Fiber End Held In Ferrule Patents (Class 385/60)
  • Patent number: 8297850
    Abstract: An optical connector according to an embodiment of the present invention comprises (a) a ferrule incorporating a short fiber; (b) a mechanical splice having a holding part and a fixing part, and adapted so that the fixing part mechanically fixes the short fiber extending from the ferrule held by the holding part, and an optical fiber in an optical cable to butt the short fiber; (c) an outer housing having a housing part in which the mechanical splice is located, and a pair of flexible arms located on both sides of the housing part, the pair of arms each being provided with a locking claw at a tip; and (d) a jacket fixture for fixing a cable jacket, the jacket fixture being coupled to the mechanical splice so that the cable jacket is inserted therein.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: October 30, 2012
    Assignees: Sumitomo Electric Industries, Ltd., Nippon Telegraph and Telephone Corporation
    Inventors: Daizo Nishioka, Kenichiro Ohtsuka, Kazuhito Saito, Yoshikyo Tamekuni, Yukihiro Yokomachi, Tunetaka Ema, Kenichi Nakazawa, Yasuhiko Hoshino
  • Patent number: 8297851
    Abstract: An optical connector 1 includes a plastic ferrule 4 that holds optical fibers 7, a plastic holder member 61 that holds the ferrule 4, a plastic plug 6 that is arranged outside the holder member 61, and a metal intermediate member 5 that is disposed between an outer surface of the holder member 61 and an inner surface of the plug 6.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 30, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Naoya Nishimura, Hideki Miyazaki
  • Patent number: 8297853
    Abstract: An optical connector device has a first connector including a ferrule for holding an optical fiber and a guide portion projecting longer than the ferrule. The optical connector device also has a second connector for receiving an end of the ferrule along an optical axis of the optical fiber. The second connector includes a receiver for receiving the guide portion and a shutter having a cover part. The shutter is movable between a cover position at which the optical axis intersects the cover part and an open position at which the optical axis does not intersect the cover part. The guide portion is operable to move the shutter from the cover position to the open position when the guide portion is received into the receiver.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: October 30, 2012
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Naoki Katagiyama, Hideto Shimazu, Takeo Toda, Yasutaka Hiroki
  • Patent number: 8297854
    Abstract: Fiber optic assemblies including at least one multimode optical fiber that have improved performance are disclosed. In one embodiment, at least one connector is mounted upon and end of at least one multimode optical fiber and the assembly has an insertion loss of about 0.04 dB or less at a reference wavelength of 850 nanometers. Another embodiment is directed to a fiber optic assembly having a plurality of multimode optical fibers attached to a multifiber ferrule. The multifiber ferrule has a pair of guide pin bores having a nominal diameter, wherein the guide pin bores have a tolerance of ±0.0005 millimeters from a nominal diameter for improving performance.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: October 30, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Scott Robertson Bickham, Radawan Hall, James Phillip Luther, Daiping Ma
  • Patent number: 8290332
    Abstract: A fiber optic adapter releasably retains at least one optical fiber connector and includes a body portion having a first side, a second side, and a through-opening between the first side and the second side, a first housing projecting from the body portion first side, the first housing including a bore for receiving the at least one optical fiber connector and having at least one sidewall and an end wall, the housing overlying the through-opening, and a retainer mountable on the first housing and including first and second flexible arms for engaging opposite sides of the first housing to attach the retainer to the first housing, the retainer including at least one projection configured to block the removal of the at least one optical fiber connector from the bore when the flexible arms engage the opposite sides of the first housing.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: October 16, 2012
    Assignee: CommScope, Inc. of North Carolina
    Inventor: Ronald Mudd
  • Publication number: 20120243832
    Abstract: The optical connector in accordance with an embodiment comprises a ferrule for holding a built-in fiber to be coupled to a coated optical fiber of an optical cord, a first housing for containing the ferrule, a second housing arranged behind the first housing, and a sheath pressing member and a securing member which are mounted to the second housing. The sheath pressing member presses a sheath of the optical cord against the second housing. The securing member secures a tension fiber of the optical cord to the second housing so as to contain the sheath pressing member.
    Type: Application
    Filed: October 6, 2010
    Publication date: September 27, 2012
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SEI Optifrontier Co., Ltd.
    Inventors: Yoshikyo Tamekuni, Yuji Suzuki, Yukihiro Yokomachi
  • Patent number: 8272789
    Abstract: Provided are an adapter assembly and method for compensating optical fibers for a length difference. The adapter assembly includes a first adapter, a second adapter, and a member. The first adapter is configured to be connected to at least one optical communication unit. The second adapter is configured to be connected to at least another optical communication unit and be coupled to the first adapter. The member is configured to be interposed between the first and second adapters for providing an optical signal transmission path between the optical communication units. Owing to the member, a length difference between optical fibers can be compensated for.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 25, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Joong-Seon Choe, Yong-Hwan Kwon, Chun Ju Youn, Jong-Hoi Kim, Kwang-Seong Choi, Eun Soo Nam
  • Patent number: 8256970
    Abstract: An improved, reversibly terminable fiber stub connector assembly is provided that can be readily and positively terminated in the field using simple termination tools. This allows repositioning or replacement of fiber optic cable field fibers if termination is not acceptable in performance. The tool may be a hand-held tool, or used in conjunction with a connector support structure to provide simplified and expeditious field termination of fiber optic cables. The cam tool can include a throughbore that enables connection of a patchcord to the stub fiber of the connector during or shortly after termination without removal of the termination tool. Accordingly, field testing of the connection can be made at the site of termination.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 4, 2012
    Assignee: Panduit Corp.
    Inventors: Samuel M. Marrs, Jerry A. Wiltjer, Shaun P. Brouwer
  • Publication number: 20120213478
    Abstract: An optical fiber connector includes a housing with at least one elongated cylindrical cavity, a fiber holder within the cavity including a ferrule which secures an optical fiber therein and a biasing member engaging the fiber holder to bias the ferrule towards an unmated position. A resilient metal latch is mounted on the housing for releasably securing the optical fiber connector to another component. A latch travel limiting structure prevents the latch from deflecting outside a desired predetermined path. Improved structures for mounting the latch on the housing and for creating a duplex connector assembly are also provided.
    Type: Application
    Filed: August 23, 2010
    Publication date: August 23, 2012
    Applicant: MOLES INCORPORATED
    Inventors: WenZong Chen, Scot Ernst, Igor Kuprin, Brian Smith, Joanna Szewczyk, Mark Matuszewski
  • Patent number: 8231282
    Abstract: A re-terminable, no-crimp ST-type optical connector assembly includes a spring-loaded ferrule holder assembly and a reusable activation system for termination of the assembly. The optical connector can be terminated by a suitable cam activation tool. The connector includes a housing, such as a bayonet, matable to a mating adapter, a backbone retained within a rear of the housing, a ferrule holder provided within the backbone, and a cam provided between the ferrule holder and the backbone. The ferrule holder includes an alignment key exposed to mate with a cam activation tool to lock rotation of the ferrule holder relative to other connector components. The cam includes a cam activation cutout at a front face thereof that mates with a cam activation tool interface to enable rotation of the cam between de-activated and activated positions, the cam activation cutout also receiving the alignment key of the ferrule holder therethrough.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: July 31, 2012
    Assignee: Panduit Corp.
    Inventors: Gregory L. Kuffel, Samuel M. Marrs, Shaun P. Brouwer, Robert T. Fitzpatrick, Phillip J. Irwin, Matthew M. Wagner
  • Patent number: 8231281
    Abstract: A repeatable optical waveguide interconnection may include first and second optical waveguides having respective first and second end faces. Each of the first and second optical waveguides may include a core having a core index of refraction, and a cladding surrounding the core and having a cladding index of refraction different than the core index of refraction. The interconnection may further include a first index matching elastomeric solid layer having a proximal face coupled to the first end face, and a distal face opposite the proximal face to be repeatably optically coupled to the second end face. The first index matching elastomeric solid layer may have an index of refraction profile matching an index of refraction of the core and the cladding.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: July 31, 2012
    Assignee: Harris Corporation
    Inventors: Lawrence Wayne Shacklette, Michael Raymond Weatherspoon
  • Patent number: 8226302
    Abstract: An optical connector (10) of the present invention includes housing position correction means for correcting displacement of relative positions between plug and jack housings (13, 16); housing connection means (20, 22) which engage with each other to connect the plug and jack housings (13, 16) to each other so that a coupling state between first and second optical fibers (11, 14) can be maintained; connection release means (26, 27) capable of releasing the connected state by the housing connection means (20, 22); and frame position correction means for correcting displacement of relative positions between a frame (21) of an optical plug (12) and a connection block (34) of an optical jack (15).
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: July 24, 2012
    Assignees: Nippon Telegraph and Telephone Corporation, Japan Aviation Electronics Industry, Limited
    Inventors: Masaru Kobayashi, Ryo Nagase, Yoshiteru Abe, Yuichi Koreeda
  • Patent number: 8221006
    Abstract: A fiber optic cable assembly includes a fiber optic cable with one or more optical fibers attached to a housing. The housing includes a connector housing for a connector, a furcation housing for a furcation, and a splice housing for a mid-span cable splice. The furcation housing and the splice housing include a crimp body. The crimp body has a compression area and at least one hoop about the compression area defining a crimp zone. A crimp band is arranged for engaging the crimp zone and including an indentation defining a compression surface and a rib defining a rib interior. The crimp band and the crimp body cooperate to grip the strength element and resist cable pull off forces. A method of making the fiber optic cable assembly is also disclosed.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: July 17, 2012
    Assignee: Corning Cable Systems LLC
    Inventor: Thomas Theuerkorn
  • Patent number: 8221007
    Abstract: The present disclosure relates to an optical plug connector (1) having an improved unlocking mechanism. A locking arm (4), which protrudes toward the back in a slanted manner, is operatively connected to a collar (7) by way of a bracket (9). By displacing the collar (7) in an unlocking direction (?x), the connector (1) can be unlocked and removed from a sleeve.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 17, 2012
    Assignee: Huber+Suhner AG
    Inventors: Adrian Peterhans, Patrick Zaina, Nesa Scopic
  • Publication number: 20120170893
    Abstract: A fiber optic splice housing and integral dry mate connector system. In a described embodiment, a fiber optic connection system includes optical fiber sections in respective conduit sections. Each of the conduit sections is received in the housing assembly. An optical connection between the optical fiber sections is positioned within the housing assembly.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: WELLDYNAMICS, B.V.
    Inventors: Paul D. RINGGENBERG, NEAL G. SKINNER, John L. MAIDA, JR., David O. JOHNSON
  • Patent number: 8206041
    Abstract: This high power optical connector is used at least on a light-receiving side of an optical fiber. The high power optical connector is provided with: a housing; a ferrule which is accommodated in the housing to retain the optical fiber; and a flange which is connected and fixed to the housing while being in contact with an end portion of the ferrule. The ferrule is made of a transparent glass; and the flange is made of a transparent material which transmits a light which propagates through the optical fiber.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: June 26, 2012
    Assignee: Fujikura Ltd.
    Inventor: Yasuhiro Oba
  • Patent number: 8204350
    Abstract: An optical fiber with filtering thin film includes a first ferrule having a first through hole and a first contact surface. A first fiber is disposed into the first through hole, extending to the first contact surface. A first interface coupling material is between the first ferrule and the first fiber. A second ferrule has a second through hole and a second contact surface. A second fiber is disposed into the second through hole, extending to the second contact surface. A second interface coupling material is between the second ferrule and the second fiber. The first contact surface and the second contact surface are parallel and have an included tilt angle from a perpendicular transverse plane of first fiber. An optical filtering film is disposed between the first contact surface and the second contact surface. The first fiber and the second fiber are aligned.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 19, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Ting Lin, Yao-Wun Jhang, Hsin-Chia Su, Chien-Ming Huang, Chieh Hu
  • Publication number: 20120148191
    Abstract: An APC receptacle stub and an APC TOSA having the same are provided. The APC receptacle stub includes a first APC stub and a second APC stub. The first APC stub has an optical fiber inserted thereto and is provided with one end section polished in an APC shape. The second APC stub has an optical fiber inserted thereto and is provided with one end section polished in an APC shape and an opposite end section which is coupled to an opposite end section of the first APC stub through rotation adjustment in the same axial direction as an axial direction of the opposite end section of the first APC stub. The APC receptacle stub enables easy optical alignment and is applicable to a light source that is sensitive to reflection.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 14, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jong-Hoon Lee, Seung-Hyun Cho, Jie-Hyun Lee, Sang-Soo Lee, Eun-Gu Lee, Han-Hyub Lee
  • Publication number: 20120141070
    Abstract: A connector assembly includes a connector, a bracket for mounting the connector and a coupler for mating with the connector and the bracket. The connector includes an outer housing through which a latching arm and a ferrule both extend. The bracket includes a middle portion, a rear base and a pair of guiding blocks extending forwardly from the middle portion. The ferrule is directly positioned between the pair of guiding blocks. The rear base is associated with a deformable arm to abut against the outer housing to limit a front-to-back movement of the outer housing. The coupler includes a pair of guiding slots formed at lateral sides thereof for guiding insertion of the pair of guiding blocks thereinto.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 7, 2012
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: JAMES M. SABO
  • Patent number: 8186890
    Abstract: Fiberoptic connector and adapter assembly includes a fiberoptic connector received within an adapter. The connector has a cover on the connector housing. The cover pivots between open and closed positions to expose or cover, respectively, a optical fiber contained within the connector. Longitudinal guides of the connector are received cooperating with longitudinal guides of the adapter to direct the connector into the adapter in a prescribed alignment. A cam pin is carried on the adapter to engage a cam pin receiving slot on the cover to urge the cover to the open position as the connector is inserted into the adapter.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: May 29, 2012
    Assignee: ADC Telecommunications, Inc.
    Inventor: Liang-Ju Lu
  • Publication number: 20120128303
    Abstract: An optical connector having an optical fiber inserted into a connector main body includes a buckling regulating section whose length in an optical fiber insertion direction is formed variable and which regulates a buckling of the optical fiber while becoming short in an optical fiber insertion direction when the optical fiber is inserted into the connector main body. Even if an insertion area is made long, since no buckling of the optical fiber is generated, the buckling regulating section can sufficiently increase an insertion force of the optical fiber. Thus, even when foreign substances such as dusts enter and an insertion resistance increases, the optical fiber can be securely inserted. Further, the buckling regulating section is very advantageous to realize an end surface preparation of the optical fiber making use of the insertion force of the optical fiber such as a coating removing of the optical fiber, and an end surface grinding preparation of the optical fiber.
    Type: Application
    Filed: August 6, 2010
    Publication date: May 24, 2012
    Inventors: Ryo Koyama, Kazuhide Nakajima, Masaaki Takaya, Toshio Kurashima, Masatoshi Shimizu, Kyoichi Nakamizo
  • Patent number: 8172601
    Abstract: The motor cable device which can prevent damage on an inverter-side connecting member of the motor cable device and lowering in a connecting reliability of the inverter-side connecting member is provided. Also, a resin component used in the above-described motor cable device is provided. The motor cable device electrically connects a motor and an inverter and includes an inverter-side protector and a motor-side protector. The inverter-side protector includes a fixed end which is directly or indirectly fixed to the inverter and which supports the inverter-side connecting member. A swinging motion absorbing portion is formed continuously to the fixed end, the swinging motion absorbing portion being arranged to support a cable body at the inverter-side connecting member and absorb the swinging motion generated at the cable body of the motor cable device, is further included.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: May 8, 2012
    Assignee: Yazaki Corporation
    Inventors: Hideomi Adachi, Hidehiko Kuboshima
  • Patent number: 8157455
    Abstract: The optical connector, comprising: a first plug having a first ferrule for holding a first multiple optical fiber; a second plug having a second ferrule for holding a second multiple optical fiber; a first housing on which the first plug is detachably fixed; a second housing which is detachably fixed on the first housing and on which the second plug is fixed in such a manner that each edge face of optical fibers of the first multiple optical fiber and each edge face of optical fibers of the second multiple optical fiber are mutually adjusted, and the first housing has a first ferrule positioning member for positioning the first ferrule in relation to the second ferrule.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: April 17, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Hideki Miyazaki
  • Patent number: 8152384
    Abstract: Push-pull fiber optic connectors and cable assemblies having a latch that is actuated by a cam surface are disclosed. The fiber optic connectors include a ferrule and a housing having the latch. A shroud fits over a portion of the housing and allows the craft to grab the shroud and push the shroud and hence the fiber optic connector into a suitable adapter or the like. Likewise, the craft can grab the shroud and pull on the same to remove the fiber optic connector out of the adapter or the like. The cam surface is disposed on a decoupling member, wherein the decoupling member is attached to the shroud so the components can move together. Methods of making the push-pull fiber optic connector are also disclosed.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Michael de Jong, Paul X. Devereaux, Ashley W. Jones, Ronald L. Mudd
  • Patent number: 8152386
    Abstract: A fiber optic assembly comprising an adapter assembly defining an internal cavity, a first end for a receiving a first fiber optic connector, and a second end for receiving a second fiber optic connector, wherein the first and the second fiber optic connectors are dissimilar. A fiber optic connection comprising a first fiber optic connector comprising a connector housing, a first multi-fiber ferrule, and a clearance about an end face of the first multi-fiber ferrule for clearing a ferrule surround during connector mating, and a second connector that is a FOCIS 5 compliant MTP connector.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: James Phillip Luther, Martin Eugene Norris, Thomas Theuerkorn
  • Patent number: 8132971
    Abstract: Methods for centering at least one optical fiber (10) having a centerline (16) in a connector ferrule (100) having at least one bore (120) with a central axis (AC) is disclosed. One method includes inserting a bare-fiber portion (13) into a ferrule bore so that at least a section (10S) of the bare-fiber portion extends beyond the ferrule front end (106). The method also includes selectively applying an amount of energy to the bare-fiber section to form a locally deformable region (19), and forming at a bulge (250) in the locally deformable region. The method also includes causing the bulge to form a force-fit with the bore at the ferrule front end, thereby substantially centering the optical fiber centerline along the bore central axis. Methods of centering nano-engineered optical fibers are also disclosed, wherein the optical fiber end is processed so that a substantially void-free fiber end (14) is made to substantially coincide with the ferrule front end.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: March 13, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: James P. Luther, Darrin M. Miller
  • Patent number: 8123417
    Abstract: An optical connector having a front and back orientation and suitable for operating with a temperature range, the connector comprising: (a) a ferrule comprising a first material having a first coefficient of thermal expansion (COE), and having no greater than a first diameter below a transition temperature with the temperature range, and no less than a second diameter above the transition temperature, the ferrule also comprising an endface, and containing at least one fiber having a fiber end presented at the endface; (b) a spring disposed behind the ferrule and in contact with the ferrule to apply a forward urging force to the ferrule; and (c) a housing comprising a second material having a second COE, the housing defining a bore hole having a diameter greater than the second diameter, and an interface portion having a restricted bore hole having no greater than a third diameter below the transition temperature, and no less than a fourth diameter above the transition temperature; wherein the connector is con
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: February 28, 2012
    Assignee: Tyco Electronics Corporation
    Inventors: Daniel E. Wertman, Soren Grinderslev
  • Patent number: 8118494
    Abstract: An optical fiber connector comprises an outer housing configured to mate with a receptacle and a collar body disposed in the outer housing. The collar body receives and secures a ferrule in a first portion of the collar body. The ferrule includes a central bore that defines an axis. The ferrule further includes a fiber stub disposed in a portion of the central bore, the fiber stub comprising a first optical fiber having a first end proximate to an end face of the ferrule and a prepared second end terminating within the ferrule. The collar body further includes a second portion that includes a housing portion to house a gripping device that grips a second optical fiber.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: February 21, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Donald K. Larson, Sidney J. Berglund, Paul N. Winberg, James R. Bylander, Takaya Yamauchi, Tomoyasu Oike, Yukino Miyoshi
  • Publication number: 20120027356
    Abstract: A method for mating optical fibers, a fiber optic connector, and a fiber optic subassembly are provided in which mating fibers have angled end faces joined by index matching fluid, but in which the angled end faces of the fibers are positioned relative to one another in rotationally misaligned relationship. Applicants discovered unexpectedly that optical fibers can be spliced, to provide satisfactory optical connections, without the need for matched cleaves, and without the need for precise rotational alignment of the cleaves, provided that angled end faces are provided on both the launch and receive fibers and that index matching gel is provided between the angled end faces. Thus, the fibers are mated in positions other than in the precise rotationally aligned position previously believed essential to adequate optical performance. Angled end faces may be positioned less than 165 degrees out of phase.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Applicant: Tyco Electronics Corporation
    Inventor: Michael L. Gurreri
  • Patent number: 8104973
    Abstract: An adapter for holding two multi-fiber ferrules in positions to mate with one another includes a main body, a opening extending through the main body configured to receive and optically and mechanically mate the two multi-fiber ferrules. Engagement members, which preferably rotate about an axis transverse to the opening, is disposed adjacent the opening on each side of the adapter to engage and hold the multi-fiber ferrules in the adapter.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: January 31, 2012
    Assignee: US Conec, Ltd.
    Inventors: Joseph P Howard, Darrell P Childers, Russell J. Granger, Myron W Yount
  • Patent number: 8100588
    Abstract: A small form factor pluggable (SFP) optical transceiver module and method for performing optical communications are provided. The SFP optical transceiver module has a housing to which a duplex receptacle is secured. The duplex receptacle has a C-shaped opening, the upper and lower portions of which are defined by upper and lower flexible retaining elements for receiving and retaining a duplex optical connector therein. An electrical assembly of the module is secured within the transceiver module housing. The electrical assembly comprises a PCB, the back end of which is configured as a plug end for removably plugging the PCB into a receptacle of an external communications management system.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 24, 2012
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Tom Sheau Tung Wong, Adrianus Van Haasteren, Tze Wei Lim
  • Patent number: 8070367
    Abstract: An LC format optical connector for terminating an optical fiber includes a housing configured to mate with an LC receptacle, the housing including a shell, a first resilient latch disposed on a surface of the shell, and a backbone. The LC format connector also includes a collar body disposed in the housing and retained between the outer shell and the backbone, wherein the collar body includes a fiber stub disposed in a first portion of the collar body. The collar body further includes a mechanical splice disposed in a second portion of the collar body, the mechanical splice configured to splice the second end of the fiber stub to a second optical fiber. The LC format connector further includes a trigger coupled to an outer surface of the housing backbone, the trigger including a second latch that engages the first latch when acted upon by a pressing force. An optical connector with a single piece latch structure is also provided.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: December 6, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Paul N. Winberg, Donald K. Larson, Wesley A. Raider
  • Patent number: 8068714
    Abstract: An optical fiber feedthrough assembly includes a glass plug disposed in a recess of a feedthrough housing. The glass plug may define a large-diameter, cane-based, waveguide sealed within the recess in the housing and providing optical communication through the housing. Sealing occurs with respect to the housing at or around the glass plug of an optical waveguide element passing through the housing by braze sealing to the glass plug and/or embedding the glass plug in a polymer bonded with the plug to form a molded body that is sealed in the housing by, for example, compression mounting of the molded body or providing a sealing element around the molded body.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: November 29, 2011
    Assignee: Weatherford/Lamb, Inc.
    Inventors: James R. Dunphy, John J. Grunbeck, Trevor MacDougall, Matthew J. Patterson
  • Patent number: 8052333
    Abstract: A re-terminable, no-crimp ST-type optical connector assembly includes a spring-loaded ferrule holder assembly and a reusable activation system for termination of the assembly. The optical connector can be terminated by a suitable cam activation tool. The connector includes a housing, such as a bayonet, matable to a mating adapter, a backbone retained within a rear of the housing, a ferrule holder provided within the backbone, and a cam provided between the ferrule holder and the backbone. The ferrule holder includes an alignment key exposed to mate with a cam activation tool to lock rotation of the ferrule holder relative to other connector components. The cam includes a cam activation cutout at a front face thereof that mates with a cam activation tool interface to enable rotation of the cam between de-activated and activated positions, the cam activation cutout also receiving the alignment key of the ferrule holder therethrough.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: November 8, 2011
    Assignee: Panduit Corp.
    Inventors: Gregory L. Kuffel, Samuel M. Marrs, Shaun P. Brouwer, Robert T. Fitzpatrick, Phillip J. Irwin, Matthew M. Wagner
  • Patent number: 8047727
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 1, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 8047726
    Abstract: An optical connector in which the housing property into a cabinet or the like can be enhanced because of the compactification, and which can solve problems of the increase of the bending loss of an optical fiber, the breakage, and the like is obtained. In an optical connector which houses and holds a fusion spliced portion where a short optical fiber previously fitted to an optical connector ferrule is fusion-spliced with a coated optical fiber, one end of a protection sleeve which armors the fusion spliced portion is coupled to the optical connector ferrule. As a result, the length of the protection sleeve which covers the fusion spliced portion so that the fusion spliced portion is positioned at the middle can be set with reference to an end portion of the optical connector ferrule. Therefore, the protection sleeve can be shortened, and compactification of the optical connector can be realized.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: November 1, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshikyo Tamekuni, Yukihiro Yokomachi, Tsutomu Watanabe, Toshihiko Honma, Masahiro Shibata
  • Publication number: 20110262075
    Abstract: A guide pin for mating multi-fiber optical ferrules includes a first end, a second end and a flexile feature adjacent to the second end. The first end has a first end width and the second end has a first engagement width and may change to a second engagement width while engaging a guide pin bore in a ferrule. The change in width permits the guide pin to engage and axially align with guide pin bores of varying diameters to achieve reliable optical mating of optical wave guides.
    Type: Application
    Filed: April 27, 2011
    Publication date: October 27, 2011
    Inventors: John W. Beatty, Dennis Michael Knecht, Christopher Paul Lewallen, James Phillip Luther, Wesley Allan Yates
  • Publication number: 20110255829
    Abstract: A communications connection system includes a fiber optic adapter module configured to receive multiple fiber optic connectors. The fiber optic adapter module includes one or more media reading interfaces. Each media reading interface is configured to read physical layer information stored on one of the fiber optic connectors received at the adapter module. Certain types of media reading interfaces extend between an internal passage of the adapter module and an external surface of the adapter module.
    Type: Application
    Filed: February 11, 2011
    Publication date: October 20, 2011
    Inventors: John Anderson, Steven J. Brandt, Joseph C. Coffey, Bruce Ogren, Kamlesh G. Patel, Cyle D. Petersen, Michael D. Schroeder, John Stasny
  • Patent number: 8038354
    Abstract: A multi-channel fiber optic connector includes a first connector housing and a mating second connector housing. The first connector housing includes a plurality of abutting first termini and a first guidance feature amongst the plurality of abutting first termini to form a first grouping. A circular containment sleeve surrounds the first grouping. The second connector housing includes a plurality of abutting second termini and a second guidance feature amongst the plurality of abutting second termini to form a second grouping. When the first and second connector housings are mated, the first guidance feature cooperates with the second guidance feature, and the plurality of abutting second termini enter into the containment sleeve to assume an end-to-end alignment with the plurality of abutting first termini.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: October 18, 2011
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Jeffrey D. Nielson, Bradley Billman
  • Patent number: 8030593
    Abstract: A laser welding apparatus and method for easily adjusting a laser focusing position according to a distance from a laser irradiating device to a laser irradiating point on a work piece, or a welding point. A post-collimation laser diameter is measured when the laser emitting end has an optimal laser diameter on the work piece with respect to the distance from the laser processing head to the work piece. Corresponding data is stored with the above distance and the post-collimation laser diameter corresponding to each other. During welding, a diameter of the laser beam passing through a collimate lens is measured by a laser diameter measuring device. The post-collimation laser diameter is adjusted to be an optimal value according to the corresponding data.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: October 4, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Nobuhiro Yoshikawa
  • Patent number: 8023784
    Abstract: An optical subassembly package configuration for monitoring a fiber, the configuration includes a container, an optical subassembly, an optical fiber, and a ferrule. The container has a face, and the optical subassembly is disposed within the container. The optical fiber communicates with the subassembly. The ferrule is attached to the face of the container, the fiber being monitored terminates inside the ferrule.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Mark W. Beranek
  • Patent number: 8016491
    Abstract: An optical ferrule butt-connected in an optical adapter, includes: a ferrule main body; a connection end face in a front surface of the main body; a pair of grooves on the connection end face of the main body; guide pin insertion holes in bottom surfaces of the respective grooves; optical fiber insertion holes in the connection end face, the holes being arranged in a line; and foreign material collecting portions at least at a pair of corresponding sides of the connection end face. The groove has a width larger than a diameter of the guide pin insertion hole. The foreign material collecting portions respectively have a wall for connecting the connection end face with a side surface of the ferrule main body to form a space for collecting a foreign material with an opposite connection end face of a corresponding optical ferrule and an inner wall of the optical adapter.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: September 13, 2011
    Assignee: Fujikura Ltd.
    Inventors: Atsushi Takaoka, Akito Nishimura, Yukio Hayashi
  • Publication number: 20110211792
    Abstract: A stopper 50 is fixed to an optical connector 10, and the optical connector 10 is accommodated in an opening section 21 of a housing 20. The housing 20 is engaged with the stopper 50 so as to be displaceable with respect to the stopper 50 by a predetermined amount in a direction of inserting the optical connector 10 to a receptacle, and the stopper 50 is biased rearward by a coil spring 40 with respect to the housing 20. The free end of a clip piece 15 is placed on the free end of a latch piece 14 of the optical connector 10, and the free end of the clip piece 15 is placed on an inclination surface 23a at the front end of a concave section 23 formed on an inner wall surface of the opening section 21. At the time of detachment from the receptacle, the housing 20 is displaced in a direction to be pulled out against the biasing force of the coil spring 40. Accordingly, the clip piece 15 and the latch piece 14 are pushed down by the inclination surface 23a to release the lock of the latch piece 14.
    Type: Application
    Filed: January 25, 2011
    Publication date: September 1, 2011
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Yuichi Koreeda, Naoki Katagiyama, Yasutaka Hiroki
  • Patent number: 7988368
    Abstract: An optical connector that is capable of ensuring excellent waterproofing using a simple structure is provided. The optical connector comprises a connector plug and socket. Each of the plug and socket have a housing, which has a cable-guiding part and a cable-retaining part; a ferrule disposed within the housing and to hold a leading-end part of an optical fiber exposed from a sheath of an optical cable; and a seal member disposed between the cable-guiding part and the cable-retaining part to seal the cable-guiding part.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 2, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Wataru Sakurai, Junji Fukui, Mitsuaki Tamura
  • Patent number: 7985027
    Abstract: An adapter assembly for receiving and maintaining mating fiber optic connectors, comprising an adapter housing defining at least one feature for engaging with at least one plug housing engaged with at least one of the first and second fiber optic connectors, and at least one alignment member maintained within the adapter housing for receiving connective ends of each of the first and second fiber optic connectors. An adapter assembly for receiving and maintaining mating first and second fiber optic connectors, wherein the connectors may be similar or dissimilar and while reducing side load forces through the use of a stabilizing member.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: July 26, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Christopher Paul Lewallen, James P. Luther, Xin Liu, Thomas Theuerkorn
  • Publication number: 20110142398
    Abstract: Provided are an adapter assembly and method for compensating optical fibers for a length difference. The adapter assembly includes a first adapter, a second adapter, and a member. The first adapter is configured to be connected to at least one optical communication unit. The second adapter is configured to be connected to at least another optical communication unit and be coupled to the first adapter. The member is configured to be interposed between the first and second adapters for providing an optical signal transmission path between the optical communication units. Owing to the member, a length difference between optical fibers can be compensated for.
    Type: Application
    Filed: May 26, 2010
    Publication date: June 16, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Joong-Seon Choe, Yong-Hwan Kwon, Chun Ju Youn, Jong-Hoi Kim, Kwang-Seong Choi, Eun Soo Nam
  • Publication number: 20110116745
    Abstract: An optical connector according to an embodiment of the present invention comprises (a) a ferrule incorporating a short fiber; (b) a mechanical splice having a holding part and a fixing part, and adapted so that the fixing part mechanically fixes the short fiber extending from the ferrule held by the holding part, and an optical fiber in an optical cable to butt the short fiber; (c) an outer housing having a housing part in which the mechanical splice is located, and a pair of flexible arms located on both sides of the housing part, the pair of arms each being provided with a locking claw at a tip; and (d) a jacket fixture for fixing a cable jacket, the jacket fixture being coupled to the mechanical splice so that the cable jacket is inserted therein.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 19, 2011
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Daizo NISHIOKA, Kenichiro Ohtsuka, Kazuhito Saito, Yoshikyo Tamekuni, Yukihiro Yokomachi, Tunetaka Ema, Kenichi Nakazawa, Yasuhiko Hoshino
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Publication number: 20110103746
    Abstract: A repeatable optical waveguide interconnection may include first and second optical waveguides having respective first and second end faces. Each of the first and second optical waveguides may include a core having a core index of refraction, and a cladding surrounding the core and having a cladding index of refraction different than the core index of refraction. The interconnection may further include a first index matching elastomeric solid layer having a proximal face coupled to the first end face, and a distal face opposite the proximal face to be repeatably optically coupled to the second end face. The first index matching elastomeric solid layer may have an index of refraction profile matching an index of refraction of the core and the cladding.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: Harris Corporation, Corporation of the State of Delaware
    Inventors: Lawrence Wayne Shacklette, Michael Raymond Weatherspoon
  • Publication number: 20110085764
    Abstract: The present disclosure (20) relates to a connector with a modular construction. In order to achieve the highest possible channel density, inserts (1, 14) are arranged to form a stack-like composite and then inserted into a housing (21). The inserts (1, 14) are operatively connected to one another via operative connection means (17, 18).
    Type: Application
    Filed: June 3, 2009
    Publication date: April 14, 2011
    Inventors: Daniel Greub, Denise Skok