Bidirectional Patents (Class 398/67)
  • Publication number: 20140105603
    Abstract: Systems and methods are provided for customer premises equipment (CPE) on a passive optical network (PON). A system includes a packet processor having at least an active mode and a sleep mode, the packet processor configured to processes streams of data packets received in a data plane from an optical line terminal (OLT) through the PON when in an active mode and to enter the sleep mode when not receiving data packets in the data plane. A system further includes a micro-controller, separate from the packet processor, configured to receive from an OLT operation and management (OAM) messages that are transmitted in a control plane, and to process the OAM messages by, selectively transmitting to a central office, without waking up the packet processor, an acknowledgement message, or waking up the packet processor to receive data packets in the data plane.
    Type: Application
    Filed: September 17, 2013
    Publication date: April 17, 2014
    Applicants: Marvell Israel (M.I.S.L) Ltd., Marvell International Ltd.
    Inventors: Dimitry Melts, Roman Kleinerman, Amit Avivi
  • Patent number: 8699881
    Abstract: A method and apparatus for providing passive optical networks with extended reach and/or splitting ratio are disclosed. For example, the optical network comprises a first optical line termination (OLT) device having a transceiver for sending and receiving optical signals. The optical network further comprises an optical extender box comprising at least one hybrid SOA-Raman amplifier, wherein the optical extender box is coupled to the first optical line termination device via a first standard single mode fiber section. Finally, the optical network further comprises an optical splitter coupled to the optical extender box via a second standard single mode fiber section.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: April 15, 2014
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Patrick Paul Iannone, Han Hyub Lee, Kenneth Charles Reichmann, Xiang Zhou
  • Publication number: 20140099114
    Abstract: An optical signal transmitting apparatus is disposed in an optical frequency division multiplex transmission system that includes plural nodes that are in an optical transmission path and respectively use a unique frequency to frequency-multiplex information with a carrier wave to transmit the information to an optical signal receiving apparatus in the optical transmission path. The optical signal transmitting apparatus outputs the carrier wave and includes a transmitting unit into which information to be delivered to the nodes is input, the transmitting unit transmitting the information using a frequency that does not overlap the unique frequencies used by the nodes; and a multiplexing unit that frequency-multiplexes output of the transmitting unit and the carrier wave, and sends the frequency-multiplexed output to the optical transmission path.
    Type: Application
    Filed: August 26, 2013
    Publication date: April 10, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Masato NISHIHARA, Toshiki TANAKA, Tomoo TAKAHARA, Tomoyuki KATO, Shigeki WATANABE
  • Patent number: 8693871
    Abstract: A method for routing and wavelength assignment (RWA) in an optical network with improved heuristics for reducing the computational times required for the RWA. The method minimizes the number of wavelengths by packing the lightpaths using a minimum number of bins in a bin packing problem. Computational efficiency is enhanced by using several novel methods to determine shortest paths and eliminate arcs in a graph that represents the network topology.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: April 8, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Mauricio Guilherme de Carvalho Resende, Thiago Ferreira de Noronha, Celso C. Ribeiro
  • Patent number: 8687963
    Abstract: A method for optical network termination (ONT) configuration is provided. The method includes: obtaining, by an optical line terminal (OLT), service types supported by an ONT and management methods available for each of the service types; and negotiating, by the OLT, with the ONT according to the management methods available for each of the service types, so as to determine a management method to be adopted for each of the service types, and configuring the ONT according to the determined management method.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: April 1, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Wei Lin, Sulin Yang
  • Publication number: 20140086580
    Abstract: An optical line terminal (OLT) system for a passive optical network (PON) may include a processor, an OLT Medium Access Control (MAC) device communicatively coupled to PON ports, and a switch device communicatively coupled to the OLT MAC device via an Ethernet interface. The processor may map logical identifiers of each PON port to tunnel identifiers, where each tunnel identifier is indicative of a logical identifier and its corresponding PON port. The OLT MAC device may receive upstream data items that include logical identifiers over the PON ports. The OLT MAC device may replace the logical identifier of each upstream data item with the tunnel identifier that is mapped to the logical identifier and the PON port over which the upstream data item was received. The OLT MAC device may transmit, over the Ethernet interface to the switch device, the upstream data items including the tunnel identifiers.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Applicant: Broadcom Corporation
    Inventors: Mark Griswold, Ryan Hirth
  • Patent number: 8682163
    Abstract: A detecting method, an apparatus, and a system in an Optical Distribution Network (ODN) are provided. The method includes: an Optical Line Termination (OLT) reserves a test window, and an Optical Network Unit (ONU) stops sending an uplink signal in the test window, the OLT emits a downlink test signal having a wavelength the same as that of the uplink signal in the test window, the OLT receives backward signals of the downlink test signal, in which the backward signals include a backward scattered signal and a backward reflected signal, processes the backward signals, and obtains state information of the ODN according to the backward signals. The method does not need to add other hardware, and the downlink signal is sent normally in the downlink. The implementation is low in the cost and easy in the technology.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 25, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Sulin Yang
  • Publication number: 20140079396
    Abstract: An ONU includes the optical transceiver capable of an operation in a power-saving mode in which power consumption is reduced by stopping transmission while continuing reception, and a control device that controls to tentatively validate transmission of the optical transceiver and outputs a response signal when a control signal is received from an OLT during an operation in a power-saving state. Moreover, the OLT includes the control device that allocates a transmission bandwidth to the ONU even while the optical transceiver of the ONU operates in a power-saving mode and stops transmission and determines whether a communication failure occurs or the ONU is in operation in a power-saving mode based on the response signal received by a transceiver of the OLT.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yukio HIRANO, Hiroaki Mukai
  • Publication number: 20140079397
    Abstract: Serially-distributed devices in a communication network include a cable including communication wires, a plurality of devices connected in series with the communication wires along a length of the cable, and a headend interface connected at one end of the cable and operable to provide a communication interface with the devices.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 20, 2014
    Applicant: MOTOROLA SOLUTIONS, INC.
    Inventor: ROBERT E. BEACH
  • Publication number: 20140072304
    Abstract: A PHY auto-negotiation and link up procedure for Ethernet Passive Optical Network Over Coax (EPOC) is provided. The procedure is compliant with the Ethernet Passive Optical Network (EPON) standard and can be used to bring an EPOC network to user traffic readiness. In addition, the procedure, or a variation thereof, can be used to enable periodic maintenance of the coaxial link of the EPOC network, thereby maintaining adequate communication conditions.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 13, 2014
    Applicant: Broadcom Corporation
    Inventors: Edward Wayne BOYD, Avi Kliger
  • Publication number: 20140072299
    Abstract: A system for data transport in a Distributed Antenna System (DAS) includes a plurality of remote Digital Access Units (DAUs) located at a Remote location. The plurality of remote DAUs are coupled to each other and operable to transport digital signals between the plurality of remote DAUs. The system also includes a plurality of central hubs. Each of the plurality of central hubs is in communication with one of the remote DAUs using an electrical communications path. The system further includes a plurality of transmit/receive cells. Each of the plurality of transmit/receive cells includes a plurality of remote hubs. Each of the remote hubs in one of the plurality of transmit/receive cells is in communication with one of the plurality of central hubs using an optical communications path.
    Type: Application
    Filed: February 26, 2013
    Publication date: March 13, 2014
    Applicant: DALI SYSTEMS CO. LTD.
    Inventors: Shawn Patrick Stapleton, Sasa Trajkovic
  • Patent number: 8670667
    Abstract: The present disclosure generally pertains to an arrayed media converter (AMC) that has an array of Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) Optical Network Units (ONUs) for terminating an optical channel in the feeder or distribution portion of a telecommunication network. The ONU converts an optical signal from the optical channel into at least one electrical signal for transmission to a customer premises. Thus, the AMC serves as an interface between at least one WDM-PON link and at least one conductive connection, such as a twisted pair. In one exemplary embodiment, the AMC comprises a sealed housing that is environmentally hardened to protect the AMC from environmental conditions, including changes in weather. Such an AMC may be used to provide a robust, cost effective Fiber To The Curb (FTTC) solution, but the AMC may be used at other points within the network, if desired.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 11, 2014
    Assignee: ADTRAN, Inc.
    Inventors: Leif J. Sandstrom, Kevin W. Schneider
  • Publication number: 20140064304
    Abstract: An optical signal distribution system is provided herein useful for multiple service operators (MSOs) in providing content data to subscribers, and receiving control and other data from subscribers. The system facilitates the transmission of content data to the subscribers and the control and other data from subscribers substantially in the optical domain. The system includes a head-end configured to transmit the content data via a forward channel optical signal and receive the control data via a composite reverse channel optical signal. The system also includes a signal distribution hub configured to receive and replicate the forward channel optical signal for transmission to optical taps, receive reverse channel optical signals from the optical taps, generate a composite reverse channel optical signal, and transmit the composite reverse channel optical signal. Each optical tap sends and receives the forward and reverse channel optical signals to and from a plurality of subscribers units.
    Type: Application
    Filed: October 22, 2012
    Publication date: March 6, 2014
    Applicant: OPTILAB, LLC
    Inventor: Henry H. Hung
  • Publication number: 20140064730
    Abstract: An optic Distributed Antenna System includes a Head End (HE) configured to adjust a first signal for a first carrier at a first band to a first level, to adjust a second signal having at least a carrier different from the first carrier or a band different from the first band to a second level, to combine the first and second signals, to perform Electronic/Optic conversion on the combined signal, and to optic-distribute and send the combined optic signal, and a plurality of Remote Units (RUs) each connected to the HE over a corresponding single optic line, wherein each of the RUs is configured to perform Optic/Electronic conversion on the combined optic signal, to adjust the converted signal for each signal band, to perform high-power amplification on the adjusted signals, to multiplex the amplified signals, and to transmit the multiplexed signal to a Mobile station via at least one antenna.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 6, 2014
    Applicant: ADVANCED RF TECHNOLOGIES, INC.
    Inventor: Young-Hoon Ko
  • Patent number: 8666250
    Abstract: An optical network terminal (ONT) for use in an optical access network and comprising: an optical transceiver arranged to communicate with an optical line terminal using a wavelength which is modulated to carry sub-channels; a second transceiver arranged to communicate with a number of subscriber equipment using respective subscriber equipment channels; the ONT arranged to automatically map each subscriber equipment channel to a respective sub-channel of the wavelength without using an address associated with the respective subscriber equipment.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 4, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Pierpaolo Ghiggino, Fabio Cavaliere
  • Patent number: 8649682
    Abstract: A distribution node of a passive optical network (PON) comprises a first port for receiving a first optical continuous envelope modulated downstream data signal at a first wavelength (?C) from a first optical line termination unit (OLT1) and a second port for receiving a second optical continuous envelope modulated downstream data signal at a second wavelength (?L) from a second optical line termination unit (OLT2). A first converter (FBG-1) performs continuous envelope modulation-to-intensity modulation conversion of the first optical downstream data signal and forwards the converted first optical downstream data signal (?C) to the first group of optical network units (ONU1 . . . N). A second converter (FBG-2) performs continuous envelope modulation-to-intensity modulation conversion of the second optical downstream data signal and forwards the converted second optical downstream data signal (?L) to the second group of optical network units (ONUN+1 . . . 2N).
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: February 11, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Marco Presi, Fabio Cavaliere, Ernesto Ciaramella
  • Patent number: 8644706
    Abstract: Distributed and highly software reconfigurable CMTS (CMRTS) device, based on MAC and PHY units with FPGA and DSP components, for a HFC CATV network. The various CATV RF modulators, such as QAM modulators, may be divided between QAM modulators located at the cable plant, and remote QAM modulators ideally located at the fiber nodes. A basic set of CATV QAM data waveforms may optionally be transmitted to the nodes using a first fiber, and a second set of IP/on-demand data may be transmitted to the nodes using an alternate fiber or alternate fiber frequency, and optionally using other protocols such as Ethernet protocols. The nodes will extract the data specific to each neighborhood and inject this data into unused QAM channels, thus achieving improved data transmission rates through finer granularity. A computerized “virtual shelf” control system for managing and reconfiguring the FPGA and DSP based CMTRS units is also disclosed.
    Type: Grant
    Filed: July 22, 2012
    Date of Patent: February 4, 2014
    Assignee: Gainspeed, Inc.
    Inventor: Shlomo Selim Rakib
  • Patent number: 8644707
    Abstract: The invention relates to a bidirectional optical amplifier array (VA) which is preferably used in a passive optical network (PON) system, is disposed between a first line termination (OLT) and a second line termination (ONU), and is penetrated by an optical downstream signal (OSD) in one direction and an optical upstream signal (OSD) in the opposite direction. Said optical amplifier array is composed of a first part with two branching and combining units (D1 and D2), a unidirectional optical amplifier (E1), and a transponder (T) in which the optical downstream signals and upstream signals (OSU and OSD) are separately amplified. The two signals (OSU and OSD) that run in opposite directions are amplified in a bidirectional amplifier (E2) in a second part. A constant gain is maintained in the bidirectional optical amplifier (E2) by means of the continuous downstream signal (OSD) such that the amplifier can be operated in stable conditions for the upstream signal (OSU) regardless of occurring bursts.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: February 4, 2014
    Assignee: Nokia Siemens Networks GmbH & Co. KG
    Inventors: Stefan Gianordoli, Lutz Rapp, Michael Rasztovits-Wiech, Andreas Stadler
  • Publication number: 20140029947
    Abstract: Embodiments of the present invention disclose a method and an apparatus for detecting an ONU, and a passive optical network system. The method includes detecting an identity code of an ONU in an open uplink empty window or an empty timeslot, and determining that an ONU corresponding to the identity code of the ONU is a rogue ONU according to the identity code of the ONU. A corresponding apparatus and passive optical network system are also provided in the embodiments of the present invention. In the passive optical network system, a rogue ONU is detected and determined quickly and efficiently, and an effect on an uplink service is reduced.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Inventors: Min Wan, Xiaofei Zeng
  • Patent number: 8634716
    Abstract: A data transmission network comprising: a base comprising: a base light source and a base light detector; a plurality of nodes, each node comprising a node light source and a node light detector; and a plurality of optical fibers arranged to form a optical fiber network. Each optical fiber is arranged to receive light from the base light source, transmit the light received from the base light source to one or more of the node light detectors via an air gap, receive light from one or more of the node light sources via an air gap, and transmit the light received from the node light source(s) towards the base light detector.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: January 21, 2014
    Assignee: Airbus Operations Limited
    Inventors: Franklin Tichborne, Joseph K-W Lam, Simon Masters, David Parmenter
  • Patent number: 8634719
    Abstract: Systems and methods for enabling different network nodes of a network access system to share a backhaul communication link are disclosed. In one embodiment, the method includes: connecting a first modem to a first node of the network access system; connecting a second modem to a second node of the network access system; connecting the first modem to a first port of a splitter filter; connecting the second modem to a second port of the splitter filter; and connecting a backhaul communication link to a third port of the splitter filter, which is configured to multiplex signals transmitted by the modems onto the backhaul communication link, wherein the frequency spectrum of the signal transmitted by the first modem does not overlap substantially with the frequency spectrum of the signal transmitted by the second modem.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 21, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Per-Erik Eriksson
  • Patent number: 8630539
    Abstract: An optical communication system that connects a plurality of user-side optical line terminating apparatuses (hereinafter referred to as ONUs) to a station-side optical line terminating apparatus (hereinafter referred to as OLT) using a common optical fiber, wherein the ONU as at least a part of the ONUs includes a transceiver having a power saving function for inactivating a transmitting unit while supplying electric power to a receiving unit and a control apparatus that transmits support information of the power saving function to the OLT via the transceiver, and the OLT includes a control apparatus that generates transmission allowance information of upstream communication based on the support information of the power saving function and a transceiver that receives the support information of the power saving function and transmits the transmission allowance information to the ONU.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: January 14, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroaki Mukai, Masaki Tanaka, Daisuke Ito
  • Patent number: 8625987
    Abstract: The invention relates to a method for monitoring a passive optical network having a tree-like structure with a main line and a plurality of branches. The method includes transmitting a wake-up signal from an optical line termination (OLT) arranged in the main line to a plurality of monitoring units arranged in the branches. The method also includes detecting the wake-up signal and listening to information requests from the OLT in the monitoring units during a listening time interval after the detection of the wake-up signal. The method further includes transmitting an information request to be received in the listening time interval from the OLT to the monitoring units. The method additionally includes receiving the information request in the monitoring units during the listening time interval, one of the monitoring units which is addressed by the information request transmitting a response message back to the OLT.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: January 7, 2014
    Assignee: Alcatel Lucent
    Inventors: Thomas Pfeiffer, Michael Straub, Harald Schmuck, Jörg Hehmann
  • Patent number: 8619115
    Abstract: The present invention provides a video communication system including a kiosk for recording video messages created by a user and a database for storing and providing access to the video messages. The kiosk includes a user interface for receiving user information such as name, address, email, and other identifying information. The kiosk further includes a message-recording device for recording a user video message. The video message and user message data are uploaded to a database. The database reconnects with the user through the user information to allow the user to access the video message. In an embodiment, the database sends an email web link to the user. The user may view the video message by opening the email web link and viewing the video message on an internet website.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: December 31, 2013
    Assignee: nSixty, LLC
    Inventors: James Matthew Stephens, Matthew Berlage
  • Patent number: 8620159
    Abstract: The invention relates to improvements in or relating to modulation in an Optical Network, and to an apparatus, a method and a communications network for modulation in an Optical Network. An apparatus is arranged to receive a modulated optical signal comprising a carrier wavelength and first data. The apparatus is arranged to substantially erase the first data from the optical signal by performing an inversion operation on the modulated optical signal. The apparatus is arranged to receive second data and to modulate the carrier wavelength with the second data for onward transmission of the second data. The inversion operation comprises applying a signal comprising an inverse of the first data to at least a portion of the modulated optical signal. The signal may further comprise the second data such that the modulation of the carrier wavelength and erasure of the first data is performed in a single operation.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: December 31, 2013
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Marco Presi, Ernesto Ciaramella, Fabio Cavaliere
  • Patent number: 8615168
    Abstract: A Passive Optical Network (PON) component, such as a Gigabit Interface Converter (GBIC) or similar pluggable transceiver, provides the combined functionality of the GBIC (or similar device) and an Optical Network Unit (ONU). The result is a device with a reduced form factor by eliminating redundant components and simplified fault management of the end-system.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: December 24, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventor: Thomas Anschutz
  • Publication number: 20130336655
    Abstract: The invention relates to a method of operating a primary optical node, particularly an optical line terminal (OLT), for an optical communications system, wherein said OLT is configured to receive at least one upstream optical signal (uos) from at least one secondary optical node, particularly an optical networking unit (ONU), within at least a first wavelength range (wr1), and to transmit at least one downstream optical signal (dos) to said at least one ONU within at least a second wavelength range (wr2), wherein said OLT determines a currently unused wavelength subrange (wsr2) within said first wavelength range (wr1), assigns a specific target wavelength (?t) within said currently unused wavelength subrange (wsr2) to said ONU, signals said target wavelength (?t) to said ONU, receives an upstream signal (us) from said ONU, and provides feedback information to said ONU.
    Type: Application
    Filed: May 17, 2013
    Publication date: December 19, 2013
    Applicant: ADVA Optical Networking SE
    Inventors: Klaus Grobe, Markus Roppelt
  • Patent number: 8611745
    Abstract: A passive optical network communication system includes a number of subscribers' units connected to a central line termination unit through a passive optical coupler. The line termination unit includes a first section that transmits and receives a code division multiplex (CDM) signal, a second section that transmits and receives a time division multiplex (TDM) signal, and a wavelength multiplexing filter that combines the transmitted CDM and TDM signals into a single downstream optical signal, and separates the CDM and TDM components of an upstream signal received from the subscribers' units through the passive optical coupler. The CDM signal provides channels for digital video transmission to CDM-capable subscribers' units.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 17, 2013
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Masayuki Kashima
  • Patent number: 8606109
    Abstract: A technique for forwarding downstream packets in a GPON comprising an OLT unit having a physical PON port connected to N Optical Network Termination (ONT) units by optical fibers. The physical PON port accommodates N individual virtual GEM ports terminated with the N ONT units (ONTs) which form N:1 service. The technique comprises assigning in the physical port of the OLT unit a virtual GEM port being a shared broadcast GEM port terminated with all the N ONTs of the N:1 service. Those downstream packets applied to the physical PON port, which would otherwise be flooded—such as broadcast packets or packets having unknown destination address—will now be forwarded only via the shared broadcast GEM port.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 10, 2013
    Assignee: ECI Telecom Ltd
    Inventor: Ido Ouzieli
  • Publication number: 20130322882
    Abstract: An apparatus comprising a data framer comprising a physical layer protocol stack comprising a coax convergence layer, a coax framing layer next to the convergence layer, wherein the coax framing layer is configured to decompose and assemble data packets in a coax network, a coax coding layer next to the coax frame layer, wherein the coax coding layer is configured to protect the coax transmissions from impairments, a coax modulation layer next to the coax coding layer, wherein the coax modulation layer is configured to modulate the data according to a coax physical layer (PHY), and a radio frequency layer next to the coax modulation layer and configured to interface to an electrical medium for a coaxial network.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 5, 2013
    Inventors: Liming Fang, Jim Chen, Li Zhang
  • Patent number: 8600232
    Abstract: A method and a device process data in an optical network. At least one dedicated time slot is used for transmitting time critical information from an optical network unit towards an optical line terminal. Due to the dedicated time slot, previous long delays in channel switching are decreased or substantially avoided.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: December 3, 2013
    Assignee: Nokia Siemens Networks Oy
    Inventor: Harald Rohde
  • Publication number: 20130315595
    Abstract: A method, system and computer program for implementing TDD in an EPoC network. An OLT or CLT scheduler segregates the US traffic from the DS traffic to avoid collisions. An OLT transmits and receives payloads through an OCU. An OLT or CLT transmits downstream payloads and GATE grants destined for CNUs during the TDD downstream phases. The OLT or CLT schedules IPGs between TDD phases. The OLT or CLT schedules payloads and REPORTs to be transmitted from CNUs only during the TDD upstream phase according to the GATE grants in the DS phase. The OLT or CLT receives CNU REPORTs late in the upstream phase that inform the scheduler about pending upstream traffic to be granted in subsequent TDD phases.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 28, 2013
    Applicant: Entropic Communications, Inc.
    Inventor: David Barr
  • Publication number: 20130315596
    Abstract: A method allocating timeslots for transmission of data packets and REPORT messages in a communication network including plural logical links managed by a terminal, including: implemented at each cycle by the terminal receiving at least one REPORT message from at least one logical link, the REPORT message including an updated queue length expressed in timeslots of the logical link and, upon receiving the REPORT message, updating the image queue length, based on the updated queue length; allocating to logical links having non-zero image queue length at least one timeslot in a next cycle based on a theoretical transmission time for transmitting data packets or REPORT messages and based on a fraction of overhead associated with the transmission, until all timeslots of the next cycle are allocated or all image queue lengths are zero, and incrementing the theoretical transmission time of each logical link based on its required minimum bit rate.
    Type: Application
    Filed: February 1, 2012
    Publication date: November 28, 2013
    Applicants: Mitsubishi Electric Corporation, Mitsubishi Electric R&D Centre Europe BV
    Inventor: Romain Rollet
  • Patent number: 8594502
    Abstract: A bidirectional optical communications network comprises an optical transmission fiber for carrying a downstream signal at a first wavelength and a multiplicity of upstream signals at a second, different wavelength. The fiber is characterized by distributed Raman gain over at least an extended portion of its length. A first terminal, optically coupled to one end of the fiber, includes a first transmitter for generating the downstream signal, a first receiver for detecting the upstream signals, and at least one pump source for generating pump light that provides Raman amplification to either the downstream signal or the upstream signal or both. A multiplicity of second terminals, optically coupled to another end of the fiber, each includes a second transmitter for generating one of the upstream signals, and a second receiver for detecting a downstream sub-signal.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: November 26, 2013
    Assignee: OFS Fitel, LLC
    Inventor: Benyuan Zhu
  • Patent number: 8588612
    Abstract: A optical detection apparatus includes: an optical splitting unit configured to split a seed lightwave and split upward signal light generated by an optical network unit, based on the seed lightwave; a first control unit configured to control polarizations of the split seed lightwaves based on a first electrical signal; a second control unit configured to control phases of the split seed lightwaves based on a second electrical signal; an optical coupling and signal conversion unit configured to couple the seed lightwaves, of which the polarization and phase are controlled, and the split upward signal lights, convert the coupled optical signals into the first and second electrical signals, and transfer the first and second electrical signals to the first and second control units, respectively; and a signal detection unit.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 19, 2013
    Assignee: KT Corporation
    Inventors: Soo-Jin Park, Young-Bok Choi
  • Publication number: 20130294776
    Abstract: Disclosed herein is an apparatus comprising a plurality of separators configured to forward a plurality of optical signals from a plurality of optical network terminals (ONTs) along a plurality of single mode waveguides, a mode coupler coupled to the single mode waveguides and configured to receive the optical signals from the plurality of separators and combine the optical signals into a multi-mode waveguide, and an optical receiver coupled to the mode coupler via the multi-mode waveguide and configured to detect the optical signals. Also disclosed is a method comprising receiving a plurality of single mode optical channels, coupling the single mode optical channels into a multimode channel, and detecting the optical modes corresponding to the channels in the multimode channel.
    Type: Application
    Filed: July 3, 2013
    Publication date: November 7, 2013
    Applicant: Futurewei Technologies, Inc.
    Inventors: Ning Cheng, Frank J. Effenberger
  • Publication number: 20130294775
    Abstract: A system and method for reducing power consumption in a Passive Optic Network (PON). The system comprises an optical line terminal (OLT), an optical network unit (ONU), a traffic-detection module configured to detect status of traffic to and from the ONU, and a power-management module configured to place the ONU in sleep mode based on the detected traffic status. The ONU includes transmitting and receiving components that are selectively powered down during the sleep mode based on a type of traffic in the ONU.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 7, 2013
    Inventors: Ryan E. HIRTH, Edward W. Boyd, Sanjay Goswami
  • Publication number: 20130287399
    Abstract: An apparatus comprising an optical line terminal (OLT) configured to transmit a bandwidth map (BWmap) for a plurality of burst signals to be transmitted by a plurality of optical network units (ONUs), wherein the BWmap comprises a plurality of allocations, and wherein each allocation comprises a start time for the allocation, a grant size for the allocation, and a header error correction (HEC) for the allocation.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 31, 2013
    Applicant: Futurewei Technologies, Inc.
    Inventors: Frank J. Effenberger, Yuanqiu Luo
  • Patent number: 8566896
    Abstract: An addressable optical network interface unit includes an optical input and a radio frequency output. The unit also includes an optical-to-electrical conversion circuit that converts optical signals received at the optical input into radio frequency signals, a directional coupler that is coupled to an output of the optical-to-electrical conversion circuit and a radio frequency receiver that is coupled to a first output of the directional coupler. The radio frequency receiver receives radio frequency signals input through the optical input. The unit also includes a controller that is coupled to the radio frequency receiver, and a filter circuit that is coupled to a second output of the directional coupler. The filter circuit includes multiple signal paths that filter out signals in different frequency ranges. Switches are provided that select one of the signal paths through the filter circuit. These switches are controlled in response to data contained in the radio frequency signal.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: October 22, 2013
    Assignee: CommScope, Inc. of North Carolina
    Inventors: Robert Ryan Riggsby, Neil Phillips, Mark Vogel
  • Patent number: 8565600
    Abstract: Optical networks can comprise a branch structure with the de-multiplexing/multiplexing structure that operates to disperse a plurality of optical bands. Thus, the optical network comprises an optical network connection with a common optical channel, a plurality of de-multiplexed branch optical service connections and the de-multiplexing/multiplexing structure. In some embodiments, one optical band can be used to deliver input from a common channel to the branch node and the other optical band can carry output along the common channel from the branch node. The de-multiplexing/multiplexing element can be an arrayed waveguide grating. The AWG can have desirable architecture to efficiently provide the corresponding functions with respect to the two optical bands. Appropriate photodetectors and light sources can be associated with the AWG.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: October 22, 2013
    Assignee: NeoPhotonics Corporation
    Inventors: Kenneth McGreer, Brian McGinnis, Anthony J. Ticknor, Calvin Ho
  • Patent number: 8565599
    Abstract: In accordance with the teachings of the present invention, a system and method for transmitting optical markers in a passive optical network (PON) system is provided. In a particular embodiment, a method for transmitting optical markers in a PON system includes transmitting a first optical marker signal, the first optical marker signal used to identify at least one of the first optical marker signal, an upstream wavelength corresponding to the first optical marker signal, and an optical network unit (ONU) type transmitting at the upstream wavelength corresponding to the first optical marker signal. The method also includes transmitting a second optical marker signal, the second optical marker signal used to identify at least one of the second optical marker signal, an upstream wavelength corresponding to the second optical marker signal, and an ONU type transmitting at the upstream wavelength corresponding to the second optical marker signal.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: October 22, 2013
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda
  • Publication number: 20130272701
    Abstract: An optical access system is provided that enables subscriber terminals or termination devices to be interconnected via dedicated lines as needed, with respect to subscriber terminals or termination devices participating in an optical network. The optical network is a network connecting a plurality of accommodating stations, and in this network, the accommodating stations have a plurality of optical line termination devices and optical path selection means, the subscriber side optical terminals or optical line termination devices are connected in single star optical paths, and the optical line termination devices in the accommodating stations are connected with the above mentioned optical terminals or optical line termination devices via the optical path selection means.
    Type: Application
    Filed: December 12, 2011
    Publication date: October 17, 2013
    Applicant: National Institute of Information and Communications Technology
    Inventor: Toshiaki Kuri
  • Patent number: 8554077
    Abstract: A network element implementing an optical network unit (ONU) that is configured to improve efficiency in a passive optical network (PON), the ONU connected to an optical line terminal (OLT) over an optical line, the ONU connected with an aggregating ONU (AG-ONU) in the PON through an alternate connection separate from the PON, the ONU improving protection (maintenance) cost and energy efficiency for the PON by entering a sleep mode that disables communication with the OLT over the optical line to reduce energy consumption when the ONU is idle, the ONU to restart communication with the OLT over the optical line upon receipt of data traffic, the ONU including an alternate connection module configured to communicate with the AG-ONU; and a network processor configured to execute a quality of service module, an AG-ONU monitor module, a traffic forwarding module and a power management module.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: October 8, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Navid Ghazisaidi
  • Patent number: 8554076
    Abstract: A branch-ring optical network and a technique for manufacturing a branch-ring optical network are disclosed. By connecting an outgoing optical conduit to a number of ports and one or more diffraction-grating based add/drop modules, and coupling the first distribution-node to at least one or more distribution-end-nodes having one or more diffraction-grating based add/drop modules, a branch-ring optical network that is easily constructed and maintained is formed.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: October 8, 2013
    Assignee: AT&T Intellectual Property II, L.P.
    Inventor: Xiaolin Lu
  • Publication number: 20130259482
    Abstract: In a network that includes one or a plurality of optical line terminals, a plurality of branches, and an optical routing unit, the optical network unit registration method includes a first process in which the optical line terminals transmit a discovery gate to the optical network units, and a second process in which, in response to the discovery gate, an unregistered optical network unit transmits a register request to a separate optical line terminal from the terminal that transmitted the discovery gate. A discovery window is provided in the optical line terminal that receives the register request. This optical line terminal receives the register request in the discovery window.
    Type: Application
    Filed: March 8, 2013
    Publication date: October 3, 2013
    Applicant: Oki Electric Industry Co., Ltd.
    Inventor: Masahiro SARASHINA
  • Patent number: 8548328
    Abstract: A Gigabit-capable Passive Optical Network (GPON), including an enhanced Optical Line Termination (OLT) and Optical Network Units (ONUs), provides enhanced features, e.g., features defined in XG-PON. One or more of the ONUs are enhanced ONUs. The enhanced OLT communicates with the ONUs via downstream frames and upstream bursts, each downstream frame and upstream burst being compliant with a GPON framing format. The enhanced OLT transmits downstream frames to the ONUs, the downstream frames including downstream sub-frames with at least one downstream sub-frame being an overhead sub-frame that includes information of the enhanced features. The enhanced OLT receives upstream bursts from the ONUs, the upstream bursts including upstream sub-frames, each upstream sub-frame including an upstream identifier field that indicates to the enhanced OLT whether the upstream sub-frame is an overhead sub-frame.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: October 1, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: David Hood
  • Patent number: 8548327
    Abstract: A system in an Optical Line Terminal (OLT) to dynamically manage polling rates in a passive optical network is provided herein. The system includes a Media Access Control (MAC) unit that is configured to receive a first message from an Optical Network Unit (ONU). The first message includes a status of an upstream queue of the ONU. The system includes a traffic monitor unit coupled to the MAC unit and is configured to receive the first message from the MAC unit and place the upstream queue of the ONU in an inactive mode if the status of the upstream queue indicates that the upstream queue is empty.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: October 1, 2013
    Assignee: Broadcom Corporation
    Inventors: Ryan E. Hirth, Glen Kramer
  • Patent number: 8542998
    Abstract: The longest possible sleep time is selected while data missing is prevented in a PON system by referring to the link speeds and the queue buffer capacities of an OLT and ONUs. The OLT calculates a first sleep time candidate based on a first link speed at which the OLT communicates with an upper network and the capacity of an unused area of a first queue buffer where downstream data is held for each of the destination ONUs. Each of the ONUs calculates a second sleep time candidate based on a second link speed at which each of the ONUs communicates with a communication terminal and the capacity of an unused area of a second queue buffer where upstream data bound for the OLT is held. The smaller sleep time is determined and used to change one of the ONUs to a sleep mode.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: September 24, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Kamijo, Noboru Oosawa, Satoshi Konno
  • Patent number: 8542993
    Abstract: An apparatus comprising an individual optical power level calculation (IOPLC) module and a transceiver coupled to the IOPLC module and configured to communicate with a plurality of optical network units (ONUs). Also disclosed is an apparatus comprising a control and management (CM) module, an average power level measurement (APLM) module coupled to the CM module, a first transceiver coupled to the CM module and configured to communicate with an optical line terminal (OLT), and a second transceiver coupled to the CM module and the APLM module, and configured to communicate with a plurality of ONUs.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 24, 2013
    Assignee: Futurewei Technologies, Inc.
    Inventors: Frank J. Effenberger, Yin Jinrong, Yang Sulin
  • Patent number: 8542997
    Abstract: The invention relates to a passive optical network comprising an optical exchange linked by at least one optical fiber to at least one line termination device of said network, able to transmit a downlink optical signal phase-modulated in NRZ-DPSK format and to receive an uplink optical signal. According to the invention, said line termination device comprises means of converting the transmitted downlink optical signal phase-modulated in NRZ-DPSK format into an optical data signal amplitude-modulated in duobinary modulation format and means of generating an uplink optical signal phase-modulated in NRZ-DPSK format from the downlink optical signal phase-modulated in NRZ-DPSK format. The optical exchange is able to convert the uplink optical signal phase-modulated in NRZ-DPSK format into an optical data signal amplitude-modulated in duobinary modulation format.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: September 24, 2013
    Assignee: France Telecom
    Inventors: Erwan Pincemin, Naveena Genay