Pilot Signal Patents (Class 398/32)
  • Patent number: 11956012
    Abstract: The present invention relates to a fiber branch structure for spatial optical communication for transmitting information by emitting communication light. The fiber branch structure is provided with: a light emitter configured to emit communication light; a light emission controller configured to control the light emitter; an optical fiber configured to transmit the light emitted from the light emitter; a distributor configured to distribute the light, the distributer being optically coupled to an output terminal of the optical fiber; and an optical fiber group optically coupled to a plurality of output terminals of the distributor. According to the present invention, a communication area can be established without blind spots. That is, the fiber branch structure for spatial optical communication according to the present invention includes an optical fiber group optically coupled to a plurality of output terminals of the distributor.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: April 9, 2024
    Assignees: Shimadzu Corporation, Japan Agency for Marine-Earth Science and Technolog
    Inventors: Keiko Sato, Naoki Nishimura, Takao Sawa
  • Patent number: 11909438
    Abstract: A transmitter may include a digital signal processor (DSP) to generate an electrical signal associated with a beacon and a data signal. The transmitter may include an electro-optical component to convert the electrical signal to an optical signal to be transmitted by the transmitter. The beacon and the data signal may be on a common wavelength in the optical signal. A power of the beacon within the optical signal may be based on a value of an amplitude modulation factor applied to the beacon by the DSP in association with generating the electrical signal.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: February 20, 2024
    Assignee: Lumentum Operations LLC
    Inventor: Ali Salehiomran
  • Patent number: 11837847
    Abstract: A DFB laser DC-coupled output power configuration scheme belongs to the field of laser drivers in optical communication integrated circuits. The present invention solves the existing problems in the conventional DFB laser power supply configuration scheme. The power configuration scheme of the present invention utilizes an external or internal power configuration unit to provide two electric DC power supplies with a fixed voltage difference for the transmitting unit TX of the DFB laser and the optical transceiver integrated chip, and at the same time optimizes the transmitting unit TX. The optimization scheme is that: the transistors in the transmitting unit TX are all low-voltage high-speed tubes, the transmitting unit TX includes a negative capacitance structure composed of capacitors C1 and C2, serving as an auxiliary structure for improving bandwidth. After optimization, the minimum voltage of the power supply voltage port TVCC of the transmitting unit TX is 2.7V.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: December 5, 2023
    Inventors: Jinghu Li, Zhang Fan, Liangqiong Shi, Weitan Yao, Weiyin Zheng, Hanghui Tu
  • Patent number: 11476966
    Abstract: An example system includes an optical gateway, plurality of hub transceivers, and a plurality of edge transceivers. The optical gateway is operable to receive a plurality of signals from an optical communications network at a plurality of ports of the optical gateway, where each port of the optical gateway comprises one or more respective photodiodes. Further, the optical gateway is operable to determine, for each port, a respective link of the optical communications network communicatively coupling the port with at least one hub transceiver of the plurality of hub transceivers or with at least one edge transceiver of the plurality of edge transceivers, and an identity of the at least one hub transceiver or the at least one edge transceiver.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: October 18, 2022
    Assignee: Infinera Corporation
    Inventor: Steven J. Hand
  • Patent number: 11476939
    Abstract: An optical repeater is a C+L-band repeater inserted between a first transmission path fiber and a second transmission path fiber. The optical repeater includes: a first optical fiber amplifier inserted in a first line, for amplifying a C-band signal; a second optical fiber amplifier inserted in a second line, for amplifying an L-band signal; a third optical fiber amplifier inserted in a third line, for amplifying a C-band signal; a fourth optical fiber amplifier inserted in a fourth line, for amplifying an L-band signal; and a first loopback means provided between an input to the first optical fiber amplifier or an output from the first optical fiber amplifier and an input to the third optical fiber amplifier or an output from the third optical fiber amplifier.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 18, 2022
    Assignee: NEC CORPORATION
    Inventor: Hiroaki Kataoka
  • Patent number: 11362754
    Abstract: Embodiments for adaptive inline modulation tuning for optical interfaces is described. The inline modulation tuning is provided by optical nodes, where the optical nodes exchange optical modulation information and node ability information between optical devices in a node pair. An optimal modulation scheme for the node pair is selected based on modulation abilities of each node and associated transceiver, as well as a link quality and performance observed for the optical link.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: June 14, 2022
    Assignee: Cisco Technology, Inc.
    Inventors: Sudhir Kayamkulangara, Stefano Binetti, Rayen Mohanty
  • Patent number: 11316590
    Abstract: An optical transmission device includes a first detector, a generator, a second detector, and a controller. The first detector detects optical output power of an optical signal for each channel for input to a Mach-Zehnder unit that has asymmetric optical waveguides. The generator superimposes, based on the detected optical output power for each of the channels, a dither signal onto an optical signal in a specific channel from among the plurality of channels for input to the Mach-Zehnder unit. The second detector detects an amplitude value of the dither signal superimposed onto the optical signal in the specific channel output from the Mach-Zehnder unit. The controller adjusts a phase difference in the Mach-Zehnder unit such that the amplitude value of the dither signal superimposed onto the detected optical signal in the specific channel is less than a predetermined threshold.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: April 26, 2022
    Assignee: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventor: Masakazu Horishita
  • Patent number: 11039229
    Abstract: An optical network communication system utilizes a passive optical network (PON) and includes an optical line terminal (OLT) having a downstream transmitter and an upstream receiver, and an optical network unit (ONU) having a downstream receiver and an upstream transmitter. The downstream transmitter is configured to provide a coherent downlink transmission, and the downstream receiver is configured to obtain one or more downstream parameters from the coherent downlink transmission. The system further includes a long fiber configured to carry the coherent downlink transmission between the OLT and the ONU. The ONU is configured to communicate to the OLT a first upstream ranging request message, the OLT is configured to communicate to the ONU a first downstream acknowledgement in response to the upstream first ranging request message, and the ONU is configured to communicate to the OLT a second upstream ranging request message based on the first downstream acknowledgement.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: June 15, 2021
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Luis Alberto Campos, Zhensheng Jia, Matthew Schmitt, Curtis Dean Knittle
  • Patent number: 10917171
    Abstract: A method and apparatus of fiber nonlinear noise monitoring and an optical receiver is provided. The method includes: acquiring a training set including at least two received signal samples obtained after a transmitting signal passes different simulation transmission scenarios, calculating amplitude noise feature values after a digital signal processing, calculating statistics values of fiber nonlinear noises, marking the amplitude noise feature values; taking the amplitude noise feature values as input of a noise monitoring model, taking marks to which the amplitude noise feature values correspond as target output, and training the noise monitoring model according to samples in the training set, so as to obtain a trained noise monitoring model, and inputting a plurality of amplitude noise feature values of received signals to be monitored into the trained noise monitoring model, so as to obtain statistics values of fiber nonlinear noises to which the received signals to be monitored correspond.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: February 9, 2021
    Assignee: FUJITSU LIMITED
    Inventors: Ke Zhang, Zhenning Tao, Yangyang Fan
  • Patent number: 10707638
    Abstract: An apparatus includes multiple ports configured to be coupled to multiple optical fibers and to transmit first optical signals and receive second optical signals over the optical fibers. The apparatus also includes a signal source configured to generate a first additional optical signal for inclusion with the first optical signals. The apparatus further includes a signal detector configured to detect a second additional optical signal included with the second optical signals. In addition, the apparatus includes a switch configured to selectively couple the signal source to one of the ports. The switch is configured to couple the signal source to different ones of the ports in different configurations of the switch.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: July 7, 2020
    Assignee: Neptune Subsea IP Limited
    Inventor: Wayne S. Pelouch
  • Patent number: 10707962
    Abstract: A radio over fibre system (5) comprises a base station (10, 20) with a first base station node (10) and a second base station node (20) connected by an optical communication link (30). At least one of the base station nodes (10, 20) comprises an optical transmitter (17, 23). A method of determining an operating parameter for the optical transmitter (17, 23) comprises receiving signal quality parameters for a plurality of user equipments (UE) served by the base station (10, 20). The method determines an operating parameter of the optical transmitter using the determined signal quality parameters of the plurality of user equipments (UE). The operating parameter of the optical transmitter can be a modulation parameter.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: July 7, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Gianmarco Bruno, Luca Giorgi, Jeroen Nijhof, Filippo Ponzini
  • Patent number: 10587346
    Abstract: An optical transmitter includes optical modulation means for modulating a laser beam with a driving signal and outputting an optical signal; monitor means for detecting a part of the optical signal and outputting a monitor signal; bias voltage applying means for applying, to the optical modulation means, a bias voltage on which a dither signal is superimposed; average optical intensity detection means for detecting an average optical intensity of the optical signal from the monitor signal; top dither signal detection means for detecting, from the monitor signal, a top dither signal that is superimposed on a waveform with maximum optical intensity included in the optical signal; and bias voltage control means for controlling the bias voltage based on the average optical intensity and the top dither signal.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: March 10, 2020
    Assignee: NEC CORPORATION
    Inventor: Sadao Fujita
  • Patent number: 10461881
    Abstract: Systems and methods for identifying a pair of nodes of a plurality of nodes of a virtual optical network (VON); identifying i) an optical route between the pair of nodes and ii) a desired availability of the optical route; determining a probability density function (PDF) of a signal-to-noise ratio (SNR) of a signal of the optical route; determining a SNR threshold such that an integration of the PDF of the SNR of the signal above the SNR threshold corresponds to the desired availability of the optical route; determining a plurality of spectral efficiencies that corresponds to the SNR threshold, each spectral efficiency of the plurality of spectral efficiencies associated with a respective modulation format of a plurality of modulation formats; and identifying a particular modulation format of the plurality of modulation formats that corresponds to a maximum spectral efficiency of the plurality of spectral efficiencies.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: October 29, 2019
    Assignee: Fujitsu Limited
    Inventors: Inwoong Kim, Xi Wang, Olga Vassilieva, Paparao Palacharla, Tadashi Ikeuchi
  • Patent number: 10205534
    Abstract: A method for conveying information through an optical fiber link between a transmitter and a receiver of an optical communication system. The method includes generating, by the transmitter, a predetermined spectral change, and inserting the predetermined spectral change into an optical fiber link for transmission to the receiver. A detector associated with the receiver detects the predetermined spectral change in an optical signal received through the optical fiber link, and generates a detection signal in accordance with the detection result. The detector is independent of a digital signal processor of the receiver that is configured to recover data modulated on the optical signal received through the optical fiber link.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: February 12, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Hamid Mehrvar, Mohammad Mehdi Mansouri Rad
  • Patent number: 10069563
    Abstract: In order to change opposed communication destinations in a simple structure, an optical module includes an optical collimator to take in and output collimated light and a mirror capable of taking a tilt angle to make the collimated light and the optical collimator be coupled.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 4, 2018
    Assignee: NEC Corporation
    Inventor: Hiroshi Yamaguchi
  • Patent number: 10027408
    Abstract: An optical transmitter transmits to an optical receiver a multi-carrier modulated signal light by driving a light source with a modulated signal modulated with a multi-carrier modulation scheme. The optical receiver monitors reception characteristic of any of subcarrier signals included in the modulated signal and transmits a monitor result to the optical transmitter. The optical transmitter controls drive conditions of the light source based on the monitor result received from the optical receiver.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: July 17, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Masato Nishihara, Toshiki Tanaka, Yutaka Kai, Tomoo Takahara
  • Patent number: 9929828
    Abstract: OADM processes input light containing reference light and multiplexed optical signals. A splitter splits the input light to generate first and second input light. A receiver generates an electric signal representing the second input light. An estimator estimates a difference in optical frequency between the reference light and a specified optical signal based on the electric signal. Alight source generates first and second light. An optical frequency of the second light is shifted by the estimated difference with respect to that of the first light. A demodulator generates a dropped signal representing the specified optical signal. A drive signal generator generates a drive signal in accordance with an inverted signal of the dropped signal. A modulator modulates the second light with the drive signal to generate a modulated optical signal. The first input light, the first light and the modulated optical signal are input to non-linear optical medium.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: March 27, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Tomoyuki Kato, Shigeki Watanabe
  • Patent number: 9749047
    Abstract: Disclosed are an optical network unit included in an OFDMA-PON system that is capable of reducing OBI (optical beat interference), and a method of controlling the optical network unit. The disclosed optical network unit includes: a signal generator part configured to generate an electrical signal carrying transmission data; an RF tone generator part configured to generate an RF tone; a combiner part configured to combine the electrical signal and the RF tone; and a photoelectric converter part configured to convert the combined signal of the electrical signal and RF tone into an optical signal.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: August 29, 2017
    Assignee: INDUSTRY-ACADEMIC FOUNDATION, YONSEI UNIVERSITY
    Inventors: Sang Kook Han, Kyoung Hak Mun, Seung Min Yang
  • Patent number: 9681209
    Abstract: One embodiment provides an apparatus for coupling a trunk network to a plurality of leaf passive optical networks (PONs). The apparatus includes one or more uplink ports for coupling to the trunk network, a plurality of downlink ports with a respective downlink port coupled to a leaf PON, and a switch chip for interconnecting the uplink ports and the downlink ports. The switch chip acts as a simple Ethernet switch with no traffic control ability.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: June 13, 2017
    Assignee: TIBIT COMMUNICATIONS, INC.
    Inventor: Edward W Boyd
  • Patent number: 9577762
    Abstract: A method of controlling a multiple sub-carrier optical channel of an optical communications system. The multiple sub-carrier optical channel includes at least two sub-carriers modulated with respective sub-channel data streams within a spectral range allocated to a single optical channel of the optical communications system. A transmitter modem of the optical communications system applies a respective dither signal to each sub-carrier. A receiver modem of the optical communications system detects a respective quality metric of each sub-carrier. A respective optimum power level of each sub-carrier is estimated based on the applied dither signals and the detected quality metrics. A respective power level of each sub-carrier is then adjusted in accordance with the estimated respective optimum power level of each sub-carrier.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: February 21, 2017
    Assignee: Ciena Corporation
    Inventors: Gary Mak, Mohammad Sotoodeh
  • Patent number: 9485049
    Abstract: An optical system may include optical transmitters to provide respective optical signals. Each of the respective optical signals may provide one or more carriers in an optical channel. The optical channel may include multiple carriers associated with the respective optical signals. First and second carriers, of the multiple carriers, may have a particular carrier space width. The particular carrier space width may include a frequency error associated with one or more optical signals of the respective optical signals. The optical system may include a control system to determine the frequency error and cause one or more of the optical transmitters to adjust the particular carrier space width based on the adjusted frequency error.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: November 1, 2016
    Assignee: Infinera Corporation
    Inventors: John D. McNicol, Han H. Sun, David J. Krause
  • Patent number: 9215006
    Abstract: A measurement system that includes a power source and a power meter, said power source is configured to generate both a measurement signal and a power source communication signal, and said power meter is in communication with said power source and configured to receive both said measurement signal and said power source communication signal.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: December 15, 2015
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8989572
    Abstract: An optical node apparatus that establishes an optical path between a first optical node and a second optical node in an optical network include a frequency modulation unit that superimposes a supervisory signal on a main signal by frequency-modulating the main signal, and a frequency demodulation unit that frequency-demodulates the supervisory signal superimposed on the received main signal.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: March 24, 2015
    Assignee: Fujitsu Limited
    Inventors: Takahito Tanimura, Takeshi Hoshida, Hisao Nakashima
  • Patent number: 8989571
    Abstract: According to an aspect of an embodiment, a method of modulating supervisory data onto an optical signal includes increasing a first power level of a first polarization component of an optical signal based on supervisory data. The method further includes decreasing a second power level of a second polarization component of the optical signal based on the supervisory data. The decrease in the second power level is substantially the same as the increase in the first power level such that a total power of the optical signal is substantially constant.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 24, 2015
    Assignee: Fujitsu Limited
    Inventors: Inwoong Kim, Olga Vassilieva, Paparao Palacharla, Motoyoshi Sekiya
  • Patent number: 8891959
    Abstract: An optical modulation device includes a generating circuit that generates a low-frequency signal, an average value of amplitude as an alternating-current component of the low-frequency signal being different from a center value of the amplitude of the low-frequency signal, a superimposing unit that superimposes the low-frequency signal on a data signal, an optical modulator that modulates, using the superimposition of the low-frequency signal by the superimposing unit, light from a light source and outputs a light signal, a calculating circuit that calculates an amplitude average value and an amplitude center value of a low-frequency component obtained from the light signal output by the optical modulator, and a controller that controls a bias voltage of the optical modulator such that the amplitude average value is brought closer to the amplitude center value of the frequency component calculated by the calculating circuit.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 18, 2014
    Assignee: Fujitsu Limited
    Inventor: Yuji Ishii
  • Patent number: 8873946
    Abstract: A system and method is disclosed that allows for the monitoring, analyzing and reporting on performance, availability and quality of optical network paths. The correlation of PM parameter metrics to client connections, coupled with threshold-based alarm generation provides a proactive and predictive management, reporting and analyzing of the health and effectiveness of individual path connections to alert Operational Support (OS) staff and/or customers to signal degradation and impending Network Element (NE) failures. The system and method performs in real-time processing intervals required for alarm surveillance in a telecommunications network.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: October 28, 2014
    Assignee: AT&T Intellectual Property II, L.P
    Inventors: David Mayo, Meei-Ling Chen
  • Patent number: 8861952
    Abstract: A multi-channel optoelectronic device is configured to establish a redundant status link with a remote device. The optoelectronic device can transmit N transmit optical signals to the remote device over a plurality of transmit channels and receive N receive optical signals from the remote device over a plurality of receive channels. The optoelectronic device includes one or more spare transmit and receive channels. When used with a remote device having spare transmit and receive channels, each device can establish a status link with the other and use the status link to switch out transmit and/or receive channels to identify and permanently switch out the worst transmit and/or receive channels. Alternately, the device can interoperate with a non-status-link enabled remote device by determining that the remote device is not status-link enabled, transitioning to a low transmit power mode, and transmitting and receiving over a plurality of default transmit and receive channels.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 14, 2014
    Assignee: Finisar Corporation
    Inventors: Christopher R. Cole, Lewis B. Aronson, Darin James Douma
  • Patent number: 8855486
    Abstract: A remotely controlled fiber testing method has the steps of: building a fiber network system including a local fiber station and a remote fiber station; sending a modulated signal to the remote fiber station by the local fiber station; demodulating the modulated signal to obtain a control command by the remote fiber station; executing the control command to obtain a testing result by the remote fiber station; modulating the testing result and sending the testing result back to the local fiber station; and demodulating the testing result by the local fiber station. Only one technician appointed to the local fiber station is sufficient to do the testing action. Therefore, the personnel cost is effectively reduced.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: October 7, 2014
    Assignee: Polarlink Technologies, Ltd.
    Inventors: Shih-Tien Lin, Fu-Chun Hung, Yu-Shu Chen, Ching-Wen Hsiao, Chun-Hung Su
  • Patent number: 8811815
    Abstract: A method includes generating a test signal and modulating the test signal. The method may also include transmitting the test signal on an optical path, where the optical path may include a number of add-drop multiplexer devices and amplifiers. The method may also include receiving the test signal at a destination device and converting the received test signal into an electrical signal. The method may further include identifying a portion of the electrical signal that is associated with the modulated test signal.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: August 19, 2014
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8805185
    Abstract: A wavelength-division multiplexing transmission device including: a dummy light source configured to emit and quench dummy light; a monitoring unit configured to monitor an optical level relating to the received wavelength-division multiplexed light; a dummy light controller configured to control the dummy light source to emit dummy light in case where the monitoring unit determines based on the monitored optical level that the wavelength-division multiplexed light is in a condition of input interruption; and a multiplexer configured to multiplex the light of the wavelength modulated based on the transmission data and the dummy light emitted by the dummy light source, wherein the transmitter transmits wavelength-division multiplexed light generated by the multiplexer.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hajime Okada
  • Patent number: 8761598
    Abstract: A communication device may be operable to determine, in an optical module, a signal quality associated with each of one or more host transmitter filters in a host circuit. The signal quality may be communicated from the optical module to the host circuit via a management interface. The communication device may control, in the host circuit, configuration of each of the host transmitter filters based on the signal quality. The communication device may be operable to determine, in the host circuit, a signal quality associated with each of one or more module transmitter filters in the optical module. The signal quality associated with each of the module transmitter filters may be communicated from the host circuit to the optical module via the management interface. The communication device may control, in the optical module, configuration of each of the module transmitter filters based on the signal quality.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 24, 2014
    Assignee: Broadcom Corporation
    Inventors: Sudeep Bhoja, Ali Ghiasi
  • Patent number: 8693867
    Abstract: A system and method for stabilizing a plurality of output frequencies (wavelengths) of a plurality of lasers (106). The laser beams are combined using optical multiplexer (110) and coupled into length-imbalanced (armlength-mismatched) Mach-Zehnder interferometer (MZI) (114) having an optical modulator (e.g. AOM) (122) in one of its arms. The output of the MZI is divided into corresponding beams via optical demultiplexer (128) and each beam is detected by a respective photo-diode (PD) (134). The individual electric signals, so generated, are demodulated using a corresponding plurality of phase-responsive devices (138) and the resulting phase-signals are directed to a plurality of servo-controllers (148) to control the central frequency of the respective lasers (106) via a corresponding plurality of feedback loop circuits (150). The lasers (106) can have different central frequencies which can also be individually tunned using offset modules (141) in the phase-responsive devices (138).
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: April 8, 2014
    Assignee: The Australian National University
    Inventors: Ian C. M. Littler, Jong H. Chow, Malcolm B. Gray, David E. McClelland
  • Patent number: 8670665
    Abstract: An optical apparatus comprising, converting units converting electrical signals into signal lights with different wavelength, polarization control units controlling polarizing states of the signal lights into polarization controlled lights respectively, an optical multiplexer multiplexing the polarization controlled lights into a multiplexed light, an optical branching unit branching the multiplexed light and outputting a branched light, a polarizing unit extracting only signal lights of the specified polarizing state from the branched light into an extracted light, and a control unit detecting intensity of the extracted light. Pilot signals are applied to modulate the electrical signals or the polarization controls. The polarization control units controls the polarizing states of the signal lights based on the pilot signal frequencies of the detection result by the control unit.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: March 11, 2014
    Assignee: Fujitsu Limited
    Inventors: Takashi Toyomaki, Noriaki Mizuguchi, Yoichi Oikawa
  • Patent number: 8670664
    Abstract: A system and method for managing the selection of ghost channels in an optical communication system, including components configured to collect one or more first data values indicating the validity of an optical communication channel within a first degree of a node in the optical communication system, collect one or more second data values indicating the optical power level of the optical communication channel, transmit the first and second data values to a second degree of the node, receive the first and second data values at the first degree, and aggregate the first and second data values for the first degree and the second degree at the first degree.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: March 11, 2014
    Assignee: Fujitsu Limited
    Inventors: Denis Daniel Leclair, Sean D. L. McVeigh, Kevan P. Jones, Jean V. E. Ouellet, Douglas J. Greenwood, John B. Mills, Robert W. Keys
  • Patent number: 8655172
    Abstract: A system is provided for identifying signal propagation information. The system includes at least one component configured to receive an optical input signal and to emit an optical output signal. The emitted optical output signal is representative of the optical input signal, and is associated with characteristic information indicative of the component. A processor is also included, the processor being configured to sense the optical output signal and correlate the characteristic information with said component.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: February 18, 2014
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: David Zhi Chen
  • Patent number: 8611750
    Abstract: An apparatus comprising a plurality of optical transmitters coupled to a fiber, a signal generator coupled to the optical transmitters and configured to provide a single pilot tone to the optical transmitters, and a processor positioned within a feedback loop between the fiber and the optical transmitters, the processor configured to adjust a wavelength for each of the optical transmitters to lock the wavelengths. An apparatus comprising at least one processor configured to implement a method comprising receiving an optical signal comprising a pilot tone, detecting an amplitude and a phase of the pilot tone, calculating a quadrature term using the amplitude and the phase, and wavelength locking the optical signal using the quadrature term.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: December 17, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventors: Hongbing Lei, Xiao A. Shen, Yu Sheng Bai
  • Patent number: 8571420
    Abstract: An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Hyun Cho, Han-Hyub Lee, Jie-Hyun Lee, Jong-Hoon Lee, Eun-Gu Lee, Eui-Suk Jung, Sang-Soo Lee
  • Patent number: 8565616
    Abstract: A polarized-wave-multiplexing optical transmitter including: an optical combiner generating a polarized-wave-multiplexed optical signal by polarized-wave-multiplexing a first optical modulation signal and a second optical modulation signal; an optical power fluctuation portion fluctuating optical power of the first optical modulation signal and the second optical modulation signal periodically; a total-optical-power detection portion detecting fluctuation amount of total optical power of the polarized-wave-multiplexed optical signal; and an optical power controller reducing an optical power difference between the first optical modulation signal and the second optical modulation signal based on detection result of the total-optical-power detection portion.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: October 22, 2013
    Assignee: Fujitsu Limited
    Inventors: Toshiki Tanaka, Yuichi Akiyama, Masato Nishihara
  • Patent number: 8559814
    Abstract: A power-saving mode flag generating unit 101e sets a power-saving mode flag to active (non power-saving mode, turning on the power-source) when it receives a reset signal from a MAC unit 102. Furthermore, the power-saving mode flag generating unit 101e sets the power-saving mode flag to sleep (power-saving mode, turning off the power source) in accordance with a signal-interrupt detection signal obtained by the signal-interrupt detecting unit 101f1 of the packet monitoring unit 101f. Depending on the state of a packet, the power-saving mode flag generating unit 101e changes the power-saving mode flag to active or sleep for the data communication area of the packet; however, for the ranging area of the packet, the power-saving mode flag generating unit 101e always sets the power-saving mode flag to active. A pattern discriminating unit 101g discriminates between the data communication area and the ranging area of the packet.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Optical Components Limited
    Inventors: Masakazu Horishita, Toru Matsuyama
  • Patent number: 8548320
    Abstract: A method for monitoring wavelength-division multiplexed (WDM) signal for detecting signal drift of objective signals, including generation of one or more objective signals and a guard signal. The guard signal has a wavelength that is within a range defined by a guard channel. The first and second objective signals and the guard signal are wavelength-division multiplexed to generate a wavelength-division multiplexed signal. The first objective signal, the second objective signal, and the guard signal are assigned to a first multiplexed objective channel, a second multiplexed objective channel, and a multiplexed guard channel, respectively. The wavelength-division multiplexed signal is received by a monitor and then the error rate of the multiplexed guard channel is determined.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: October 1, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Howard J. Schantz, Brian L. Uhlhorn
  • Publication number: 20130251364
    Abstract: An optical transmission system method including generating for a tunable laser a pilot tone having an adjustable pilot tone frequency identifying a wavelength division multiplexing channel used by the tunable laser; multiplying the pilot tone with pilot tone data to provide a pilot tone data signal; supplying the pilot tone data signal and a high frequency data signal to the tunable laser generating an optical laser signal output by the tunable laser responsive to the supplied signals; transporting the optical laser signal to a central wavelength to locker; converting the received optical laser signal to provide a pilot tone data signal for wavelength division multiplexing channels demodulated to detect the pilot tone and the pilot tone data for each individual wavelength division multiplexing channel; and identifying the wavelength division multiplexing channel on the basis of the pilot tone frequency of the detected pilot tone and evaluating the pilot tone data.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 26, 2013
    Applicant: ADVA OPTICAL NETWORKING SE
    Inventors: Stephan PACHNICKE, Michael EISELT, Markus ROPPELT, Mirko LAWIN, Klaus GROBE, Jörg-Peter ELBERS
  • Patent number: 8542992
    Abstract: A system for mitigating the effects of polarization hole burning in an optical communication system. The system includes an optical input signal comprising one or more traffic channels, a measurement module configured to check for the existence of ghost channels around the traffic channels, and a ghost channel generation module configured to generate a ghost channel around the traffic channels from amplified spontaneous emission noise of the optical input signal.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 24, 2013
    Assignee: Fujitsu Limited
    Inventors: Kevan P. Jones, Denis Daniel Leclair, Sean D. L. McVeigh, Jean V. E. Ouellet, Douglas J. Greenwood, John B. Mills, Robert W. Keys
  • Publication number: 20130209093
    Abstract: An optical node apparatus that establishes an optical path between a first optical node and a second optical node in an optical network include a frequency modulation unit that superimposes a supervisory signal on a main signal by frequency-modulating the main signal, and a frequency demodulation unit that frequency-demodulates the supervisory signal superimposed on the received main signal.
    Type: Application
    Filed: December 27, 2012
    Publication date: August 15, 2013
    Applicant: FUJITSU LIMITED
    Inventor: FUJITSU LIMITED
  • Patent number: 8467677
    Abstract: A method for monitoring a passive optical network (1), PON, having a tree-like structure with a main line (3) and at least two branches (6.1 to 6.3), comprising: transmitting a wake-up signal (10) from the main line (3) to at least two monitoring units (DPM1 to DPM3) arranged in the at least two branches (6.1 to 6.3), in each of the monitoring units (DPM1 to DPM3), detecting the wake-up signal (10) and transmitting a response signal (A, B, C) back to the main line (3), each of the monitoring units (DPM1 to DPM3) generating a pre-defined time delay (?tA to ?tC) between the detection of the wake-up signal (10) and the start of the transmission of the response signal (A, B, C), and receiving the response signals (A, B, C) at the main line (3), the receiving times (R1 to R3) of the response signals (A, B, C) being different from each other, the difference between the receiving times (R1 to R3) being adjusted by the pre-defined time delays (?tA to ?tC) of the monitoring units (DPM1 to DPM3).
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: June 18, 2013
    Assignee: Alcaltel Lucent
    Inventors: Michael Straub, Harald Schmuck, Lothar Jentsch, Jörg Hehmann
  • Patent number: 8457489
    Abstract: The invention relates to a method for controlling the center wavelength of at least one narrow band WDM optical channel transmitting device in a WDM network. A reflected signal portion of a WDM channel signal is evaluated at the location of a WDM transmitting device. In order to generate the reflected signal portion, the optical multiplexing device or an additional reflective filter may be used, the additional filter revealing a low reflectivity at the desired channel center wavelength and a sharply increasing reflectivity adjacent thereto. The center wavelength of the WDM transmitting device is tuned to this target center wavelength by wavelength-modulating the center wavelength with a predetermined low modulation frequency and predetermined wavelength amplitude. The center wavelength of the WDM transmitting device is tuned such that the first order modulation frequency component of the reflected signal portion is minimized.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: June 4, 2013
    Assignee: ADVA Optical Networking SE
    Inventor: Michael Eiselt
  • Patent number: 8428465
    Abstract: This disclosure describes techniques for providing a communication path for upstream communications originating from a node of an optical network. In particular, methods and devices are described for combining upstream communications originating from the node of the optical network with upstream communications originating from subscriber devices coupled to the node. The upstream communication originating from the node may, for example, include status information about the node. The upstream communication, which may include status information about the node, essentially piggy-backs onto upstream communication originating from the subscriber devices coupled to the node.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: April 23, 2013
    Assignee: Calix, Inc.
    Inventors: Mark R. Biegert, Peter Lee
  • Patent number: 8396363
    Abstract: A lock-in ratio measurement system including a plurality of channels. Each of the channels generates and transmits a radiation signal modulated by a sequence of tones. The sequence of tones for each channel being unique in time to that respective channel. Each respective modulated signal is absorbed/reflected from a target or medium and received. Each channel computes a lock-in value based on the received modulation signal. The lock-in values are used to compute ratios between the channels for characterizing a target or medium.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: March 12, 2013
    Assignee: Exelis, Inc.
    Inventors: Michael G. Braun, Jeremy Todd Dobler, Wayne Henry Erxleben, Douglas Paul McGregor
  • Patent number: 8326144
    Abstract: Upon transmission path monitoring, when a monitoring signal responded by one of optical repeaters provided in a main signal transmission path is superposed on an optical main signal and sent out to the main signal transmission path, the optical main signal is branched to optical fibers, that are optical transmission paths, provided separately from the main signal transmission path and each provided with optical repeaters corresponding to the optical repeaters provided in the main signal transmission path, an optical main signal is selected from a desired optical fiber to be monitored from among the optical transmission paths and the monitoring signal is extracted from the optical main signal selected, thereby checking the quality of the desired optical fiber.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: December 4, 2012
    Assignee: Fujitsu Limited
    Inventors: Katsuji Yamaguchi, Junichi Yoshimura
  • Patent number: 8306419
    Abstract: Techniques for controlling a light source in a wavelength division multiplexed passive optical network (WDM-PON) are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for controlling a light source in a wavelength division multiplexed passive optical network (WDM-PON). The apparatus may include a digital signal processing device configured to output a pilot tone signal. The apparatus may also include an amplifier configured to modulate a modulation current and the pilot tone signal, and output an amplitude modulated signal. The apparatus may further include a capacitor configured to AC couple the amplitude modulated signal to a bias current applied to a light source; and a monitoring photodiode configured to detect an output optical signal of the light source and transmit the detected output optical signal to the digital signal processing device to control the output optical signal of the light source.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: November 6, 2012
    Assignee: LG-Ericsson Co., Ltd.
    Inventors: Tom Luk, John Bainbridge
  • Patent number: 8290362
    Abstract: A system and method is disclosed that allows for the monitoring, analyzing and reporting on performance, availability and quality of optical network paths. The correlation of PM parameter metrics to client connections, coupled with threshold-based alarm generation provides a proactive and predictive management, reporting and analyzing of the health and effectiveness of individual path connections to alert Operational Support (OS) staff and/or customers to signal degradation and impending Network Element (NE) failures. The system and method performs in real-time processing intervals required for alarm surveillance in a telecommunications network.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: October 16, 2012
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: David Mayo, Meei-Ling Chen