Rod Type Patents (Class 385/34)
  • Patent number: 8620121
    Abstract: An expanded-beam all-glass retroreflector for a fiber laser cavity. The retroreflector consists of a section of a tapered double-clad fiber for beam expansion, e.g. a tapered section of the laser fiber itself, or a piece of coreless fiber spliced to the laser fiber, and a reflective surface for reflection of the expanded beam back into laser cavity through the tapered fiber section.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: December 31, 2013
    Assignee: JDS Uniphase Corporation
    Inventor: Martin H. Muendel
  • Patent number: 8592768
    Abstract: A fiber optic evanescent absorption sensor. This invention makes use of two sources and one detection system, or one source and two detection systems, or two of each to determine a large range of absorbance with high accuracy for a fixed interaction length.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: November 26, 2013
    Assignee: University of South Florida
    Inventor: Nicholas Djeu
  • Publication number: 20130301987
    Abstract: An optical amplifier includes: a first optical fiber, through which seed light and excitation light propagate; an optical coupler that inputs the excitation light into the first optical fiber; a first lens to which the seed light and the excitation light output from the first optical fiber are input and which increases diameters of the seed light and the excitation light; a glass rod doped with rare earth elements to be excited by the excitation light, to which the seed light and the excitation light output from the first lens are input and which amplifies and outputs the seed light as output light; a second lens to which at least the output light output from the glass rod is input and which decreases a diameter of the output light; and a second optical fiber to which the output light output from the second lens is input.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 14, 2013
    Applicant: FUJIKURA LTD.
    Inventors: Yoshikiyo Noguchi, Michihiro Nakai
  • Patent number: 8573779
    Abstract: A lighting device is provided which efficiently achieves a high brightness and a high image quality by using a solid light source which has long service life and does not need mercury. The lighting device includes a first light source section, a second light source section, a second rod integrator for combining lights emitted from the first and second light source sections, and a first rod integrator for guiding the light from the first light source section, to the second rod integrator. On an incident surface of the second rod integrator, a first region on which the light emitted from the first light source section is incident and a second region on which the light emitted from the second light source section is incident do not overlap each other, and the surface area of the first region and the surface area of the second region are different from each other.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Shigekazu Yamagishi, Hiroshi Kitano, Yoshimasa Fushimi, Takaaki Tanaka
  • Patent number: 8567997
    Abstract: A single piece light guide is disclosed herein. The single piece light guide may include a light rod and a lens. The single piece light guide may be formed using injection molding. The light guide may have one or more regions between the light rod and the lens. A housing may be provided for the light guide. The housing may have an opening that physically supports the light rod. Therefore, the light rod may be secured into place, which may prevent misalignment during use. The one or more regions between the light rod and the lens may assist in assembling and holding the light guide in the housing.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: October 29, 2013
    Assignee: Asia Optical International Ltd.
    Inventors: Chien-chih Hsiung, Yu-Hsiang Huang, Wen-Lang Hung, Hung Kuang Yang
  • Patent number: 8565562
    Abstract: An optical lens of an optical connector includes alignment features for passive connection alignment. Fiber inserted into the lens is aligned with a fiber groove that restricts motion in at least one direction to align the fiber. The lens includes an alignment feature to passively align the lens with a mating alignment feature of a mating connector. The groove may, for example, be L-, V-, or U-shaped. The alignment feature can be a post with corresponding recess. Alignment can further be secured with a tab that constrains pivoting of the connectors when engaged.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 22, 2013
    Assignee: Intel Corporation
    Inventor: Jamyuen Ko
  • Patent number: 8538209
    Abstract: New designs of optical devices, particularly for dropping a selected wavelength or a group of wavelengths as well as demultiplexing a multiplexed signal into several signals, are disclosed. An optical device employs thin film filters with reflectors to reassemble as a fiber Bragg grating. Depending on implementation, a reflector may be a mirror or a coated substrate disposed in a unique way to reflect a light beam from a filter back to a common port of a device. The reflector may also be coated accordingly to bypass a certain portion of the light beam for other purposes. As a result, the optical devices so designed in accordance with the present invention are amenable to small footprint, enhanced impact performance, lower cost, and easier manufacturing process.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: September 17, 2013
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventor: Yao Li
  • Patent number: 8538210
    Abstract: Techniques for designing optical devices that can be manufactured in volume are disclosed. In an exemplary an optical assembly, to ensure that all collimators are on one side to facilitate efficient packaging, all collimators are positioned on both sides of a substrate. Thus one or more beam folding components are used to fold a light beam up and down through the collimators on top of the substrate and bottom of the substrate.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: September 17, 2013
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Frank Wu
  • Patent number: 8520990
    Abstract: The present invention provides improved collimating lens assemblies (32) which include: a singlemode fiber (38) terminating in a distal end; a step-index multimode fiber (44) having a proximal end abutting to the singlemode fiber distal end, and having a distal end; a graded-index multimode fiber (45) having a proximal end abutting the step-index multimode fiber distal end, and having a distal end; and a collimating lens (34) longitudinally spaced from the graded-index multimode fiber distal end by an intermediate air gap (43), and operatively arranged to collimate light rays emanating from the graded-index multimode fiber distal end. The improved collimating lens assembly is characterized by the fact that there is no epoxy, silicone gel or index-matching material between the graded-index multimode fiber distal end and the collimating lens.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 27, 2013
    Assignee: Moog Inc.
    Inventors: Norris E. Lewis, Martin J. Oosterhuis, K. Peter Lo
  • Patent number: 8509580
    Abstract: An optical amplifier includes: a first optical fiber, through which seed light and excitation light propagate; an optical coupler that inputs the excitation light into the first optical fiber; a first lens to which the seed light and the excitation light output from the first optical fiber are input and which increases diameters of the seed light and the excitation light; a glass rod doped with rare earth elements to be excited by the excitation light, to which the seed light and the excitation light output from the first lens are input and which amplifies and outputs the seed light as output light; a second lens to which at least the output light output from the glass rod is input and which decreases a diameter of the output light; and a second optical fiber to which the output light output from the second lens is input.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 13, 2013
    Assignee: Fujikura Ltd.
    Inventors: Yoshikiyo Noguchi, Michihiro Nakai
  • Patent number: 8509577
    Abstract: Embodiments of the invention provide a fiberoptic device that uses a gradient-index (GRIN) lens for focusing a light beam emitted by an optical fiber, but achieves a substantially longer focal length than that of a GRIN lens alone by placing a beam expander (e.g., no core fiber or step-index multimode fiber) between the terminal end of the optical fiber and the GRIN lens to simulate free space therebetween. In one embodiment, a fiberoptic device comprises an optical fiber having a fiber core and an end through which a light beam emits from the fiber core; a beam expander having a first end coupled to the end of the optical fiber and having a second end, the beam expander permitting the light beam emitting from the fiber core to pass from the first end to the second end and to expand from the first end to a larger size at the second end; and a gradient-index fiber lens coupled to the second end of the beam expander to receive the light beam from the beam expander and focus the light beam.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: August 13, 2013
    Assignee: St. Jude Medical, Inc.
    Inventor: Yu Liu
  • Patent number: 8503840
    Abstract: Method and apparatus for forming an optical-fiber-array assembly, which include providing a plurality of optical fibers including a first optical fiber and a second optical fiber, providing a fiber-array plate that includes a first surface and a second surface, connecting the plurality of optical fibers to the first surface of the fiber-array plate, transmitting a plurality of optical signals through the optical fibers into the fiber-array plate at the first surface of the fiber-array plate, and emitting from the second surface of the fiber-array plate a composite output beam having light from the plurality of optical signals. Optionally, the first surface of the fiber-array plate includes indicia configured to assist in the alignment of the plurality of optical fibers on the first surface of the fiber-array plate. In some embodiments, the second surface of the fiber-array plate includes a plurality of beam-shaping optics configured to shape the composite output beam.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Yongdan Hu, Charles A. Lemaire
  • Patent number: 8491125
    Abstract: A lighting device configured to efficiently combine light beams emitted from a plurality of light sources, and to emit high output light while minimizing light loss, and a projection type display apparatus including the lighting device. The lighting device includes: a first light source and a second light source; two converging lenses for converging light beams emitted from the first and second light sources; two right-angle prisms for bending the light beams emitted from the first and second light sources; and a composite rod integrator for combining the light beams emitted from the first and second light sources. Between an exit surface of each right-angle prism and an incident surface of the composite rod integrator, a predetermined air gap is provided. The focal point of each converging lens is located on an incident surface of each right-angle prism.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: July 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Shigekazu Yamagishi, Hiroki Sugiyama, Hiroshi Kitano, Yoshimasa Fushimi, Hirokazu Sakaguchi
  • Patent number: 8491134
    Abstract: A light emitting apparatus includes a first rod integrator and a second rod integrator supported by a support substrate and a light emitting device disposed between the first rod integrator and the second rod integrator. The light emitting device emits a plurality of light beams to be incident on the first rod integrator and a plurality of light beams to be incident on the second rod integrator. Each of the rod integrators has a light incident surface on which the plurality of light beams are incident, a bent portion that changes the propagating direction of the plurality of incident light beams, and a light exiting surface through which the plurality of light beams mixed with each other exit.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: July 23, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Hiroyasu Kaseya
  • Patent number: 8488926
    Abstract: A photoelectric connector assembly includes a first lens member connecting with fiber cables and defining convex lenses opposite to fiber cables, a connector and a substrate embedded with waveguides. The connector defines a mating cavity running through a front face thereof and inserted with said first lens member. The connector includes terminals with contacting sections exposing to the mating cavity, a second lens members. The second lens member is located at back of the first lens member and defines first convex lenses at a front face thereof and second convex lenses at a rear face thereof. The first convex lenses are coupled with the convex lens of the first lens member. The substrate defines light ports at free ends of the waveguides. The substrate is seated with the connector and the light ports are coupled with the second convex lenses of the second lens member.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: July 16, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Yen-Chih Chang, Wen-Yi Hsieh
  • Patent number: 8469571
    Abstract: A single piece light guide is disclosed herein. The single piece light guide may include a light rod and a lens. The single piece light guide may be formed using injection molding. The light guide may have one or more regions between the light rod and the lens. A housing may be provided for the light guide. The housing may have an opening that physically supports the light rod. Therefore, the light rod may be secured into place, which may prevent misalignment during use. The one or more regions between the light rod and the lens may assist in assembling and holding the light guide in the housing.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: June 25, 2013
    Assignee: Asia Optical International Ltd.
    Inventors: Hung Kuang Yang, Chien-chih Hsiung, Yu-Hsiang Huang, Wen-Lang Hung
  • Patent number: 8463092
    Abstract: A photovoltaic (PV) system includes a fiber optical waveguide comprising an active core that hosts material configured to absorb and emit light, a cladding layer surrounding the active core, the cladding layer being configured to allow ambient light to pass through the cladding layer, and an exit port located proximate an end of the waveguide. The PV system further comprises one or more solar cells disposed at the exit port of the waveguide. The waveguide is configured to guide light to the one or more solar cells. Another photovoltaic (PV) system includes a waveguide comprising an active cladding layer hosting material configured to absorb and emit light, and a core layer configured to confine light emitted by the active cladding layer. The PV system further includes one or more solar cells disposed proximate the waveguide. The core layer is configured to guide light to the one or more solar cells.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: June 11, 2013
    Assignee: The University of North Carolina at Charlotte
    Inventor: Faramarz Farahi
  • Patent number: 8427725
    Abstract: The present invention relates to a light modulating device, comprising a SLM and a pixelated optical element, in which a group of at least two adjacent pixels of the SLM in combination with a corresponding group of pixels in the pixelated optical element form a macropixel, the pixelated optical element being of a type such that its pixels comprise a fixed content, each macropixel being used to represent a numerical value which is manifested physically by the states of the pixels of the SLM and the content of the pixels of the pixelated optical element which form the macropixel.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 23, 2013
    Assignee: Seereal Technologies S.A.
    Inventors: Gerald Futterer, Bo Kroll, Steffen Buschbeck
  • Patent number: 8419622
    Abstract: A first fiber stub incorporating a first GI fiber is connected to a first optical fiber by a PC connection. The first GI fiber expands a beam diameter of light transmitted by the first optical fiber and collimates this light. A second fiber stub is connected to a second optical fiber by the PC connection. The second fiber stub, facing the first fiber stub across a predetermined gap G therebetween, converges the light transmitted from the first fiber stub using a second GI fiber incorporated therein. The second fiber stub transmits the converged light to the second optical fiber. When the first fiber stub or the second fiber stub is damaged, the first fiber stub or the second fiber stub is pulled out from a first sleeve or a second sleeve, respectively for replacement.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 16, 2013
    Assignee: Fujifilm Corporation
    Inventor: Shinichi Shimotsu
  • Patent number: 8416489
    Abstract: The present invention relates to a white light source, and particularly to a white light source with crystal fiber and a method for color temperature tuning thereof. The white light source of the present invention comprises a pumping source for providing a first-color light, and a gradient index lens for coupling the first-color light into a crystal fiber. The crystal fiber absorbs a portion of the first-color light and generates a second-color light and a third-color light, and a white light with high color rendering index can be obtained. The crystal fiber is made of a first rare earth element oxide and a second rare earth element oxide co-doped yttrium aluminum garnet. The color temperature of the white light can be tuned by adjusting the position of the focus of the pumping light on the end section of the crystal fiber.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: April 9, 2013
    Assignee: National Taiwan University
    Inventors: Yen-Sheng Lin, Chien-Chung Tsai, Tzu-Chieh Cheng, Kuang-Yu Hsu, Dong-Yo Jheng, Sheng-Lung Huang
  • Patent number: 8385697
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 26, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vinayak Dangui, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8374470
    Abstract: A structure which stably achieves electrical coupling, and is capable of efficient optical coupling is provided. Optical coupling is achieved with the lower surface of an opto-electric package and the upper surface of an opto-electric hybrid board. On the other hand, electrical connection is achieved by means of contact between electrodes on the side surfaces of the opto-electric package and electrodes on the inner-wall side surfaces of a socket mounted on the opto-electric hybrid board. The electrodes are in electrical contact with electrical wiring.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: February 12, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Takuma Ban, Yasunobu Matsuoka
  • Patent number: 8358890
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: January 22, 2013
    Assignees: Boston Scientific Scimed, Inc., Coherent, Inc.
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Patent number: 8337098
    Abstract: When a light guide of a sleeve is inserted into a through-hole, a positioning rib is mounted in the holding recess and the sleeve is positioned in the housing. When a transmitting optical module is mounted in a housing space, a positioning protrusion of the sleeve enters a positioning recess of the transmitting optical module and contacts a stepped surface of the transmitting optical module. Thus, the transmitting optical module and a transmitting sleeve are positioned so as to face each other with high precision, and thereby the light transmission efficiency can be increased.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: December 25, 2012
    Assignee: ALPS Electric Co., Ltd.
    Inventor: Takashi Matsui
  • Publication number: 20120321249
    Abstract: Laser-processed gradient-index (GRIN) lenses and optical interface devices and assemblies that utilize the laser-processed GRIN lenses are disclosed. A GRIN lens assembly includes a cylindrical central section having a GRIN index profile, planar front and back surfaces, an outer surface, and a diameter D1 where 200 micrometers?D1?420 micrometers. An annular cladding of outer diameter D2 surrounds the central section outer surface and has front and back annular surfaces and a constant or a varying refractive index. One or both of the front and back annular surfaces may be curved. An optical fiber is optically coupled to the central section at the planar back surface. An optical interface device is formed by operably supporting at least one GRIN lens assembly with a support member. An optical interface assembly is formed by interfacing two optical interface devices.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Inventors: Jeffery Alan DeMeritt, Davide Domenico Fortusini, Pushkar Tandon
  • Patent number: 8320723
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 27, 2012
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8290318
    Abstract: A light trapping optical cover employing an optically transparent layer with a plurality of light deflecting elements. The transparent layer is configured for an unimpeded light passage through its body and has a broad light input surface and an opposing broad light output surface. The light deflecting elements deflect light incident into the transparent layer at a sufficiently high bend angle with respect to a surface normal and direct the deflected light toward a light harvesting device adjacent to the light output surface. The deflected light is retained by means of at least TIR in the system formed by the optical cover and the light harvesting device which allows for longer light propagation paths through the photoabsorptive layer of the device and for an improved light absorption. The optical cover may further employ a focusing array of light collectors being pairwise associated with the respective light deflecting elements.
    Type: Grant
    Filed: January 8, 2012
    Date of Patent: October 16, 2012
    Assignee: SVV Technology Innovations, Inc.
    Inventor: Sergiy Victorovich Vasylyev
  • Patent number: 8265434
    Abstract: In a lens system, such as for use in optical rotary joints, obliquely tilted cavities are inserted in a light path between light-waveguides and lenses to be coupled thereto in order to compensate lateral displacements between the light waveguides and the lenses. The cavities are filled with an optical medium having a predetermined refractive index in order to achieve a parallel displacement of a light-ray path, so that the ray path passes centrally through the lenses.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: September 11, 2012
    Assignee: Schleifring und Apparatebau GmbH
    Inventors: Gregor Popp, Matthias Rank
  • Patent number: 8244083
    Abstract: A method and apparatus for forming and controlling a microwave Bessel beam which may be utilized for examining microstructure including very early stage tumors.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: August 14, 2012
    Inventor: Abraham N. Seidman
  • Patent number: 8204347
    Abstract: In a conventional optical signal processing device, a confocal optical system is configured in which a focusing lens is positioned at a substantially-intermediate point of a free space optical path. Thus, the free space optical system had a long length. It has been difficult to reduce the size of the entire device. The optical signal processing device of the present invention uses a lens layout configuration different from the confocal optical system to thereby significantly reduce the length of the system. The optical signal processing device consists of the first focusing lens positioned in the close vicinity of a signal processing device, and the second focusing lens positioned in the vicinity of a dispersing element. A distance between the dispersing element and the signal processing device is approximately a focal length of the first focusing lens. Compared with the conventional technique, the length of the optical path can be halved.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: June 19, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Naoki Ooba, Kenya Suzuki, Motohaya Ishii, Shinji Mino, Atsushi Aratake
  • Publication number: 20120148193
    Abstract: A ferrule structure including a ferrule having an end face shape configured to incorporate at least a portion of a lens attached to an end of an optical fiber. The end face includes a cavity in which a circumference of the cavity is equal to or less than the outer diameter of the ferrule and larger than in inner diameter of an opening in the ferrule housing an optical fiber.
    Type: Application
    Filed: January 7, 2010
    Publication date: June 14, 2012
    Applicant: AFL Telecommunications LLC
    Inventors: Chandraika (John) Sugrim, Daiichiro Tanaka, Lalitkumar Bansal, Ted Lichoulas, Lawrence Srutkowski
  • Patent number: 8160408
    Abstract: An optical rotary joint comprises a first collimator arrangement for coupling-on first light-waveguides, and a second collimator arrangement for coupling-on second light waveguides, with the second collimator arrangement being supported to be rotatable relative to the first collimator arrangement about a rotation axis. At least one derotating optical element is provided in the light path between the first collimator arrangement and the second collimator arrangement. At least one collimator arrangement comprises a rod-shaped lens that is fastened on a support plate so that the axis of the lens is tilted at a given angle relative to the rotation axis of the rotary joint.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: April 17, 2012
    Assignee: Schleifring und Apparatebau
    Inventor: Gregor Popp
  • Patent number: 8145018
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, first optical fiber arrangement(s) can be provided which transceives at least one first electro-magnetic radiation, and can include at least one fiber. Second focusing arrangement(s) can be provided in optical communication with the optical fiber arrangement. The second arrangement can be configured to focus and provide there through the first electro-magnetic radiation. Third dispersive arrangement(s) can receive a particular radiation which is the first electro-magnetic radiation and/or the focused electro-magnetic radiation, and forward a dispersed radiation thereof to at least one section of the structure. At least one end of the fiber can be directly connected to the second focusing arrangement and/or the third dispersive arrangement.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 27, 2012
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Patent number: 8113721
    Abstract: An off-axis misalignment compensating fiber optic cable plug is provided. The plug has a cable interface to engage a fiber optic core end, where the fiber optic core has a cross-sectional area. The plug also includes a lens having a first surface to transceive an optical signal with a jack. The first surface has a cross-sectional area at least 30 times as large as the core cross-sectional area. The lens has a second surface to transceive optical signals with the fiber optic line core end. In one aspect, the lens has an axis and the lens first surface is convex with a radius of curvature capable of receiving an optical signal beam with a beam axis of up to ±2 degrees off from the lens axis. Even 2 degrees off-axis, the lens is able to focus the beam on the fiber optic line core end.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: February 14, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy
  • Patent number: 8109675
    Abstract: An optical-electrical processing jack is provided. The optical processing jack includes an optical jack with a jack housing having walls and an orifice for mechanically and optically engaging an optical plug housing. A signal bridge, with a bridge element, transceives optical signals between the optical plug and a backcap processing module. The backcap processing module includes a backcap housing with walls, attached to the jack housing and an optical element. The optical element has an optical interface to transceive an optical signal via the signal bridge, and convert optical signals and electrical signals transceived via an electrical interface. In one aspect, the bridge element is a lens with a first surface to transceive an optical signal with the optical plug, and a second surface to transceive the optical signal with the optical element optical interface. For example, the optical element is a photodiode or laser source.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: February 7, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy
  • Patent number: 8109677
    Abstract: Fiber optic cable jacks and plugs are provided. In one aspect, a cable is made from at least one length of fiber optic line having a first end and a second end. A first plug includes a one-piece mechanical body with a cable interface to engage the fiber optic line first end, and a microlens to transceive light with the cable interface. The first plug is shaped to engage a first jack housing. A second plug includes a one-piece mechanical body with a cable interface to engage the fiber optic line second end, and a microlens to transceive light with the cable interface. The second plug is shaped to engage a second jack housing. The mechanical bodies have inner walls that form an air gap cavity interposed between the microlens convex surface and an engaging jack optical interface.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 7, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventors: Igor Zhovnirovsky, Subhash Roy, Keith Conroy
  • Patent number: 8094983
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: January 10, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vinayak Dangui, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8068707
    Abstract: A lumenaire for mixing and emitting light from multiple light sources which has at least one first light source of a particular type and at least one second light source of a differing type. There is an optical system which includes at least one individual light collecting optical element at least partially surrounding each light source. There is a substantially planar light guide that receives and transports the light from each of the individual optical elements and optically mixes and emanates the light from both types of light sources simultaneously, through a common surface of the planar light guide. The planar light guide is segmented and the segmented sections are angularly disposed, in section in relationship to each other and the individual optical elements project light into at least one of the segments.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: November 29, 2011
    Inventor: Jerome H. Simon
  • Patent number: 8019186
    Abstract: The invention relates to a photonic crystal circuit comprising a guide produced in a photonic crystal membrane on the surface of a substrate and a mode adapter coupled to said guide, wherein the membrane includes a central point constituting the mode adapter having a section gradient as termination of said guide, said point being suspended so as to allow the propagation of modes in a symmetrical manner. It also relates to an optical system incorporating said circuit coupled to an optical fiber.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: September 13, 2011
    Assignee: Thales
    Inventors: Sylvain Combrie, Nguyen Vy Quynh Tran, Alfredo De Rossi
  • Patent number: 7991260
    Abstract: A light-diffusing safety cap for use with a light cable that couples an endoscope to a high intensity light source. The light-diffusing safety cap can be detachably or releasably coupled, in lieu of the endoscope, to the light cable, such that when the high intensity light source emits a high intensity light and the endoscope is not connected to the light cable, the light-diffusing safety cap reduces the intensity of the high intensity light emitted to the environment and provides an indication that the high intensity light source is activated when the endoscope is not connected to the light cable.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 2, 2011
    Assignee: SensorMed, Inc.
    Inventors: Michael C. Doody, William T. Milam
  • Patent number: 7974506
    Abstract: A device for emitting a first and a second electromagnetic radiation (13, 23, 53) via a radiation coupling-out surface (5) along a device beam path. A first radiation-emitting arrangement (1) has at least one first radiation-emitting component (10) which emits the first electromagnetic radiation (13). A second radiation-emitting arrangement (2) has at least one second radiation-emitting component (20) which emits the second electromagnetic radiation (23). Furthermore, the device has a radiation-directing element (3), wherein the radiation coupling-out surface (5) is arranged in the beam path of the second radiation-emitting arrangement (2) and the radiation-directing element (3) directs the first electromagnetic radiation (13) to the radiation coupling-out surface (5).
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: July 5, 2011
    Assignee: OSRAM Gesellschaft mit beschränkter Haftung
    Inventors: Dirk Wittenberg, Kai Franz
  • Patent number: 7957619
    Abstract: An all-fiber optical pulse compression arrangement comprises a concatenated arrangement of a section of input fiber (e.g., a single mode fiber), a graded-index (GRIN) fiber lens and a section of pulse-compressing fiber (e.g., LMA fiber). The GRIN fiber lens is used to provide mode matching between the input fiber (supporting the propagation of chirped optical pulses) and the pulse-compressing fiber, with efficient pulse compression occurring along the length of the LMA fiber. The dispersion and length of the LMA fiber section are selected to provide the desired degree of pulse compression; for example, capable of reconstituting a femtosecond pulse as is used in supercontinuum generation systems.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 7, 2011
    Assignee: OFS Fitel, LLC
    Inventors: Jeffrey W. Nicholson, Andrew D. Yablon
  • Patent number: 7948670
    Abstract: An optical attenuator includes a first reflection portion reflecting a light incoming from an optical input portion in a direction different from incoming axis, a second reflection portion reflecting the light from the first reflection portion, an optical output portion outputting the light that is reflected by the first reflection portion after being reflected by the second reflection portion, and an optical-intensity-attenuation filter that is arranged on an optical path between the first reflection portion and the second reflection portion, optical transmittance being shifted in stages according to a position thereof. The first reflection portion is capable of turning to shift an incoming position at the optical-intensity-attenuation filter.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: May 24, 2011
    Assignee: Fujitsu Limited
    Inventors: Tamotsu Akashi, Tsuyoshi Yamamoto
  • Patent number: 7941018
    Abstract: A laser transmission system.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: May 10, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Marc Dubois, Thomas E. Drake, Jr.
  • Publication number: 20110091156
    Abstract: Various embodiments of free-space fiber waveguide connectors, feed-throughs and GRIN lens assemblies and methods of bonding GRIN lenses in, and aligning waveguide fibers to, such connectors, feed-throughs and assemblies. In one embodiment, a free-space fiber waveguide connector includes: (1) an insert having a waveguide fiber bonded in a fiber mount attached proximate one end of the insert and an angle-faced GRIN lens attached proximate an opposing end of the insert and (2) a lens collar attached to the GRIN lens, the one end defining a reference plane and a virtual axis of the GRIN lens perpendicular to the reference plane, the fiber mount adjustable to a reflection from a reflective surface bonded parallel to the reference plane.
    Type: Application
    Filed: December 1, 2009
    Publication date: April 21, 2011
    Inventor: Richard H. Laughlin
  • Patent number: 7920763
    Abstract: The present invention discloses an optical fiber collimator suitable for coupling optical radiation from an optical fiber to an optical device, the optical fiber collimator comprising: a graded-index multi-mode fiber segment for receiving optical radiation transmitted by the input optical fiber; an optional mode field device, and a collimating lens for receiving optical radiation transmitted by the graded-index multi-mode fiber segment, the collimating lens for coupling the optical radiation into the optical device.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: April 5, 2011
    Assignee: Agiltron, Inc.
    Inventors: Yuanxin Shou, Jing Zhao
  • Patent number: 7881573
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 1, 2011
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: RE42521
    Abstract: This invention provides a novel wavelength-separating-routing (WSR) apparatus that uses a diffraction grating to separate a multi-wavelength optical signal by wavelength into multiple spectral channels, which are focused onto an array of corresponding channel micromirrors. The channel micromirrors are individually controllable and continuously pivotable to reflect the spectral channels into selected output ports. As such, the inventive WSR apparatus is capable of routing the spectral channels on a channel-by-channel basis and coupling any spectral channel into any one of the output ports. The WSR apparatus of the invention may further employ a polarization diversity scheme, whereby polarization-sensitive effects become inconsequential and insertion loss is minimized. The WSR apparatus of the invention may additionally be equipped with servo-control and channel equalization capabilities.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: July 5, 2011
    Assignee: Capella Photonics, Inc.
    Inventors: Mark H. Garrett, Masud Mansuripur, Jeffrey P. Wilde, Pavel G. Polynkin, Joseph E. Davis
  • Patent number: RE42678
    Abstract: This invention provides a novel wavelength-separating-routing (WSR) apparatus that uses a diffraction grating to separate a multi-wavelength optical signal by wavelength into multiple spectral characters, which are then focused onto an array of corresponding channel micromirrors. The channel micromirrors are individually controllable and continuously pivotable to reflect the spectral channels into selected output ports. As such, the inventive WSR apparatus is capable of routing the spectral channels on a channel-by-channel basis and coupling any spectral channel into any one of the output ports. The WSR apparatus of the present invention may be further equipped with servo-control and spectral power-management capabilities, thereby maintaining the coupling efficiencies of the spectral channels into the output ports at desired values.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 6, 2011
    Assignee: Capella Photonics, Inc.
    Inventors: Jeffrey P. Wilde, Joseph E. Davis
  • Patent number: RE43875
    Abstract: Apparatus and method are provided for transmitting at least one electro-magnetic radiation is provided. In particular, at least one optical fiber having at least one end extending along a first axis may be provided. Further, a light transmissive optical arrangement may be provided in optical cooperation with the optical fiber. The optical arrangement may have a first surface having a portion that is perpendicular to a second axis, and a second surface which includes a curved portion. The first axis can be provided at a particular angle that is more than 0° and less than 90° with respect to the second axis.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: December 25, 2012
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Brett Eugene Bouma, Guillermo J. Tearney