Monolithic Integrated Patents (Class 372/50.1)
  • Patent number: 7995636
    Abstract: A semiconductor laser apparatus has a Zener diode containing a first semiconductor region of a first conduction type and a second semiconductor region of a second conduction type joined with the first semiconductor region, and a vertical-cavity surface-emitting semiconductor laser diode stacked above the Zener diode and containing at least a first mirror layer of a first conduction type, a second mirror layer of a second conduction type and an active region sandwiched between the first and second mirror layers. The first semiconductor region and the second mirror layer are electrically connected and the second semiconductor region and the first mirror layer are electrically connected.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: August 9, 2011
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akemi Murakami, Hideo Nakayama, Yasuaki Kuwata, Teiichi Suzuki, Ryoji Ishii
  • Patent number: 7991035
    Abstract: Provided is a surface emitting laser array using a photonic crystal, which allows an active layer to be shared without disconnecting the active layer between the individual surface emitting lasers adjacent to each other, and enables high-density arraying easily. The surface emitting laser array includes: at least two surface emitting lasers formed on a substrate, each having a laminated structure of multiple semiconductor layers including a semiconductor multilayer mirror, an active layer, and a photonic crystal having a refractive index profile in an in-plane direction, the photonic crystal and the semiconductor multilayer mirror in the laminated structure forming a waveguide for guiding light in a resonance mode; and a region without the photonic crystal provided between adjacent surface emitting lasers in the surface emitting laser array, in which the surface emitting lasers have the same semiconductor multilayer mirror and the same active layer.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: August 2, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Mitsuhiro Ikuta
  • Publication number: 20110182318
    Abstract: A surface-emitting laser includes a surface relief structure provided on an upper multilayer reflector, the surface relief structure including a region of a first laminate, a region of a second laminate that has a larger optical thickness than the first laminate, and a region of a third laminate that has a larger optical thickness than the first laminate and the second laminate.
    Type: Application
    Filed: September 7, 2010
    Publication date: July 28, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Mitsuhiro Ikuta
  • Publication number: 20110176573
    Abstract: In an embodiment, the invention provides a SLCC package comprising first and second electrically conductive terminals, a polysiloxane and glass fiber structural body, a light source and a polysiloxane encapsulant. The first and second electrically conductive terminals are attached to the polysiloxane and glass fiber structural body. The light source is electrically connected to the first and second electrically conductive terminals. The polysiloxane and glass fiber structural body has a cavity that contains at least a portion of the polysiloxane encapsulant.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Applicant: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventors: Kheng Leng Tan, Keat Chuan Ng, Kee Hon Lee
  • Patent number: 7983318
    Abstract: An optical semiconductor device includes a semiconductor laser, a first optical waveguide, an optical coupler for branching light guided from the semiconductor laser through the first optical waveguide into two lights, two second optical waveguides, diffraction gratings provided individually on the two second optical waveguides, and an optical detector for detecting light guided through one of the two diffraction gratings, and the components are provided on the same substrate. The optical semiconductor device is configured such that reflection returning lights from the diffraction gratings side to the semiconductor laser side interfere with each other and thereby extinguish each other at the optical coupler and the phases of the reflection returning lights from the diffraction gratings side are displaced from each other by ? at the optical coupler portion.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: July 19, 2011
    Assignee: Fujitsu Limited
    Inventor: Akinori Hayakawa
  • Publication number: 20110164644
    Abstract: An optoelectronic semiconductor chip includes a semiconductor body containing an active region, a mirror layer, and contact points arranged between the semiconductor body and the mirror layer and providing a spacing D between the semiconductor body and the mirror layer, whereby at least one cavity is formed between the mirror layer and the semiconductor body and the at least one cavity contains a gas.
    Type: Application
    Filed: August 5, 2009
    Publication date: July 7, 2011
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Vincent Grolier, Andreas Plössl
  • Publication number: 20110158280
    Abstract: The present invention provides a photonic crystal surface emitting laser with which an arbitrary beam shape can be obtained and which enables design with a high degree of freedom. The surface emitting laser including a photonic crystal having a resonance mode in an in-plane direction parallel to a substrate includes a reflecting mirror for reflecting light emitted from the photonic crystal in a normal direction of the substrate and a spacer layer interposed between the reflecting mirror and the photonic crystal, wherein a nonuniform in-plane distribution is provided to the characteristics of one of the reflecting mirror and the spacer layer, so that a Q-value, which is a resonator characteristic in the normal direction of the substrate in the surface emitting laser, has a nonuniform in-plane distribution.
    Type: Application
    Filed: April 8, 2010
    Publication date: June 30, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yasuhiro Nagatomo, Takeshi Uchida
  • Patent number: 7970036
    Abstract: An organic semiconductor laser, which is produced integrally with an electrically operable inorganic LED (1), and also the method for producing said laser.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: June 28, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Norbert Linder, Martin Reufer
  • Patent number: 7968362
    Abstract: A semiconductor light-emitting device has a semiconductor layer containing Al between a substrate and an active layer containing nitrogen, wherein Al and oxygen are removed from a growth chamber before growing said active layer and a concentration of oxygen incorporated into said active layer together with Al is set to a level such that said semiconductor light-emitting device can perform a continuous laser oscillation at room temperature.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: June 28, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Takashi Takahashi, Morimasa Kaminishi, Shunichi Sato, Akihiro Itoh, Naoto Jikutani
  • Publication number: 20110150023
    Abstract: A nitride semiconductor laser device includes: a stack, the stack including an n-type layer and a p-type layer each including a nitride semiconductor; an n-electrode electrically coupled to the n-type layer; a p-electrode electrically coupled to the p-type layer; and a thermally conductive portion disposed in contact with the p-type layer in a region which is different from the region where the p-electrode is connected, wherein the thermally conductive portion is electrically insulated from the p-electrode. Manufacturing steps specific to nitride semiconductors are employed to form the device. An optical apparatus, such as an optical disc device, a display device, or a lighting device includes such a nitride laser device and depends its functions thereto.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 23, 2011
    Inventor: Yu HIGUCHI
  • Patent number: 7965750
    Abstract: A semiconductor light emitting device includes a first-conductivity-type first multilayer film reflecting mirror, and a second-conductivity-type second multilayer film reflecting mirror; a cavity layer; and a first conductive section, a second conductive section, and a third conductive section. The cavity layer has a stacked configuration including a first-conductivity-type or undoped first cladding layer, an undoped first active layer, a second-conductivity-type or undoped second cladding layer, a second-conductivity-type first contact layer, a first-conductivity-type second contact layer, a first-conductivity-type or undoped third cladding layer, an undoped second active layer, and a second-conductivity-type or undoped fourth cladding layer.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: June 21, 2011
    Assignee: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Yoshinori Yamauchi, Rintaro Koda, Tomoyuki Oki, Naoki Jogan
  • Patent number: 7961769
    Abstract: An object is to provide a wavelength tunable semiconductor laser device, a controller for the same and a control method for the same, which prevent wavelength drifts. The wavelength tunable semiconductor laser device includes an active region for oscillating a laser beam, and a wavelength tuning region for shifting a wavelength of the laser beam. In this device, a thermal compensation region for converting most of the inputted electric power to heat is provided adjacent to the wavelength tuning region, and the sum of an electric power inputted into the wavelength tuning region and an electric power inputted into the thermal compensation region is always kept constant.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 14, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Naoki Fujiwara, Hiroyuki Ishii, Hiromi Oohashi, Hiroshi Okamoto
  • Patent number: 7961768
    Abstract: An integrated semiconductor laser device capable of improving the properties of a laser beam and reducing the cost for optical axis adjustment is provided. This integrated semiconductor laser device comprises a first semiconductor laser element including a first emission region and having either a projecting portion or a recess portion and a second semiconductor laser element including a second emission region and having either a recess portion or a projecting portion. Either the projecting portion or the recess portion of the first semiconductor laser element is fitted to either the recess portion or the projecting portion of the second semiconductor laser element.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: June 14, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroaki Izu, Tsutomu Yamaguchi, Hiroki Ohbo, Ryoji Hiroyama, Masayuki Hata, Kiyoshi Oota
  • Patent number: 7959297
    Abstract: A digital image projector includes a light assembly configured to project light along a light path from at least one laser array light source, the projected light having an overlapping far field illumination in a far field illumination portion of the light path; a temporally varying optical phase shifting device configured to be in the light path; an optical integrator configured to be in the light path; a spatial light modulator located downstream of the temporally varying optical phase shifting device and the optical integrator in the light path, the spatial light modulator configured to be located in the far field illumination portion of the light path; and projection optics located downstream of the spatial light modulator in the light path, the projection optics configured to direct substantially speckle free light from the spatial light modulator toward a display surface.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: June 14, 2011
    Assignee: Eastman Kodak Company
    Inventors: Barry D. Silverstein, Gary E. Nothhard
  • Publication number: 20110135318
    Abstract: A vertical cavity surface emitting laser that includes: a substrate; a first semiconductor multilayer reflector; an active region; a second semiconductor multilayer reflector; a columnar structure formed from the second semiconductor multilayer reflector to the first semiconductor multilayer reflector; a current narrowing layer formed inside of the columnar structure and having a conductive region surrounded by an oxidization region; a first electrode formed at a top of the columnar structure, electrically connected to the second semiconductor multilayer reflector and defining a beam window; a first insulating film comprised of a material with a first refractive index and formed on the first electrode to cover the beam window; and a second insulating film comprised of a material with a second refractive index and formed on the first insulating film, of which a radius is smaller than a radius of the conductive region.
    Type: Application
    Filed: May 17, 2010
    Publication date: June 9, 2011
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Kazutaka Takeda, Masahiro Yoshikawa, Kazuyuki Matsushita
  • Patent number: 7957437
    Abstract: Disclosed is a semiconductor laser in which the substrate comprises at least three independent functional sections in the direction of light wave propagation, said functional sections serving different functions and being individually triggered by means of electrodes via electrode leads. An intensification zone, a grid zone, and a phase adjustment zone are provided as functional sections. The light wave is optically intensified in the intensification zone while the phase of the advancing and returning wave is adjusted in the phase adjustment zone. The grid zone is used for selecting the wavelength and adjusting the intensity of coupling between the intensification zone and the phase adjustment zone.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: June 7, 2011
    Assignee: Nanoplus Nanosystems and Technologies GmbH
    Inventors: Johann Peter Reithmaier, Lars Bach, Wolfgang Kaiser
  • Patent number: 7957448
    Abstract: The optoelectronic circuit includes a photoreceptor (1) made in a silicon semiconductor substrate (4), and a monomode VCSEL laser diode (2) made in a gallium arsenide substrate. The photoreceptor includes at least one photosensitive area with a pixel array for picking up light and an area with a control and processing unit for the signals supplied by the pixels. The laser diode is mounted and electrically connected directly on one part of the photoreceptor. The laser diode is connected by a conductive terminal (12) to a first contact pad (3) at the bottom of a cavity (13) made through a passivation layer (5) of the photoreceptor. An electrode (17) on the top of the diode is connected by a metal wire (15) to a second contact pad (3) of the photoreceptor. The photoreceptor controls the diode directly via the electrode and the conductive terminal to generate a laser beam (L).
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: June 7, 2011
    Assignee: EM Microelectronic-Marin S.A.
    Inventors: Michel Willemin, André Grandjean, Victorio Quercia, Abdul-Hamid Kayal, Steve Tanner
  • Publication number: 20110128987
    Abstract: A high-power semiconductor laser includes a support block, an anode metal plate, a cathode metal plate and a chip. The support block has a step, and the two ends of the support block have bosses, in which there are screw holes. The chip is welded to an insulation plate, which is attached to the support block. The anode metal plate and the cathode metal plate are, respectively, welded with an anode insulation plate and a cathode insulation plate, which are welded on the step of the support block. The cathode of the chip is connected with a metal connecting plate. The metal connecting plate is connected to the anode metal plate and the cathode metal plate. The insulation plate and the anode metal plate are bonded using a gold wire in press-welding.
    Type: Application
    Filed: December 28, 2009
    Publication date: June 2, 2011
    Applicant: XI'AN FOCUSLIGHT TECHNOLOGIES CO., LTD.
    Inventor: Xingsheng Liu
  • Publication number: 20110122910
    Abstract: The present invention provides a semiconductor device realizing reduced occurrence of a defect such as a crack at the time of adhering elements to each other. The semiconductor device includes a first element and a second element adhered to each other. At least one of the first and second elements has a pressure relaxation layer on the side facing the other of the first and second elements, and the pressure relaxation layer includes a semiconductor part having a projection/recess part including a projection projected toward the other element, and a resin part filled in a recess in the projection/recess part.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Applicant: Sony Corporation
    Inventors: Rintaro Koda, Takahiro Arakida, Yuji Masui, Tomoyuki Oki
  • Patent number: 7940818
    Abstract: This invention relates to a self-induced transparency mode-locked quantum cascade laser having an active section comprising a plurality of quantum well layers deposited in alternating layers on a plurality of quantum barrier layers and form a sequence of alternating gain and absorbing periods, said alternating gain and absorbing periods interleaved along the growth axis of the active section.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: May 10, 2011
    Assignee: The University of Maryland, Baltimore County
    Inventors: Curtis Robert Menyuk, Muhammad A. Talukder
  • Patent number: 7933302
    Abstract: A laser arrangement has at least one laser diode apparatus with a side surface which laterally limits the laser diode apparatus. The laser arrangement has a plurality of active regions arranged laterally side by side and configured to generate radiation. The laser diode apparatus is arranged on a mount. The distance between the side surface and an edge which laterally limits the mount on the part of the side surface is shorter than the distance between the side surface and the active region closest to the side surface. Additionally or alternatively, the distance between the side surface and the edge is shorter than one of the distances between two adjacent active regions of the laser diode apparatus.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: April 26, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Harald König, Peter Brick, Jürgen Moosburger
  • Publication number: 20110085572
    Abstract: A tunable laser includes a substrate comprising a silicon material and a gain medium coupled to the substrate. The gain medium includes a compound semiconductor material. The tunable laser also includes a waveguide disposed in the substrate and optically coupled to the gain medium, a first wavelength selective element characterized by a first reflectance spectrum and disposed in the substrate, and a second wavelength selective element characterized by a second reflectance spectrum and disposed in the substrate. The tunable laser further includes an optical coupler disposed in the substrate and joining the first wavelength selective element, the second wavelength selective element, and the waveguide and an output mirror.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: Skorpios Technologies, Inc.
    Inventors: John Dallesasse, Stephen B. Krasulick, William Kozlovsky
  • Patent number: 7924897
    Abstract: A semiconductor laser device includes a chip obtained from a substrate and a semiconductor multi-layer formed on the substrate. The semiconductor multi-layer is formed from a plurality of semiconductor layers of a semiconductor material having a hexagonal structure, and includes a stripe-shaped wave guide portion. The chip includes two chip end facets that extend in a direction crossing an extending direction of the wave guide portion. Each of regions on both sides of the wave guide portion in at least one of the chip end facets has a notch portion formed by notching a part of the chip, and the notch portion exposes a first wall surface connecting to the chip end facet and a second wall surface connecting to the chip side facet. An angle between an extending direction of the first wall surface in at least one of the two notch portions and an extending direction of the cleavage facet is in a range of about 10 degrees to about 40 degrees.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: April 12, 2011
    Assignee: Panasonic Corporation
    Inventor: Hiroshi Ohno
  • Patent number: 7916768
    Abstract: A Vertical-Cavity Surface-Emitting Laser (VCSEL) is disclosed, comprising an optical cavity bounded by a top mirror and a bottom mirror, wherein the top mirror has multiple layers of alternating refractive index, of which the bottom three or more layers of the top mirror are deep oxidation layers having an increased oxidation length, a light emitting active region between the top mirror and the bottom mirror, and an aperture with tapered edges between the active region and the top mirror, wherein the aperture has a thickness, a taper length, an oxide aperture length, a taper angle, and an aperture opening diameter designed to reduce an optical mode's diameter without significantly increasing the optical mode's round trip scattering loss.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: March 29, 2011
    Assignee: The Regents of the University of California
    Inventors: Yu-Chia Chang, Larry A. Coldren
  • Publication number: 20110069729
    Abstract: A semiconductor light emitting device includes a pump light source, a gain structure, and an out-coupling mirror. The gain structure is comprised of InGaN layers that have resonant excitation absorption at the pump wavelength. Light from the pump light source causes the gain structure to emit light, which is reflected by the out-coupling mirror back to the gain structure. A distributed Bragg reflector causes internal reflection within the gain structure. The out-coupling mirror permits light having sufficient energy to pass therethrough for use external to the device. A frequency doubling structure may be disposed between the gain structure and the out-coupling mirror. Output wavelengths in the deep-UV spectrum may be achieved.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: André Strittmatter, Christopher L. Chua, Peter Kiesel, Noble M. Johnson
  • Patent number: 7903710
    Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: March 8, 2011
    Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
  • Patent number: 7903707
    Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: March 8, 2011
    Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
  • Patent number: 7903708
    Abstract: A nitride semiconductor laser device uses a substrate with low defect density, contains reduced strains inside a nitride semiconductor film, and thus offers a satisfactorily long useful life. On a GaN substrate (10) with a defect density as low as 106 cm?2 or less, a stripe-shaped depressed portion (16) is formed by etching. On this substrate (10), a nitride semiconductor film (11) is grown, and a laser stripe (12) is formed off the area right above the depressed portion (16). With this structure, the laser stripe (12) is free from strains, and the semiconductor laser device offers a long useful life. Moreover, the nitride semiconductor film (11) develops reduced cracks, resulting in a greatly increased yield rate.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: March 8, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takeshi Kamikawa, Eiji Yamada, Masahiro Araki, Yoshika Kaneko
  • Publication number: 20110051770
    Abstract: A semiconductor laser device includes a semiconductor-layer lamination (20) having an active layer (26) formed over a substrate (11). The semiconductor-layer lamination (20) includes a front face which emits light, a strip-shaped optical waveguide formed in a direction transverse to the front face, a first region (20A) extending in a direction transverse to the front face, a second region (20B) having a top surface whose height is different from that of the first region (20A), and a planar region (20C) formed between the first region (20A) and the second region (20B), and having periodic surface undulations whose variation is smaller than that of the second region (20B). The optical waveguide is formed in the planar region (20C).
    Type: Application
    Filed: October 16, 2009
    Publication date: March 3, 2011
    Inventor: Masao Kawaguchi
  • Publication number: 20110051772
    Abstract: A semiconductor laser device includes a laser diode provided on a semiconductor substrate, the laser diode including a first optical waveguide having a gain waveguide, a plurality of photodiodes, a first wavelength-selective filter having periodic transmission peaks, and a second wavelength-selective filter having periodic transmission peaks, the period of the transmission peaks of the second wavelength-selective filter being different from the period of the transmission peaks of the first wavelength-selective filter. Furthermore, two photodiodes among the plurality of photodiodes are optically coupled to the first optical waveguide through the first and second wavelength-selective filters, respectively.
    Type: Application
    Filed: June 7, 2010
    Publication date: March 3, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Chie FUKUDA
  • Publication number: 20110051771
    Abstract: An optoelectronic component contains an epitaxial layer sequence (6) based on a nitride compound semiconductor having an active layer (4) and, wherein the epitaxial growth substrate (1) comprises Al1-xGaxN, where 0<x<0.95. In the case of a method for producing an optoelectronic component an epitaxial growth substrate (1) of Al1-x(InyGa1-y)xN or In1-xGaxN, where 0<x<0.99 and 0?y?1 is provided and an epitaxial layer sequence (6) which is based on a nitride compound semiconductor and contains an active layer (4) is grown thereon.
    Type: Application
    Filed: January 28, 2009
    Publication date: March 3, 2011
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Adrian Stefan Avramescu, Christoph Eichler, Uwe Strauss, Volke Härle
  • Patent number: 7899100
    Abstract: In a GaN-based laser device having a GaN-based semiconductor stacked-layered structure including a light emitting layer, the semiconductor stacked-layered structure includes a ridge stripe structure causing a stripe-shaped waveguide, and has side surfaces opposite to each other to sandwich the stripe-shaped waveguide in its width direction therebetween. At least part of at least one of the side surfaces is processed to prevent the stripe-shaped waveguide from functioning as a Fabry-Perot resonator in the width direction.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: March 1, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshiyuki Kawakami, Tomoki Ono
  • Publication number: 20110032961
    Abstract: This invention relates to a monolithic folded F-P cavity used for semiconductor laser, which is composed of a monolithic optical element. The monolithic optical element is made of the material having low propagation loss for a certain spectrum range. Light entering through an input/output coupling surface of the monolithic optical element is reflected several times between the input/output coupling surface and at least two high reflection surfaces within the monolithic optical element, and then at least one part of the light exits through the input/output coupling surface along the path which is collinear with the incident light but in an opposite direction. By means of integrating reflecting and coupling parts of the folded F-P cavity within a single monolithic optical material, this invention greatly improves the reliability of the F-P cavity, and has other advantages, such as insensitive to outside interferences, smaller size, simpler structure and easy usage.
    Type: Application
    Filed: January 22, 2009
    Publication date: February 10, 2011
    Inventors: Erjun Zang, Jianping Cao, Ye Li, Zhanjun Fang
  • Patent number: 7885307
    Abstract: A vertical-cavity surface-emitting (VCSEL) device has a layer structure including a top DBR mirror, an active layer, a current confinement oxide layer, and a bottom DBR mirror, the layer structure being configured as a mesa post. The current confinement oxide layer has a central current injection area and a peripheral current blocking area oxidized from the sidewall of the mesa post. The mesa post has a substantially square cross-sectional shape, thereby allowing an oxidation heat treatment to configure a substantially circular current injection area in the current-confinement oxide layer.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: February 8, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kinuka Tanabe, Yoshihiko Ikenaga, Norihiro Iwai, Takeo Kageyama, Koji Hiraiwa, Hirokazu Yoshikawa
  • Publication number: 20110026558
    Abstract: A fiber coupled semiconductor device and a method of manufacturing of such a device are disclosed. The method provides an improved stability of optical coupling during assembly of the device, whereby a higher optical power levels and higher overall efficiency of the fiber coupled device can be achieved. The improvement is achieved by attaching the optical fiber to a vertical mounting surface of a fiber mount. The platform holding the semiconductor chip and the optical fiber can be mounted onto a spacer mounted on a base. The spacer has an area smaller than the area of the platform, for mechanical decoupling of thermally induced deformation of the base from a deformation of the platform of the semiconductor device. Optionally, attaching the fiber mount to a submount of the semiconductor chip further improves thermal stability of the packaged device.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Applicant: JDS Uniphase Corporation
    Inventors: Reddy RAJU, Richard L. Duesterberg, Jay A. Skidmore, Prasad Yalamanchili, Xiangdong Qiu
  • Patent number: 7881356
    Abstract: Second and third p-side pad electrodes are formed on an insulating film of a blue-violet semiconductor laser device on both sides of a first p-side pad electrode. The second p-side pad electrode and the third p-side pad electrode are formed separately from each other. Solder films are formed on the upper surfaces of the second and third p-side pad electrodes respectively. A fourth p-side pad electrode of a red semiconductor laser device is bonded onto the second p-side pad electrode with the corresponding solder film sandwiched therebetween. A fifth p-side pad electrode of an infrared semiconductor laser device is bonded onto the third p-side pad electrode with the corresponding solder film sandwiched therebetween. The second and third p-side pad electrodes are formed separately from each other, so that the fourth and fifth p-side pad electrodes are electrically isolated from each other.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: February 1, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yasuyuki Bessho, Masayuki Hata, Daijiro Inoue
  • Patent number: 7881358
    Abstract: A surface emitting laser is provided with a first multilayer Bragg reflecting mirror including a first layer, a second multilayer Bragg reflecting mirror including a second layer, and an optical resonator unit that is held between these multilayer Bragg reflecting mirrors and includes an active layer. Further, the optical resonator unit contacts with the first layer and second layer respectively. The effective refraction index neff of the resonator unit is larger than either the first layer or the second layer, and an optical length neffL of the optical resonator unit has a relationship with an oscillating wavelength ? of the surface emitting laser to satisfy the following relationship: 0.5?<neffL?0.7?.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 1, 2011
    Assignee: NEC Corporation
    Inventors: Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki, Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
  • Patent number: 7881357
    Abstract: In a vertical cavity surface-emitting semiconductor laser device, first and second resonance wavelengths which are different are provided while a first resonator and a second resonator are coupled optically, and a gain of an active layer at the first resonance wavelength on the side of short wavelength is higher than that at the second resonance wavelength on the side of long wavelength. An absorption coefficient of an optical absorption layer when no electric field is applied is small for the first and second resonance wavelengths, and when an electric field is applied, an absorption coefficient of the optical absorption layer for the first resonance wavelength on the side of short wavelength is larger than that for the second resonance wavelength on the side of long wavelength.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: February 1, 2011
    Assignee: Ricoh Company, Ltd.
    Inventor: Takashi Takahashi
  • Patent number: 7875901
    Abstract: An optical device package comprises: a metal frame including a substrate and a rectangular die pad portion integrally connected to the substrate, wherein the substrate is a metal plate, and the die pad portion is bent from the substrate such that the die pad portion extends from the substrate at an angle of 90 degrees; signal lead pins extend in the opposite directions from the die pad portion relative to the substrate such that the first lead pins intersect the principal surfaces of the substrate at a right angle and are spaced apart from the metal frame; and a molded resin member including a plate-like resin base extending across and in contact with one of the principal surfaces of the substrate, wherein the signal lead pins protrude from a surface of the resin base; surfaces of the signal lead pins are covered with the molded resin member; and the metal frame and the signal lead pins are secured in place by the molded resin member.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: January 25, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Junji Fujino, Hideyuki Tanaka, Kenzo Mori
  • Patent number: 7876799
    Abstract: A semiconductor laser (a first semiconductor optical device) and an optical modulator (a second semiconductor optical device) are integrated on the same n-type InP substrate. The semiconductor laser butt-joined to the optical modulator. Each of the semiconductor laser and the optical modulator has a Be-doped p-type InGaAs contact layer. The p-type InGaAs contact layers have a Be-doping concentration of 7Ă—1018 cm?3 or more, and a thickness of 300 nm or less.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: January 25, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takeshi Yamatoya, Chikara Watatani
  • Patent number: 7873092
    Abstract: The present invention provides a laser diode realizing improved light detection precision. The laser diode includes a stack structure in which a first semiconductor layer of a first conduction type, an active layer, and a second semiconductor layer of a second conduction type are included in this order; a photodetection layer; and a plurality of light absorption layers provided on the corresponding position of antinodes or nodes of standing waves of light output from the active layer.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 18, 2011
    Assignee: Sony Corporation
    Inventors: Yuji Masui, Takahiro Arakida, Yoshinori Yamauchi, Norihiko Yamaguchi, Rintaro Koda, Tomoyuki Oki
  • Patent number: 7873082
    Abstract: A semiconductor integrated device includes a plurality of wavelength tunable lasers, provided on a semiconductor substrate, and having oscillation wavelength ranges different from each other. Each of the wavelength tunable lasers includes an optical waveguide including, alternately in an optical axis direction, a gain waveguide portion and a wavelength controlling waveguide portion, and a diffraction grating provided over both the gain waveguide portion and the wavelength controlling waveguide portion. A value obtained by dividing a width of the wavelength controlling waveguide portion by a width of the gain waveguide portion in one of the plurality of wavelength tunable lasers is larger than a value obtained by dividing a width of the wavelength controlling waveguide portion by a width of the gain waveguide portion in a different one of the wavelength tunable lasers, which oscillates on a shorter wavelength side with respect to an oscillation wavelength range of the one wavelength tunable laser.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: January 18, 2011
    Assignee: Fujitsu Limited
    Inventor: Kazumasa Takabayashi
  • Publication number: 20110002352
    Abstract: An optical waveguide integrated semiconductor optical device includes a laser and an optical waveguide. The laser includes an active layer and a first cladding layer which are stacked on a second cladding layer. The optical waveguide includes an optical guiding layer and an undoped InP layer which are also stacked on the second cladding layer. A high resistance layer is located between the top surface of the optical guiding layer and a surface of the undoped InP layer and between a side of the first cladding layer and a side of the undoped InP layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: January 6, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Tohru Takiguchi
  • Patent number: 7852898
    Abstract: On a first region that is a part of one main face of a semiconductor substrate 1, a first semiconductor laser structure 10 is formed so as to have a first lower cladding layer 3, a first active layer 4 with a first quantum well structure and first upper cladding layers 5, 7, which are layered in this order from the semiconductor substrate side, thereby forming a first resonator. On a second region that is different from the first region, a second semiconductor laser structure 20 is formed so as to have a second lower cladding layer 13, a second active layer 14 with a second quantum well structure and a second upper cladding layer 15, 17, which are layered in this order, thereby forming a second resonator. End face coating films 31, 32 are formed on facets of the first and the second resonators, and a nitrogen-containing layer 30 is formed between the facets of the first and the second resonators and the facet coating film.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Takeshi Yokoyama, Takayuki Kashima, Kouji Makita
  • Patent number: 7848375
    Abstract: Embodiments disclosed herein relate to a laser die. The laser die includes a base epitaxial portion, a mesa portion, and first and second facets, wherein at least one of the first and second facets is flared such that an area of the facet is increased. Embodiments disclosed herein also relate to a high-speed laser. The high-speed laser includes a substrate, an active region positioned above the substrate, a mesa positioned above the active region, and one or more facets, wherein at least one of the one or more facets includes a flared portion configured to increase an area of the facet.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: December 7, 2010
    Assignee: Finisar Corporation
    Inventor: Sumesh Mani K. Thiyagarajan
  • Patent number: 7843980
    Abstract: An inventive semiconductor laser diode includes a Group III nitride semiconductor layered structure having a major crystal growth plane defined by a non-polar or semi-polar-plane. The Group III nitride semiconductor layered structure includes: a p-type cladding layer and an n-type cladding layer; an In-containing p-type guide layer and an In-containing n-type guide layer held between the p-type cladding layer and the n-type cladding layer; and an In-containing light emitting layer held between the p-type guide layer and the n-type guide layer.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 30, 2010
    Assignee: Rohm Co., Ltd.
    Inventors: Hiroaki Ohta, Kuniyoshi Okamoto
  • Publication number: 20100290497
    Abstract: Embodiments of the invention include a laser structure having a delta doped active region for improved carrier confinement. The laser structure includes an n-type cladding layer, an n-type waveguide layer formed adjacent the n-type cladding layer, an active region formed adjacent the n-type waveguide layer, a p-type waveguide layer formed adjacent the active region, and a p-type cladding layer formed adjacent the p-type waveguide layer. The laser structure is configured so that a p-type dopant concentration increases across the active region from the n-type side of the active region to the p-type side of the active region and/or an n-type dopant concentration decreases across the active region from the n-type side of the active region to the p-type side of the active region. The delta doped active region provides improved carrier confinement, while eliminating the need for blocking layers, thereby reducing stress on the active region caused thereby.
    Type: Application
    Filed: December 28, 2007
    Publication date: November 18, 2010
    Applicant: AGERE SYSTEMS INC.
    Inventor: Joseph Michael Freund
  • Publication number: 20100290495
    Abstract: A laser device (1) comprises a ridge waveguide (2) comprising an upper cladding layer (5) and a lower cladding layer (6), between which is located an active layer (7). A ridge (8) formed in the upper cladding layer (5) defines the lateral width of a light guiding region (9) in the active layer (7). The ridge (8) is formed so that a portion (13) of the light guiding region (9) extends above the active layer (7) into the ridge (8). A plurality of lateral reflecting slots (15) extend laterally across the ridge (8) and extend into the ridge (8) to a depth sufficient to extend into the portion (13) of the light guiding region (9) which extends into the ridge (8) in order that the reflectivity of each lateral slot (15) is in the order of 2%.
    Type: Application
    Filed: September 20, 2007
    Publication date: November 18, 2010
    Applicants: THE PROVOST, FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNDIVEDED TRINITY, UNIVERSITY COLLEGE CORK, NATIONAL UNIVERSITY OF IRELAND, CORK
    Inventors: John F. Donegan, Wei-Hua Guo, Qiao-Yin Lu, Diarmuid Byrne, Brian Corbett, Paul Martin Lambkin, Brendan John Roycroft, Jan-Peter Engelstaedter, Frank Peters
  • Publication number: 20100284435
    Abstract: A semiconductor laser is provided, and a method of producing 600-1100 laser light, and a method of making a semiconductor laser is provided. The semiconductor laser includes a quantum well layer with a spectral profile of peak wavelength ?g, a laser gain region, a window region and an optical feedback region. The laser gain region is configured to accept a current injected into the quantum well layer. The window region includes a light emitting facet, wherein the window region is not configured to receive current-injection into the quantum well layer. The optical feedback region has a spectral profile of peak wavelength ?of, and ?of>?g.
    Type: Application
    Filed: July 25, 2008
    Publication date: November 11, 2010
    Inventors: Martin Achtenhagen, Linglin Jiang
  • Patent number: RE42292
    Abstract: A lock in pinned photodiode photodetector includes a plurality of output ports which are sequentially enabled. Each time when the output port is enabled is considered to be a different bin of time. A specified pattern is sent, and the output bins are investigated to look for that pattern. The time when the pattern is received indicates the time of flight. A CMOS active pixel image sensor includes a plurality of pinned photodiode photodetectors that use a common output transistor. In one configuration, the charge from two or more pinned photodiodes may be binned together and applied to the gate of an output transistor.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: April 12, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Vladimir Berezin, Alexander I. Krymski, Eric R. Fossum