Specific Nuclides Patents (Class 376/161)
  • Patent number: 9360586
    Abstract: Borehole logging methods and apparatuses for estimating formation properties using nuclear radiation, particularly an apparatus and method for estimating amounts of silicon and/or oxygen in the formation. Methods include estimating a formation property using an oxygen estimate and at least a formation lithology. The method may include using nuclear radiation information from at least one nuclear radiation detector generate the oxygen estimate. The apparatus may include at least one nuclear radiation detector. The apparatuses may include an information processing device to perform the methods.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: June 7, 2016
    Assignee: Baker Hughes Incorporated
    Inventors: David M. Chace, Rafay Zahid Ansari, Feyzi Inanc, W. Allen Gilchrist, Michael W. Bruner, Pam Bruner
  • Patent number: 7599463
    Abstract: A remote sensing device for detecting materials of varying atomic numbers and systems and methods relating thereto. A system for identifying a material includes a photon beam flux monitor for resolving a high-energy beam. A method for identifying a material includes casting an incident photon beam on the material and detecting an emerging photon beam with an array of fission-fragment detectors, a first set of scintillator paddles, and a second set of scintillator paddles.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: October 6, 2009
    Inventor: Philip L. Cole
  • Patent number: 6577697
    Abstract: A system and method for rapidly analyzing elemental abundances in rock or soil samples (14) under field conditions. The system uses a portable neutron source (12) to allow neutron activation analysis of elements having identifiable radioactive decay characteristics. A radiation detector (18) detects radiation released by the sample (14) and provides radiation testing results to an amplifier (26) for computing the concentration of trace elements in the sample with a high degree of accuracy.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: June 10, 2003
    Assignee: Southwest Research Institute
    Inventors: English C. Pearcy, Mark S. Jarzemba, James R. Weldy
  • Patent number: 5373538
    Abstract: System for the detection of substances and in particular explosives, by neutron irradiation thereof.It comprises means (4) for the irradiating, by neutrons, of an object (6) which may contain a substance, means (14) for detecting the gamma radiation which can be emitted by the object and means (18) for processing the signals supplied by the detection means. These processing means count the gamma photons of each line of a plurality of characteristic lines of at least one chemical element of the substance, determining for each line a probability of false detection of the chemical element associated with said line, determine the product of these probabilities, compare said product with a threshold fixed by users and notify the latter if the product is below the threshold, the object then being assumed to contain the substance.
    Type: Grant
    Filed: June 20, 1991
    Date of Patent: December 13, 1994
    Assignee: Commissariate a l'Energie Atomique
    Inventors: Gerard Grenier, Michel Rambaut
  • Patent number: 5219518
    Abstract: A nuclear spectroscopy method and apparatus for obtaining qualitative and quantitative information related to water flow, comprising the steps of:(1) irradiating the water flow with a source of neutrons of sufficient energy to interact with oxygen atoms in the water according to the activation reaction O.sup.16 (n,p)N.sup.16 ;(2) detecting and counting, with at least at a detector, the gamma rays emitted during disintegration of N.sup.16 ;(3) making a plot of the counts versus time; and(4) deriving from said plot information related to said water flow.The irradiating is advantageously interrupted after a given period of time, and is preferably immediately followed by the detection. The water flow velocity "V" is calculated from the formula V=d/t, where "d" is the distance between the source and the detector(s), and "t" is the time period between the irradiation and the time corresponding to a characteristic on said plot, representative of the water flow and departing from the N.sup.16 exponential decay curve.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: June 15, 1993
    Assignee: Schlumberger Technology Corporation
    Inventors: Donald C. McKeon, Jean-Remy Olesen, Hugh D. Scott
  • Patent number: 5078952
    Abstract: A nuclear detection system and method efficiently detects explosives in checked airline baggage or other parcels with a high probability of detection (PD) and a low probability of false alarms (PFA). The detection system detects the presence of nitrogen and its rough density distribution within the object under investigation by performing a nuclear-based analysis of the object. The detection system includes a source of thermal neutrons; an array of gamma ray detectors; a neutron detector; means for irradiating the object being examined to neutrons from the neutron source, which neutrons interact with the atomic nuclei of one or more specific elements, e.g.
    Type: Grant
    Filed: January 10, 1990
    Date of Patent: January 7, 1992
    Assignee: Science Applications International Corporation
    Inventors: Tsahi Gozani, Patrick M. Shea, Z. Peter Sawa