Prism Patents (Class 385/36)
  • Patent number: 8867875
    Abstract: A semiconductor optical wave guide device is described in which a buried oxide layer (BOX) is capable of guiding light. Optical signals may be transmitted from one part of the semiconductor device to another, or with a point external to the semiconductor device, via the wave guide. In one example, an optical wave guide is provided including a core insulating layer encompassed by a clad insulating layer. The semiconductor device may contain an etched hole for guiding light to and from the core insulating layer from a transmitter or to a receiver.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: October 21, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiaki Shimooka
  • Patent number: 8861908
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 14, 2014
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8855453
    Abstract: A leaky travelling wave array of optical elements provide a solar wavelength rectenna.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: October 7, 2014
    Assignee: AMI Research & Development, LLC
    Inventors: John T. Apostolos, Judy Feng, William Mouyos
  • Patent number: 8824843
    Abstract: A leaky travelling wave array of optical elements provide a solar wavelength rectenna.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 2, 2014
    Assignee: AMI Research & Development, LLC
    Inventors: John T. Apostolös, Judy Feng, William Mouyos
  • Patent number: 8818149
    Abstract: Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electro-magnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can include a ball lens, and be configured to focus and provide there through the first electro-magnetic radiation to generate the focused electro-magnetic radiation. Further, the exemplary apparatus can include at least at least one dispersive third arrangement which can receive a particular radiation (e.g., the first electro-magnetic radiation(s) and/or the focused electro-magnetic radiation), and forward a dispersed radiation thereof to at least one section of the structure.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 26, 2014
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Patent number: 8810914
    Abstract: There is provided a light-guide, compact collimating optical device, including a light-guide having a light-waves entrance surface, a light-waves exit surface and a plurality of external surfaces, a light-waves reflecting surface carried by the light-guide at one of the external surfaces, two retardation plates carried by light-guides on a portion of the external surfaces, a light-waves polarizing beamsplitter disposed at an angle to one of the light-waves entrance or exit surfaces, and a light-waves collimating component covering a portion of one of the retardation plates. A system including the optical device and a substrate, is also provided.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: August 19, 2014
    Assignee: Lumus Ltd.
    Inventor: Yaakov Amitai
  • Patent number: 8803444
    Abstract: The invention provides a method and system of controlling illumination characteristics of a plurality of lighting segments. According to the invention, there is provided an illumination system, comprising: a plurality of lighting segments; a detecting subsystem configured to detect an illumination intensity and/or color of lights emitted from each lighting segment; a controller configured to receive the detecting subsystem's output signals representing illumination intensity and/or color of lights emitted from each lighting segment and to generate sets of driving signals to respectively adjust the driving currents of each lighting segment in response to the output signals, so as to adjust the illumination intensity and/or color of the lights emitted from each lighting segment in accordance with a predetermined illumination setting, wherein each set of driving signals has a unique period feature which is distinguished from that of other sets of driving signals corresponding to other lighting segments.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: August 12, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Ang Ding, Xiaoyan Zhu, Gongming Wei, Hugo Johan Cornelissen
  • Publication number: 20140211476
    Abstract: An optical waveguide includes a body of optically transmissive material having a width substantially greater than an overall thickness thereof and including a first side, a second side opposite the first side, a central bore extending between the first and second sides and adapted to receive a light emitting diode, and extraction features on the second side. A light diverter extends into the central bore for diverting light into and generally along the width of the body of material. The extraction features direct light out of the first side and wherein at least one extraction feature has an extraction surface dimension transverse to the thickness that is between about 5% and about 75% the overall thickness of the body of material.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 31, 2014
    Inventor: Cree, Inc.
  • Patent number: 8787715
    Abstract: An optical coupling lens includes a light incident surface, a light output surface perpendicular to the light incident surface, a reflection surface interconnected between the light incident surface and the light output surface, a first converging lens and a second converging lens formed on the light incident surface, and third converging lens formed on the light output surface and has a semi-cylindrical shape. Optical axes of the first converging lens and the second converging lens are perpendicular to the light incident surface and located on a common imaginary plane. A central axial plane of the third converging lens is perpendicular to the light output surface. An intersecting line between the central axial plane and the common imaginary plane is located on the reflection surface. A width of the third converging lens is equal to a diameter of each of the first converging lens and the second converging lens.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: July 22, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yi Hung
  • Patent number: 8773750
    Abstract: The present invention relates to a KBBF family nonlinear optical crystal-prism coupler and its method of fabrication. The coupler comprises: a KBBF family crystal with two smooth surfaces; transition layers each of which is deposited on respective one of the two smooth surfaces of the KBBF family crystal; and a pair of prisms each of which optically contacts with respective one of the activated transition layers. The present invention further provides a KBBF family nonlinear optical crystal-prism coupler that comprises: a KBBF family crystal with two smooth surfaces; a pair of prisms each of which has a smooth surfaces; first transition layers each of which is deposited on respective one of the two smooth surfaces of the KBBF family crystal; and second transition layers each of which is deposited on a smooth surface of respective one of the pair of prisms, wherein the first and second transition layers are integral by optical contact.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 8, 2014
    Assignee: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
    Inventors: Chuangtian Chen, Yong Zhu, Feidi Fan, Xiaoyang Wang, Rukang Li
  • Patent number: 8712198
    Abstract: An optical splitter device and method are provided. The device can include a waveguide having walls forming a large hollow core. The waveguide can be configured to direct an optical signal through the large hollow core. An optical tap can be formed through at least one wall of the waveguide. In addition, a prism can be located in the large hollow core of the waveguide and aligned with the optical tap. A splitter coating can be provided on the prism to direct a portion of the optical signal outside of the waveguide through the optical tap.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: April 29, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert Newton Bicknell, Jong-Souk Yeo, Lenward T. Seals
  • Patent number: 8705910
    Abstract: An optical module manufacturing method includes: forming a first waveguide layer and a second waveguide layer on a first substrate and a second substrate respectively, or forming a first waveguide layer and a second waveguide layer on a first surface of a first substrate and a second surface of the first substrate respectively; disposing the first substrate on the second substrate; disposing a filter at an end of the first waveguide layer and the second waveguide layer, so that the filter is aligned with the second waveguide layer; and disposing a prism on the filter, so that a first reflective surface of the prism is aligned with the first waveguide layer, and a second reflective surface is aligned with the second waveguide layer. Embodiments of the present application further disclose an optical module.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 22, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Tongxin Zeng, Fei Yu, Bin Xu, Junying Zhao
  • Patent number: 8699842
    Abstract: Described are embodiments of a process including patterning one or more reflectors on a surface of a substrate of a material, the surface oriented at a selected angle relative to a (100) crystallographic plane of the material, and etching one or more reflectors in the surface, each reflector including one or more reflective surfaces formed by (111) crystallographic planes of the material. Also described are process embodiments for forming a molded waveguide including preparing a waveguide mold, the waveguide mold comprising a master mold including one or more reflectors on a surface of a substrate of a master mold material, the surface oriented at a selected angle relative to a (100) crystallographic plane of the material, each reflector including one or more reflective surfaces formed by (111) crystallographic planes of the material, injecting a waveguide material into the waveguide mold, and releasing the molded waveguide from the waveguide mold.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: April 15, 2014
    Assignee: Google Inc.
    Inventor: Mark B. Spitzer
  • Patent number: 8636366
    Abstract: A lighting apparatus of the present invention includes light source (101), rod integrator (105), reflecting mirror (103), diffusion plate (104) disposed adjacently to reflection mirror (103), reflective polarizing plate (107), and wavelength plate (106). The lighting apparatus further includes curved mirror (102) disposed among light source (101), reflecting mirror (103), and diffusion plate (104). Reflecting mirror (103) and curved mirror (102) include apertures (102a and 103a) formed to allow at least light from light source (101) to pass. Curved mirror (102) reflects light leaked from the entrance plane side of rod integrator (105) toward aperture (103a) of reflecting mirror (103).
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 28, 2014
    Assignee: NEC Display Solutions, Ltd.
    Inventor: Atsushi Kato
  • Publication number: 20130330040
    Abstract: A wedge filter for an optical sub-assembly for transceivers includes an incident face and an emission face. The incident face and the emission face contain an angle so as to change the refraction position of the incident light. Accordingly, the optical signal is incident upon the optical fiber of the optical sub-assembly for transceivers by a predetermined inclination angle so as to rectify the incident direction of the light emitted from the light-emitting element to be coaxial with the emission direction of the light of the optical fiber for achieving optical coupling efficiency.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Inventor: Chin-Tsung WU
  • Publication number: 20130322822
    Abstract: An attachable optical component is aligned with a base optical component. The attachable optical component has a mounting surface interfacing with the base optical component and an exposed surface opposed to the mounting surface. Laser light is directed to the exposed surface of the attachable optical component for delivery to the mounting surface. The attachable optical component guides and homogenizes the laser light delivered to the mounting surface and uniformly heats a bonding feature between the mounting surface and the base optical component.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Brent C. Roeger, Karim Tatah
  • Patent number: 8599487
    Abstract: A beam combiner for combining laser-beams of different colors along a common path includes a directing-prism for each of the laser-beams and one combining-prism. The directing-prisms are arranged to transmit the laser-beams to the combining-prism. The directing-prisms and the combining-prism are configured and arranged with respect to each other such that the directing-prism transmits the beams along the common path.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Coherent, Inc.
    Inventors: RĂĽdiger Von Elm, Chantal Marois
  • Patent number: 8594472
    Abstract: A microstructure optical adapter or tip according to the present disclosure may incorporate precision micro structure optical components engaging the input or output end of light energy delivery devices for customized light delivery of the light energy. The incorporation of precision micro structure optical components in injection molded plastic or glass parts will allow for inexpensive modification of the output light while also serving to protect the end of the illumination device. The micro structure optical components may also be incorporated in an adapter to tailor the light energy to the subsequent device.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: November 26, 2013
    Assignee: Invuity, Inc.
    Inventors: Alex Vayser, Kenneth B. Trauner
  • Patent number: 8588559
    Abstract: An optical coupler module includes a semiconductor substrate disposed on the print circuit board; a reflecting trench structure formed on the semiconductor substrate; a reflector formed on a slant surface of the reflecting trench structure; a strip trench structure formed on the semiconductor substrate and connecting with the reflecting trench structure; a thin film disposed on the above-mentioned structure. The optical coupler module further includes a signal conversion unit disposed on the semiconductor substrate and the position of the signal conversion unit corresponds to the reflector; and an optical waveguide structure formed in the trench structures. The optical signal from the signal conversion unit is reflected by the reflector and then transmitted in the optical waveguide structure, or in a reverse direction to reach the signal conversion unit.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: November 19, 2013
    Assignee: National Central University
    Inventors: Mao-Jen Wu, Hsiao-Chin Lan, Yun-Chih Lee, Chia-Chi Chang, Hsu-Liang Hsiao, Chin-Ta Chen, Bo-Kuan Shen, Guan-Fu Lu, Yan-Chong Chang, Jen-Yu Chang
  • Patent number: 8573779
    Abstract: A lighting device is provided which efficiently achieves a high brightness and a high image quality by using a solid light source which has long service life and does not need mercury. The lighting device includes a first light source section, a second light source section, a second rod integrator for combining lights emitted from the first and second light source sections, and a first rod integrator for guiding the light from the first light source section, to the second rod integrator. On an incident surface of the second rod integrator, a first region on which the light emitted from the first light source section is incident and a second region on which the light emitted from the second light source section is incident do not overlap each other, and the surface area of the first region and the surface area of the second region are different from each other.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Shigekazu Yamagishi, Hiroshi Kitano, Yoshimasa Fushimi, Takaaki Tanaka
  • Patent number: 8576480
    Abstract: An optical amplifier using the evanescent light to control the optical output level is provided. The optical amplifier includes: a waveguide path transmitting an optical signal; an optical amplification unit formed on the waveguide path and amplifying the optical signal by an excitation light; an irradiation unit irradiating the excitation light to the optical amplification unit; an optical detection unit generating an electric signal which corresponds to a detected light; a branching unit branching an evanescent light being the optical signal outputted from the optical amplification unit and leaked outside the waveguide path, and focusing the evanescent light on the optical detection unit; a wavelength detection unit detecting a wavelength multiplicity of the optical signal based on the detected evanescent light; and a light amount adjustment unit adjusting a light amount of the excitation light irradiated by the irradiation unit based on the wavelength multiplicity.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: November 5, 2013
    Assignee: NEC Corporation
    Inventor: Hideshi Yoshida
  • Patent number: 8542963
    Abstract: An optical coupling structure that interfaces between optical devices mounted on a substrate and optical waveguides formed in the substrate. A manufacturing method includes preparing a wafer formed on an inorganic solid material on a dicing tape and cutting the back surface of the wafer to form substantially angled portions using a dicing blade having a point angle. The dicing tape is stripped from the wafer and the wafer is separated at the valleys between the substantially angled portions to obtain an optical coupling element. The obtained optical coupling element is a three-dimensional polyhedral light-reflecting member having a mirror surface corresponding to a surface of the wafer. The obtained optical coupling element is inserted into a trench that opens, substantially perpendicular to an optical waveguide of an optical transmission substrate, in the main surface of the optical transmission substrate to provide a structure for optical coupling with the outside.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: September 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Shigeru Nakagawa, Hidetoshi Numata, Kuniaki Sueoka, Yoichi Taira
  • Patent number: 8538210
    Abstract: Techniques for designing optical devices that can be manufactured in volume are disclosed. In an exemplary an optical assembly, to ensure that all collimators are on one side to facilitate efficient packaging, all collimators are positioned on both sides of a substrate. Thus one or more beam folding components are used to fold a light beam up and down through the collimators on top of the substrate and bottom of the substrate.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: September 17, 2013
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Frank Wu
  • Patent number: 8520990
    Abstract: The present invention provides improved collimating lens assemblies (32) which include: a singlemode fiber (38) terminating in a distal end; a step-index multimode fiber (44) having a proximal end abutting to the singlemode fiber distal end, and having a distal end; a graded-index multimode fiber (45) having a proximal end abutting the step-index multimode fiber distal end, and having a distal end; and a collimating lens (34) longitudinally spaced from the graded-index multimode fiber distal end by an intermediate air gap (43), and operatively arranged to collimate light rays emanating from the graded-index multimode fiber distal end. The improved collimating lens assembly is characterized by the fact that there is no epoxy, silicone gel or index-matching material between the graded-index multimode fiber distal end and the collimating lens.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 27, 2013
    Assignee: Moog Inc.
    Inventors: Norris E. Lewis, Martin J. Oosterhuis, K. Peter Lo
  • Patent number: 8520837
    Abstract: A mobile communication device contains a plurality of displays. A control module and one of the displays is contained by a first housing. Another housing, bearing a second display, is slidably engageable with the first housing. An optical data transmission mechanism is coupled between the control module and the second display. Data generated by the control module can be converted to optical signals and transmitted through the optical transmission path for control of the second display.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: August 27, 2013
    Assignees: Sony Corporation, Sony Mobile Communications AB
    Inventor: Paul Futter
  • Patent number: 8506887
    Abstract: A sensor for sensing at least one biological target or chemical target is provided. The sensor includes a membrane includes a membrane material that supports generation and propagation of at least one waveguide mode, where the membrane material includes a plurality of voids having an average size<2 microns. The sensor also includes at least one receptor having structure for binding to the target within the plurality of voids, and an optical coupler for coupling light to the membrane sufficient to generate the waveguide mode in the membrane from photons incident on the optical coupler.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: August 13, 2013
    Assignee: Vanderbilt University
    Inventors: Guoguang Rong, Raymond L. Mernaugh, Sharon M. Weiss
  • Patent number: 8491125
    Abstract: A lighting device configured to efficiently combine light beams emitted from a plurality of light sources, and to emit high output light while minimizing light loss, and a projection type display apparatus including the lighting device. The lighting device includes: a first light source and a second light source; two converging lenses for converging light beams emitted from the first and second light sources; two right-angle prisms for bending the light beams emitted from the first and second light sources; and a composite rod integrator for combining the light beams emitted from the first and second light sources. Between an exit surface of each right-angle prism and an incident surface of the composite rod integrator, a predetermined air gap is provided. The focal point of each converging lens is located on an incident surface of each right-angle prism.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: July 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Shigekazu Yamagishi, Hiroki Sugiyama, Hiroshi Kitano, Yoshimasa Fushimi, Hirokazu Sakaguchi
  • Publication number: 20130156376
    Abstract: We present optical systems suitable for focusing two substantially collimated beams or sheets of light propagating in different directions onto a common focal point. In some embodiments the optical systems comprise separate focusing elements for each beam or sheet of light, while in other embodiments the optical systems comprise a focusing element and a redirection element. The optical systems have particular application in the receive optics of infrared touch screens, where they enable the detection of additional light paths that assist in the determination of two or more simultaneous touch events.
    Type: Application
    Filed: May 23, 2011
    Publication date: June 20, 2013
    Inventors: Robert Bruce Charters, Dax Kukulj, Warwick Todd Holloway, Duncan Ian Ross, Graham Roy Atkins
  • Patent number: 8447151
    Abstract: A triplexer including an optics block including a first port configured to receive a first light beam at a first wavelength and a second light beam at a second wavelength, and a second port configured to receive a third light beam at a third wavelength, a bounce cavity between the first and second ports, the bounce cavity being formed by opposing reflective elements adjacent respective surfaces of the optics block, a first grating opposite the first port, the first grating receiving all three light beams at substantially a same location thereon, the first grating configured to provide the first and second light beams to the bounce cavity and the third light beam to the first port, and a second grating opposite the second port, the second grating receiving the first and second light beams at spatially separated portions thereon.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: May 21, 2013
    Assignee: DigitalOptics Corporation East
    Inventor: James E. Morris
  • Patent number: 8441602
    Abstract: Improved apparatus and method for collecting and directing light from a source via a light guide and modulated display assembly in an efficient manner through the design and use of prismatic optical structures, diffusers and/or light redirectors.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: May 14, 2013
    Assignee: Pixtronix, Inc.
    Inventors: Je Hong Kim, Jignesh Gandhi
  • Patent number: 8427725
    Abstract: The present invention relates to a light modulating device, comprising a SLM and a pixelated optical element, in which a group of at least two adjacent pixels of the SLM in combination with a corresponding group of pixels in the pixelated optical element form a macropixel, the pixelated optical element being of a type such that its pixels comprise a fixed content, each macropixel being used to represent a numerical value which is manifested physically by the states of the pixels of the SLM and the content of the pixels of the pixelated optical element which form the macropixel.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 23, 2013
    Assignee: Seereal Technologies S.A.
    Inventors: Gerald Futterer, Bo Kroll, Steffen Buschbeck
  • Patent number: 8422840
    Abstract: A light guide of the tapered-waveguide type includes an input slab for expanding a projected image between an input end and an output end, and an output slab arranged to receive rays from the said output end, and to emit them at a point on its face that corresponds to the angle at which the ray is received. The input slab and output waveguide are matched so that all rays injected into the input end undergo the same number of reflections before leaving the output surface. With the invention, the input slab is itself tapered slightly towards the output waveguide. This means that input and output waveguides can be made the same length, in the direction of ray travel, and can therefore be folded over each other with no wasted space.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: April 16, 2013
    Assignee: Microsoft Corporation
    Inventor: Timothy Large
  • Patent number: 8385697
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 26, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vinayak Dangui, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 8377381
    Abstract: An optical waveguiding optical format enables consistent optical analysis of small sample volumes. The optical format is comprised of an illumination light guide, a read window upon which a sample is placed, a sample collection needle or capillary, and a detection guide. Light redirecting facets are provided within the format itself such that the format serves as a unitary component for accepting light, directing light through a sample, and emitting light for detection.
    Type: Grant
    Filed: January 2, 2004
    Date of Patent: February 19, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Andrew J. Dosmann, Frank W. Wogoman
  • Patent number: 8369678
    Abstract: Optical devices for guiding illumination are provided each having a body of optical material with staircase or acutely angled ramp structures on its top surface for distributing light inputted from one end of the device from the front exit faces of such structures along certain angular orientations, while at least a substantial portion of the light is totally internally reflected within the body until distributed from such front exit faces. Optical devices are also provided each have a body of optical material having a bottom surface with acutely angled ramp structures and falling structures which alternate with each other, such that light is totally internally reflected within the device until reflected by such ramp structures along the bottom surface to exit the top surface of the device or transmitted through the ramp structures to an adjacent falling structure back into the device.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: February 5, 2013
    Assignee: RPC Photonics, Inc.
    Inventors: Stephen H. Chakmakjian, Donald J. Schertler, Tasso Sales, G. Michael Morris
  • Patent number: 8369661
    Abstract: The optical multiplexer system comprises an optical multiplexer, an output path and an adjustable beam steering element. The optical multiplexer comprises an input port characterized by an original acceptance range. The output path is disposed relative to the optical multiplexer such that a light beam incident on the input port within the original acceptance range enters the output path. The adjustable beam steering element is located adjacent the input port and is adjustable such that a light beam incident on the beam steering element within an enhanced acceptance range enters the output path as an output beam. The enhanced acceptance range is at least angularly greater than the original acceptance range.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 5, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: Alan Graham, Enrique Chang, George Tsai, Reinhold Garbe
  • Patent number: 8364002
    Abstract: An optical sight is provided and may include: a housing; at least one prism supported by the housing; an optical device disposed on the prism and including a longitudinal axis; and an illumination device associated with the optical device and operable to supply the prism with light via the optical device by supplying light to the optical device in a direction along the longitudinal axis.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: January 29, 2013
    Assignee: Trijicon, Inc.
    Inventors: Darin W. Schick, Thomas K. Maciak, Kian Siong Lim
  • Publication number: 20120328242
    Abstract: The invention relates to an optical system for coupling light from at least one approximately point-shaped light source such as a LED into a flat light guide made of a transparent material such as glass or plastic. The inventive system is characterized in that the point light source is arranged above a surface of the light guide and is associated with an optical element, which couples the light from the point light source into the flat light guide at the surface thereof, wherein the in-coupled light satisfies the condition of the critical angle for total reflection and remains inside the flat light guide until controlled out-coupling.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 27, 2012
    Inventor: Andreas HESSE
  • Patent number: 8335413
    Abstract: An optical fiber switch (16) for alternatively redirecting an input beam (14) comprises a redirector (18) and a redirector mover (20). The redirector (18) redirects the input beam (14) so that a redirected beam (46) alternatively launches from the redirector (18) (i) along a first redirected axis (354) that is spaced apart from a directed axis (344A) when the redirector (18) is positioned at a first position (348), and (ii) along a second redirected axis (356) that is spaced apart from the directed axis (344A) when the redirector (18) is positioned at a second position (350) that is different from the first position (348). The redirector mover (20) moves the redirector (18) about a movement axis (366) between the first position (348) and the second position (350).
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: December 18, 2012
    Assignee: Daylight Solutions, Inc.
    Inventors: Alexander Dromaretsky, Michael Pushkarsky, Brandon Borgardt
  • Patent number: 8320723
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 27, 2012
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20120294039
    Abstract: A light guide is provided, including a guiding layer, a reflective layer and an intermediary layer. The guiding layer includes a first upper surface and a first lower surface, wherein a guiding layer micro-structure is formed on the first upper surface, and the guiding layer has a guiding layer refractive index. The reflective layer includes a second upper surface and a second lower surface, wherein a reflective layer micro-structure is formed on the second lower surface, and the reflective layer has a reflective layer refractive index. The intermediary layer is sandwiched between the guiding layer and the reflective layer, and contacts the first lower surface of the guiding layer and the second upper surface of the reflective layer, wherein the intermediary layer has an intermediary layer refractive index, and the intermediary layer refractive index is smaller than the guiding layer refractive index and the reflective layer refractive index.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 22, 2012
    Applicants: NATIONAL CHIAO-TUNG UNIVERSITY, CHIMEI INNOLUX CORPORATION
    Inventors: Chen-Wei FAN, Jui-Wen PAN
  • Publication number: 20120293746
    Abstract: A light guide module (4) and backlight that incorporates this module are disclosed. In some embodiments, a light guide module includes a light guide (1) having an input surface (11) to receive light. The module also includes a structured surface layer (2) including a first surface (812) and a second surface (13). The first surface (12) is attached to the input surface (11) of the light guide (1). And the second surface (13) includes microstructures (21) that are operable to spread incident light in the plane of the light guide (1). The second surface (13) is positioned to receive light emitted from an array of light emitting diodes (3).
    Type: Application
    Filed: January 19, 2011
    Publication date: November 22, 2012
    Inventors: Sijing Li, Xingpeng Yang, Hua Xiang Xie
  • Patent number: 8290318
    Abstract: A light trapping optical cover employing an optically transparent layer with a plurality of light deflecting elements. The transparent layer is configured for an unimpeded light passage through its body and has a broad light input surface and an opposing broad light output surface. The light deflecting elements deflect light incident into the transparent layer at a sufficiently high bend angle with respect to a surface normal and direct the deflected light toward a light harvesting device adjacent to the light output surface. The deflected light is retained by means of at least TIR in the system formed by the optical cover and the light harvesting device which allows for longer light propagation paths through the photoabsorptive layer of the device and for an improved light absorption. The optical cover may further employ a focusing array of light collectors being pairwise associated with the respective light deflecting elements.
    Type: Grant
    Filed: January 8, 2012
    Date of Patent: October 16, 2012
    Assignee: SVV Technology Innovations, Inc.
    Inventor: Sergiy Victorovich Vasylyev
  • Patent number: 8290314
    Abstract: A chip is constituted from a transparent substrate, a reflector film formed on the transparent substrate and an optical waveguide layer formed on the reflector film, and a plurality of pores is formed in the optical waveguide layer. A light-introducing mechanism that introduces light from the transparent substrate of the chip onto the reflector film, and a light-detecting mechanism that detects the light reflected on the reflector film are provided. A specimen under investigation is detected by sensing a change in the incidence angle or in the intensity of reflected light that occurs when the specimen is adsorbed or deposits on the surface of the optical waveguide layer, by using a range of incidence angles of the light in which the intensity of reflected light changes when a part or all of the incident light couples with the optical waveguide mode that propagates in the optical waveguide layer.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: October 16, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Makoto Fujimaki, Koichi Awazu
  • Patent number: 8254736
    Abstract: A prism array for collecting light is provided. The prism array includes a first prism module and a coupling joint. The first prism module includes a first guiding prism and at least one first reflective prism. The first reflective prism is close to the first guiding prism, wherein light travels from the first guiding prism to the first reflective prism, and is reflected thereby. The coupling joint includes a first light pipe, a second light pipe, a third light pipe and a light transmitting pipe, wherein the first light pipe, the second light pipe and the third light pipe are coupled to an end of the light transmitting pipe, the third light pipe corresponds to the first reflective prism, and the light travels from the first reflective prism, passing through the third light pipe to the light transmitting pipe.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: August 28, 2012
    Assignee: National Taiwan University of Science and Technology
    Inventors: Jong-Woei Whang, Yi-Yung Chen
  • Patent number: 8254746
    Abstract: An optical sight is provided and may include: a housing; at least one optic supported by the housing; an illumination device associated with the at least one optic and selectively supplying the at least one optic with light, the illumination device including a first fiber associated with a first light source; a coupler collecting light from the first fiber and supplying the at least one optic with light from the first light source; and an electroluminescent device associated with the at least one optic and selectively supplying the at least one optic with light separate from the coupler.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 28, 2012
    Assignee: Trijicon, Inc.
    Inventors: Darin W. Schick, Thomas K. Maciak, Kian Siong Lim
  • Patent number: 8254735
    Abstract: A coupling device includes a fiber collimator, a wedge window pair and a plane window for coupling a light beam provided by a beam source to optical fiber. The fiber collimator is mounted to a base plate and includes a collimator lens, an end of the optical fiber being positioned at a focal point of the collimator lens. The wedge window pair is mounted to the base plate, and is configured to adjust the light beam to be parallel to an optical axis of the fiber collimator. The plane window is mounted to the base plate between the wedge window pair and the fiber collimator. The plane window is configured to align the parallel direction of the light beam with the optical axis of the fiber collimator.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 28, 2012
    Assignee: Agilent Technologies, Inc.
    Inventor: George Tsai
  • Patent number: 8248560
    Abstract: Improved apparatus and method for collecting and directing light from a source via a light guide and modulated display assembly in an efficient manner through the design and use of prismatic optical structures, diffusers and/or light redirectors.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: August 21, 2012
    Assignee: Pixtronix, Inc.
    Inventors: Je Hong Kim, Jignesh Gandhi
  • Patent number: 8249408
    Abstract: Embodiments of this invention include composite articles having specific optical properties. In one embodiment of this invention, a composite comprises high and low refractive index light transmitting material and surface relief features. In further embodiments, the composite comprises volumetric dispersed phase domains that may be asymmetric in shape. In one embodiment of this invention, the composite is an optical film providing light collimating features along two orthogonal planes perpendicular to the surface of the film. In another embodiment, the composite has improved optical, thermal, mechanical, or environmental properties. In further embodiments of this invention, the composite is manufactured by optically coupling or extruding two or more light transmitting materials, and forming inverted light collimating surface relief features or light collimating surface relief features.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 21, 2012
    Assignee: Fusion Optix, Inc.
    Inventor: Zane Coleman
  • Publication number: 20120207434
    Abstract: A light guide of the tapered-waveguide type includes an input slab for expanding a projected image between an input end and an output end, and an output slab arranged to receive rays from the said output end, and to emit them at a point on its face that corresponds to the angle at which the ray is received. The input slab and output waveguide are matched so that all rays injected into the input end undergo the same number of reflections before leaving the output surface. With the invention, the input slab is itself tapered slightly towards the output waveguide. This means that input and output waveguides can be made the same length, in the direction of ray travel, and can therefore be folded over each other with no wasted space.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 16, 2012
    Applicant: MICROSOFT CORPORATION
    Inventor: Timothy Large