100246622
    Abstract: A method for manufacturing a bi-section semiconductor laser device includes the steps of (A) forming a stacked structure obtained by stacking, on a substrate in sequence, a first compound semiconductor layer of a first conductivity type, a compound semiconductor layer that constitutes a light-emitting region and a saturable absorption region, and a second compound semiconductor layer of a second conductivity type; (B) forming a belt-shaped second electrode on the second compound semiconductor layer; (C) forming a ridge structure by etching at least part of the second compound semiconductor layer using the second electrode as an etching mask; and (D) forming a resist layer for forming a separating groove in the second electrode and then forming the separating groove in the second electrode by wet etching so that the separating groove separates the second electrode into a first portion and a second portion.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 30, 2010
    Applicants: Sony Corporation, Tohoku University
    Inventors: Hideki Watanabe, Takao Miyajima, Masao Ikeda, Hiroyuki Yokoyama, Tomoyuki Oki, Masaru Kuramoto
  • Patent number: 7792173
    Abstract: In a multi-beam semiconductor laser device, relative difference in shear strain applied to each of light-emitting portions of a laser chip mounted on a submount is suppressed, thereby reducing relative difference in polarization angle. A semiconductor laser element array mounted on a submount has a structure in which a semiconductor layer having two ridge portions is stacked on a substrate, and Au plating layers are formed on the surfaces of p type electrodes formed on the ridge portions. In each of the ridge portions, a central position of the Au plating layer in a width direction is intentionally displaced with respect to a central position of the underlying light-emitting portion in a width direction, so that shear strain is applied to each of the light-emitting portions at a stage before the semiconductor laser element array is mounted on the submount.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 7, 2010
    Assignee: Opnext Japan, Inc.
    Inventors: Yoshihiko Iga, Yutaka Inoue, Hiroshi Moriya, Yasuhisa Semba, Susumu Sorimachi
  • Patent number: 7792170
    Abstract: A semiconductor laser having an oscillation wavelength ? (nm) and comprising at least a substrate, a first-conduction-type clad layer having an average refractive index N1cld, an active layer structure having an average refractive index NA, and a second-conduction-type clad layer having an average refractive index N2cld. This has a first-conduction-type subwave guide layer having an average refractive index N1SWG between the substrate and the first-conduction-type clad layer, and has a first-conduction-type low-refractive-index layer having an average refractive index N1LIL between the subwaveguide layer and the substrate. In this, the refractive indexes satisfy specific relational formulae. The semiconductor laser has a stable oscillation wavelength against the change of current/light output/temperature.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: September 7, 2010
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Hideyoshi Horie
  • Publication number: 20100220760
    Abstract: The nitride semiconductor laser device includes a substrate, a nitride semiconductor layer having a first nitride semiconductor layer, an active layer, and a second nitride semiconductor layer stacked in this order on the substrate, and a ridge provided on a surface of the nitride semiconductor layer.
    Type: Application
    Filed: February 24, 2010
    Publication date: September 2, 2010
    Applicant: NICHIA CORPORATION
    Inventors: Takashi MIYOSHI, Takeshi OKADA
  • Publication number: 20100220757
    Abstract: One embodiment of the present invention provides a semiconductor light-emitting element having both high light-extraction efficiency and excellent adhesion between a light-extraction surface and a sealing resin, and it also provides a process for production thereof. This element comprises a semiconductor multilayered film and a light-extraction surface. In the multilayered film, plural semiconductor layers and an active layer are stacked. The light-extraction surface is provided on the multilayered film, and plural micro-projections are formed thereon. These micro-projections have flat top faces parallel to the multilayered film, and they can be formed by an etching process. The etching process is performed by use of a dot pattern as a mask, and the dot pattern is formed by phase separation of a block copolymer.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 2, 2010
    Inventors: Ryota KITAGAWA, Akira FUJIMOTO, Koji ASAKAWA
  • Patent number: 7787512
    Abstract: A light-emitting element assembly includes a support substrate having a first surface, a second surface facing the first surface, a recessed portion, and a conductive material layer formed over the first surface and the inner surface of the recessed portion, and a light-emitting element. The light-emitting element has a laminated structure including a first compound semiconductor layer, a light-emitting portion, and a second compound semiconductor layer, at least the second compound semiconductor layer and the light-emitting portion constituting a mesa structure. The light-emitting element further includes an insulating layer formed, a second electrode, and a first electrode. The mesa structure is placed in the recessed portion so that the conductive material layer and the second electrode are in at least partial contact with each other, and light emitted from the light-emitting portion is emitted from the second surface side of the first compound semiconductor layer.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 31, 2010
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Satoshi Taniguchi, Yuji Masui, Nobuhiro Suzuki, Tomoyuki Oki, Chiyomi Uchiyama, Kayoko Kikuchi
  • Patent number: 7787508
    Abstract: Injection radiators are used for pumping solid-state and fiber lasers and amplifiers used for producing medical devices, laser production equipment, lasers generating a double-frequency radiation and in the form of highly efficient general-purpose solid-state radiation sources used in a given waveband, including white light emitters used for illumination. Said invention also relates to superpower highly-efficient and reliable injection surface-emitting lasers, which generate radiation in the form of a plurality of output beams and which are characterised by a novel original and efficient method for emitting the radiation through the external surfaces thereof.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: August 31, 2010
    Assignee: General Nano Optics Limited
    Inventor: Vasily Ivanovich Shveykin
  • Publication number: 20100208760
    Abstract: A surface emitting semiconductor laser includes: a substrate; a first semiconductor multilayer reflection mirror of a first conduction type; an active region; a second semiconductor multilayer reflection mirror of a second conduction type; a first selectively oxidized layer that is formed in one of the first and second semiconductor multilayer reflection mirrors and includes a first oxidized region selectively oxidized, and a first conductive region surrounded by the first oxidized region; and a second selectively oxidized layer that is formed in one of the first and second semiconductor multilayer reflection mirrors and includes a second oxidized region selectively oxidized, and a second conductive region surrounded by the second oxidized region.
    Type: Application
    Filed: September 15, 2009
    Publication date: August 19, 2010
    Applicant: FUJI XEROX CO., LTD.
    Inventor: Masahiro Yoshikawa
  • Publication number: 20100195684
    Abstract: A method for fabricating a semiconductor laser device, by etching facets using a photoelectrochemical (PEC) etch, so that the facets are sufficiently smooth to support optical modes within a cavity bounded by the facets.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Adele C. Tamboli, Evelyn L. Hu, Steven P. DenBaars, Arpan Chakraborty
  • Publication number: 20100195184
    Abstract: In accordance with the invention, a display apparatus comprising a light source is provided, said light source comprising at least one superluminescent light emitting diode (SLED), the apparatus further comprising at least one light modulating device arranged in a beam path of a light beam emitted by said light source and operable to emit influenced light upon incidence of said light beam, the light modulating device being operatively connected to an electronic control, the display apparatus further comprising a projection optics arranged in a beam path of said influenced light.
    Type: Application
    Filed: November 2, 2009
    Publication date: August 5, 2010
    Applicant: EXALOS AG
    Inventors: Valerio Laino, Lorenzo Occhi, Christian VĂ©lez