Bidirectional Patents (Class 398/67)
  • Patent number: 7899328
    Abstract: A method for operating a passive optical network transmitting sub-frames of data arranged in a common transmission frame in at least two signalling modes from an optical line termination to a plurality of optical network units comprises the step of arranging first sub-frames of data to be transmitted in a first signalling mode which requires lower specifications of the optical network units ahead of second sub-frames of data to be transmitted in a second signalling mode which requires higher specifications of the optical network units. The invention is also realized in an optical line termination which comprises means for performing the method, a passive optical network equipped with such an optical line termination, and a corresponding transmission frame structure.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: March 1, 2011
    Assignee: Alcatel — Lucent
    Inventor: Heinz-Georg Krimmel
  • Publication number: 20110044685
    Abstract: An optical network unit useful in a passive optical network has capability for automatic shutdown upon detection of a malfunction, thereby protecting the integrity of upstream data transmitted in the network. The unit detects the generation of upstream light during intervals in which transmission is not authorized. In response, the light source of the unit is deactivated to prevent collisions with upstream data from other optical network units in the network.
    Type: Application
    Filed: August 20, 2009
    Publication date: February 24, 2011
    Inventors: Yusuke Ota, Wilhelm C. Fischer
  • Patent number: 7889996
    Abstract: Embodiments of a system are described. This system includes an array of chip modules (CMs) that are configured to communicate data signals with each other via optical communication. In a given CM module, optical signal paths, such as waveguides, are routed in the same way as in the other CMs in the array. In this way, a common optical design in the CMs may be used in the system to prevent data conflicts during the optical communication.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 15, 2011
    Assignee: Oracle America, Inc.
    Inventors: Xuezhe Zheng, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 7885542
    Abstract: Systems and methods for signal conversion with smart multitap are disclosed. Embodiments of the systems can be scalable to model different signal topologies, transmission frequencies, bandwidths, and distances. An exemplary embodiment of the systems and methods includes a fiber optic to RF converter and a smart multitap. Although a fiber optic to RF converter is used in exemplary embodiments throughout the disclosure, conversion between other signal topologies is within the scope of the disclosure. The smart multitap includes a multiple tap for distributing a signal to multiple terminals and a microprocessor to select a particular terminal for a signal. Exemplary embodiments include downstream implementations in which a stream is typically sent from a service provider server to a user. Alternative embodiments include downstream implementations as well as upstream implementations in which a user typically sends a stream to a service provider server.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: February 8, 2011
    Inventor: Robert R. Riggsby
  • Patent number: 7881607
    Abstract: A method and corresponding apparatus is disclosed for determining a particular Optical Network Terminal (ONT) in a Passive Optical Network (PON) is malfunctioning by sending a continuous stream of light up a shared fiber, which results in adversely affecting communications between the ONT and an Optical Line Terminal (OLT). The example embodiment verifies the failure is due to a faulty optical transmitter in the ONT and not a different network fault, such as a fiber optic line cut or power outage. Through the use of the example embodiment, a service provider can determine in an automated manner which specific ONT of a PON is malfunctioning.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 1, 2011
    Assignee: Tellabs Petaluma, Inc.
    Inventors: David A. DeLew, Ryan D. Houlgate, Nathan D. Knuth, Manic C. Steyn, Weijun Li
  • Patent number: 7881609
    Abstract: A ranging signal R1 generated by a signal generator and reaches to a signal checker via a working system transmission line, a loop circuit, and an auxiliary system transmission line. The signal checker measures a delay time from the generation to the arrival of the signal R1. A ranging signal R2 generated by the signal generator and reaches to a signal checker via an auxiliary system transmission line, a loop circuit, and an auxiliary system transmission line. The signal checker measures a delay time from the generation to the arrival of the signal R12. A delay time of the working system transmission line is calculated from the delay times of the signals R1 and R2. Disruption of the services provided by the other ONUs can be prevented since the working system transmission line is not used for upstream communication of the ranging signals R1 and R2.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 1, 2011
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Kohei Eguchi
  • Patent number: 7877016
    Abstract: A photonic integrated circuit (PIC) for a PON transceiver comprises a single monolithic chip having a modulated transmitter laser diode of a first wavelength, ?1, for generating a first communication signal outgoing from the chip via an input/output port and a receiving photodetector for receiving a second communication signal of a second wavelength, ?2, onto chip incoming from the input/output port and a monitoring photodetector for receiving a portion of the first communication signal to monitor the laser diode output power.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: January 25, 2011
    Assignee: Infinera Corporation
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 7869687
    Abstract: Channel switching system and method of an IPTV service in a passive optical network (PON) are disclosed. To reduce a channel switching time of an IPTV system in the passive optical network, the system and the method use a channel switching control module and a channel list module in the passive optical network. In a case where a passive optical network system receives an IPTV channel switching request transmitted from a terminal user, the channel switching control module checks a recording of a channel list module and a recording of an authentication list module, and then updates a filter recording of an optical network unit to thereby directly transmit an image flow of a new channel in the passive optical network. When such system and method are applied to the passive optical network, high-speed switching of the IPTV service channel by the terminal user can be realized.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 11, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroki Ikeda, Nie Yaling
  • Publication number: 20110002690
    Abstract: A Passive Optical Network (PON) component, such as a Gigabit Interface Converter (GBIC) or similar pluggable transceiver, provides the combined functionality of the GBIC (or similar device) and an Optical Network Unit (ONU). The result is a device with a reduced form factor by eliminating redundant components and simplified fault management of the end-system.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 6, 2011
    Inventor: Thomas Anschutz
  • Patent number: 7860393
    Abstract: A system and method for simultaneous delivery of a plurality of independent blocks of 500 MHz digital broadcast television services, stacking a plurality of RF blocks on a plurality of spectrally sliced WDM optical bands.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: December 28, 2010
    Assignee: AT&T Intellectual Property I, LP
    Inventors: Martin Birk, Patrick P. Iannone, Kenneth C. Reichmann, Nicholas J. Frigo, Cedric F. Lam
  • Patent number: 7860391
    Abstract: A WDM communication system that includes links traversing substantially inaccessible regions may tolerate multiple failures. In one implementation, a primary link spanning such a region is protected by a backup link. To provide further fault tolerance diverse paths may be provided to and from this backup link. The region may be, for example, an ocean.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: December 28, 2010
    Assignee: Cisco Technology, Inc.
    Inventors: Aldo Aprile, Massimo Cambiaghi, Valerio Viscardi
  • Patent number: 7848653
    Abstract: Embodiments of the present invention provide a method for transmitting low rate signals over an optical transport network, including: adapting the low rate signals into low rate optical channel data units of the same rate level with the low rate signals; asynchronously mapping each of the low rate optical channel data units into a low rate optical channel data tributary unit respectively, and generating justification overhead used for rate adaptation for each of the low rate optical channel data units; and forming a higher order optical channel data unit with at least one low rate optical channel data tributary unit and justification overhead corresponding to the low rate optical channel data tributary unit. The present invention enables the optical transport network to support mapping, multiplexing and highly efficient transmission of low rate signals.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: December 7, 2010
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Shimin Zou
  • Patent number: 7848652
    Abstract: A wavelength division multiplexing passive optical network system is provided. A central office generates a multi-mode light having a mode interval equal to a period interval of a multiplexing filter of the remote node and the multi-mode light is used to control a wavelength of an uplink transmission optical signal of the optical network unit. A remote node multiplexes the multi-mode light with the multiplexing filter to transmit the multiplexed multi-mode light to the optical network unit and demultiplexes the uplink transmission optical signal to transmit the demultiplexed uplink transmission optical signal to the central office. An the optical network unit generates the uplink transmission optical signal by modulating a data signal with a Fabry-Perot laser which uses the multiplexed multi-mode light as an injection optical source. Accordingly, it is possible to control a wavelength of a transmitter of the optical network unit by using the injection optical source generated by the central office.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: December 7, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon Seob Lee, Byung Tak Lee, Hyun Seo Kang, Jai Sang Koh
  • Patent number: 7844179
    Abstract: A system and method for a transparent WDM metro ring architecture in which optics enables simultaneous provisioning of dedicated wavelengths for high-end user terminals, while low-end user terminals share wavelengths on “virtual rings”. All wavelengths are sourced by the network and remotely modulated at customer “End Stations” by low cost semiconductor optical amplifiers, which also serve as transmission amplifiers. The transparent WDM metro ring architecture permits the communication of information and comprises a fiber optical feeder ring, at least one fiber optical distribution ring, a network node (NN), at least one access node (AN) said network node and said at least one access node connected via said fiber optical feeder ring and at least one end station (ES) connected via said fiber optical distribution ring to said at least one access node, wherein said user is attached to said at least one end station.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: November 30, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Nicholas J. Frigo, Patrick P. Iannone, Kenneth C. Reichmann, Aleksandra Smiljanic
  • Patent number: 7840135
    Abstract: A method for detecting a failure network terminal in a Passive Optical Network includes: changing timeslots assigned to potential failure network terminals one by one; and determining the failure network terminal according to uplink data frames sent by the potential failure network terminals whose timeslots are changed. Embodiments of the present invention also disclose an apparatus and system for detecting a failure network terminal. The solution of the present invention may detect which Optical Network Unit/Terminal (ONU/ONT) fails and perform the corresponding processing in accordance with embodiments of the present invention, which recovers the system health and improves the network security, stability and self-healing ability.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: November 23, 2010
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jun Zhao, Wei Huang, Yuntao Wang, Huafeng Lin, Guo Wei
  • Patent number: 7831147
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 9, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Publication number: 20100278534
    Abstract: An optical network terminal receives, from a user device associated with the optical network terminal, a call to a called party, and checks a table, which may be locally cached in the optical network terminal, for a network location of another optical network terminal associated with the called party. The device also establishes a connection with another user device associated with the other optical network terminal, based on the network location, and exchanges voice data with the other user device associated with the other optical network terminal via the connection.
    Type: Application
    Filed: December 16, 2009
    Publication date: November 4, 2010
    Applicant: VERIZON PATENT AND LICENSING, INC.
    Inventors: Stevan H. Leiden, Ayaskant Rath, Yong Liu, Shivendra Panwar, Keith Ross
  • Publication number: 20100272440
    Abstract: Systems and methods for bandwidth doubling in an Ethernet passive optical network (EPON) enable an optical line terminal (OLT) to transmit downlink to at least one double rate optical network unit (ONU). The double rate transmission is preferably facilitated by use of single rate devices (OLT and ONU) functionally connected to provide the double rate capability. The methods include packet-by-packet multiplexing, bit-by-bit line code interleaving, doubling an inter-packet gap (IPG) length, defining windows of transmission for different transmission rates, using the 8B/10B code, removing the 8B/10B code from just the downlink transmission and symbol-by-symbol multiplexing is downlink transmissions from the double rate OLT.
    Type: Application
    Filed: July 4, 2010
    Publication date: October 28, 2010
    Applicant: PMC SIERRA ISRAEL LTD.
    Inventors: Onn Haran, Ariel Maislos
  • Patent number: 7822344
    Abstract: A system for communication of signals between remote devices and monitoring and control devices via fiber. The system in accordance with one aspect of the invention includes a plurality of remote interface units each coupled to a corresponding one of the remote devices, and a base unit coupled to the one or more monitoring devices and the one or more control devices. The plurality of remote interface units and the base unit are interconnected by fiber optic links to form a ring. Each of the remote interface units supplies a video signal to the base unit for distribution to the one or more monitoring devices, and the base unit supplies control signals from the one or more control devices to the plurality of remote interface units.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 26, 2010
    Assignee: Multidyne Electronics Inc.
    Inventors: Vincent Jachetta, Brian C. Moore, James G. Jachetta, Francis P. Jachetta
  • Patent number: 7813353
    Abstract: Quality of Service (QoS) can be managed in a network that uses time division access, such as a Passive Optical Network (PON), by supporting provisioning of at least two scheduling precedence levels in the PON, none of the at least two precedence levels being associated with a fixed or assured bandwidth traffic type in the PON, but having a bandwidth precedence and/or proportion relationship to each other.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: October 12, 2010
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Thomas Arnold Anschutz, Zhi Cui
  • Patent number: 7805077
    Abstract: Systems and methods provide for the addition of DWDM modules to CWDM systems in order to increase bandwidth over existing lines. This allows for the expansion of communications capacity without the need to replace existing CWDM systems. The DWDM modules can be transparently inserted into the CWDM systems by, in the CWDM system, reserving a channels for use by the DWDM. The DWDM system then occupies that channel with a scalable number of DWDM wavelength channels, for example four, eight, or sixteen. The DWDM systems can be used in both single and dual fiber systems as well as ring systems. Use of single fiber systems is obtained by implementing coupling devices, such as interleavers, passband filters, and circulators, that can used in pairs to couple bidirectional signals over a single fiber.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: September 28, 2010
    Assignee: Finisar Corporation
    Inventors: Steve Wang, Johnny Zhong, James Finn Aldridge
  • Patent number: 7801161
    Abstract: A gigabit passive optical network (GPON) residential gateway comprising a microprocessor for at least processing packets including voice data and packets including video data; dual packet processors for performing GPON and residential gateway processing tasks; a plurality of Ethernet media access control (MAC) adapters for interfacing with a plurality of subscriber devices; a GPON MAC adapter for interfacing with an optical line terminal (OLT) of the GPON; and a digital signal processor (DSP) for processing voice signals.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: September 21, 2010
    Assignee: Broadlight, Ltd.
    Inventors: Gil Levy, Eliezer Weitz, Michael Balter, Ifat Naaman, Asaf Koren
  • Patent number: 7796888
    Abstract: A method and system for ensuring confidentiality of signal transmission in a point-to-multipoint data transmission network like Ethernet passive optical network, including at least one hub, at least one transmission medium and at least one station connected to the hub via the transmission medium. When an upstream signal is transmitted from a first station, the upstream signal is reflected by at least one disturbing reflector for producing a disturbing reflection. The disturbing reflection combines with a second reflection of the upstream signal and renders the second reflection undecodable by a second station.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: September 14, 2010
    Inventors: Olli Pekka Pohjola, Ari Tervonen
  • Publication number: 20100221007
    Abstract: In a PON system by WDM, IP broadcast can be received without oppressing a band used by a user for Internet communication. An OLT provides a first wavelength received in common by respective ONUs and plural second wavelengths by which the OLT and the respective ONUs perform communication individually. With respect to signals in the downstream direction, each of the OLTs includes a transmitter to transmit the first wavelength and plural transmitters to transmit the second wavelengths used for the individual communication with the respective ONUs. Each of the ONUs includes a receiver to receive the first wavelength and a receiver to receive the second wavelength used in the ONU itself. The OLT transmits data of the IP broadcast by the first wavelength and transmits individual data of each of the ONUs by the second wavelength corresponding to the ONU.
    Type: Application
    Filed: May 14, 2010
    Publication date: September 2, 2010
    Applicant: HITACHI, LTD.
    Inventors: Kenichi Sakamoto, Tohru Kazawa
  • Publication number: 20100215368
    Abstract: Methods and systems for processing communication signals in an Orthogonal Frequency Division Multiple Access (OFDMA)-Passive Optical Network (PON) are disclosed. An optical carrier at a wavelength generated at an optical line terminal (OLT) may be reused by optical network units (ONUs) in the network for upstream transmission of data signals to the OLT. In addition, each ONU may perform carrier suppression to avoid broadband beating noise resulting from the simultaneous transmission of upstream data signals on the same wavelength. Further, the optical source at the OLT used to generate the optical carrier may be reused as a local oscillator for coherent detection of received upstream signals to minimize any frequency offsets.
    Type: Application
    Filed: August 21, 2009
    Publication date: August 26, 2010
    Applicant: NEC Laboratories America, Inc.
    Inventors: Dayou Qian, Neda Cvijetic, Junqiang Hu, Ting Wang
  • Publication number: 20100215369
    Abstract: An apparatus comprising an optical line terminal (OLT) configured to transmit a bandwidth map (BWmap) for a plurality of burst signals to be transmitted by a plurality of optical network units (ONUs), wherein the BWmap comprises a plurality of allocations, and wherein each allocation comprises a start time for the allocation, a grant size for the allocation, and a header error correction (HEC) for the allocation.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 26, 2010
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Frank J. Effenberger, Yuanqiu Luo
  • Publication number: 20100215362
    Abstract: An optical network unit according to the present invention is provided as comprising a configuration that component units built therein are grouped for at least two sheets of substrate modules and arranged thereat. There are provided individual embodiments: (a) arranging an L2 layer and a part of the component unit of an L1 layer at a first substrate module, meanwhile, arranging the left part of the component unit of the L1 layer at a second substrate module; (b) arranging the component units of the L1 layer and of the L2 layer at the first substrate module and the second substrate module individually by grouping therefor; and (c) arranging the component units of the L2 layer and of the L1 layer at the first substrate module and the second substrate module respectively.
    Type: Application
    Filed: March 11, 2008
    Publication date: August 26, 2010
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kazutaka Shimoosako, Kunio Odaka, Katsuya Aboshi
  • Patent number: 7783201
    Abstract: An optical repeater device of the present invention comprises: a preamble compensating circuit 53, for taking out a normal data signal from burst signals propagating through a communication transmission path, and for adding a preamble signal before and/or after the data signal. Furthermore, the preamble compensating circuit 53 comprises: a detector circuit 53a, for inputting the burst signal, and for outputting only the normal data signal; a buffer circuit 53b, for storing the data signal output from the detector circuit 53a, and for outputting thereof; a preamble signal generation circuit 53d, for outputting at least one type of the preamble signal; and an data output select circuit 53e, for outputting the data signal at the time of the data signal input from the buffer circuit 53b, and for outputting the preamble signal from the preamble signal generation circuit 53d at any other time thereof.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: August 24, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masayuki Miura, Kunio Odaka, Fuyuki Takeuchi
  • Patent number: 7783198
    Abstract: A passive optical network includes: a central office for generating multiplexed downstream optical signals and receiving an upstream optical signal; a plurality of optical network units for receiving a corresponding downstream optical signal and generating subcarrier channels carrying electrical data of an assigned frequency; and a remote node for photoelectrically converting the channels into electrical data, electro-optically converting the electrical data into at least one upstream optical signal.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Kwang Jung, Yun-Je Oh, Jin-Woo Park, Sang-Rok Lee, Il-Lae Kim
  • Patent number: 7783195
    Abstract: Systems and methods for signal conversion with smart multitap are disclosed. Embodiments of the systems can be scalable to model different signal topologies, transmission frequencies, bandwidths, and distances. An exemplary embodiment of the systems and methods includes a fiber optic to RF converter and a smart multitap. Although a fiber optic to RF converter is used in exemplary embodiments throughout the disclosure, conversion between other signal topologies is within the scope of the disclosure. The smart multitap includes a multiple tap for distributing a signal to multiple terminals and a microprocessor to select a particular terminal for a signal. Exemplary embodiments include downstream implementations in which a stream is typically sent from a service provider server to a user. Alternative embodiments include downstream implementations as well as upstream implementations in which a user typically sends a stream to a service provider server.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: August 24, 2010
    Assignee: Scientific-Atlanta, LLC
    Inventor: Robert R. Riggsby
  • Patent number: 7783196
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 24, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Publication number: 20100209108
    Abstract: A Reflective Semiconductor Optical Amplifier (RSOA) for compensating for light loss in an optical link, an RSOA module for improving polarization dependency using the RSOA, and a Passive Optical Network (PON) for increasing economical efficiency and practical use of a bandwidth using the RSOA are provided. The PON includes a central office comprising a plurality of optic sources transmitting a downstream signal and a plurality of first receivers receiving an upstream signal; at least one optical network terminal (ONT) including a second receiver receiving the downstream signal and an RSOA which receives the downstream signal, remodulates the downstream signal into the upstream signal, and transmits the upstream signal in loopback mode; and a remote node interfacing the central office with the ONT. The upstream signal and the downstream signal are transmitted between the remote node and the ONT via a single optical fiber. The remote node includes an optical power splitter at its port connected to the ONT.
    Type: Application
    Filed: May 4, 2010
    Publication date: August 19, 2010
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi KIM, Mahn Yong PARK, Woo-Ram LEE, Tae Yeon KIM
  • Patent number: 7778549
    Abstract: Systems and methods for unidirectional communication in an optical network employing bidirectional transponders are provided. The modulation and amplification capabilities of the bidirectional transponder are used to forward information to the next node. In this way a highly cost-effective “drop and continue” architecture is provided. In one implementation, the client-side output of the bidirectional transponder is looped back to the client-side input using, e.g., a Y-cable fiber. In this way, a unidirectional signal present on a network-side input wavelength to the transponder is presented both on a network-side output wavelength of the transponder and at the same time to a client. The modulation and amplification capabilities of the bidirectional transponder are thus exploited in forwarding the unidirectional signal to the next node.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: August 17, 2010
    Assignee: Cisco Technology, Inc.
    Inventors: Stefano Binetti, Maruizio Gazzola, David Bianchi
  • Patent number: 7778545
    Abstract: Systems and methods for bandwidth doubling in an Ethernet passive optical network (EPON) enable an optical line terminal (OLT) to transmit downlink to at least one double rate optical network unit (ONU). The double rate transmission is preferably facilitated by use of single rate devices (OLT and ONU) functionally connected to provide the double rate capability. The methods include packet-by-packet multiplexing, bit-by-bit line code interleaving, doubling an inter-packet gap (IPG) length, defining windows of transmission for different transmission rates, using the 8B/10B code, removing the 8B/10B code from just the downlink transmission and symbol-by-symbol multiplexing is downlink transmissions from the double rate OLT.
    Type: Grant
    Filed: October 2, 2005
    Date of Patent: August 17, 2010
    Assignee: PMC-Sierra Israel Ltd
    Inventors: Onn Haran, Ariel Maislos
  • Publication number: 20100196006
    Abstract: A method for optical network termination (ONT) configuration is provided. The method includes: obtaining, by an optical line terminal (OLT), service types supported by an ONT and management methods available for each of the service types; and negotiating, by the OLT, with the ONT according to the management methods available for each of the service types, so as to determine a management method to be adopted for each of the service types, and configuring the ONT according to the determined management method.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 5, 2010
    Inventors: Wei Lin, Sulin Yang
  • Publication number: 20100189439
    Abstract: A Wireless Personal Area Network that provides multiple users with multi-gigabit-per-second data rate wireless connectivity and is integrated with an optical fiber distribution network is disclosed. Embodiments relate generally to an integrated fiber optic WPAN architecture that comprises multiple 57-66 GHz remotely located wireless access points interconnected with a centrally located distribution point using optical fiber links. The integrated network provides an efficient, flexible and scalable 57-66 GHz WPAN architecture since the fiber optic links accommodate the delivery of bandwidth intensive services to large numbers of users while seamlessly supporting the diversity of multi-gigabit-per-second data applications. Two approaches for the transport of the WPAN signals over the optical fiber signal distribution network are described.
    Type: Application
    Filed: January 23, 2009
    Publication date: July 29, 2010
    Inventors: Dalma Novak, Rodney Waterhouse
  • Publication number: 20100183305
    Abstract: Coupling of optically pumped amplifiers between two nodes of an optical communications system. Optical pump power from one direction of the bi-direction communication is diverted to power optically pumped amplifiers in the opposite direction of the bi-directional communication. The optical link in the optical communications system may include both forward and backward Raman amplifiers, as well as forward and backward optically (for example, remote optically) pumped amplifiers for any given optical communication direction. Such coupling has the potential to increase reliability and/or efficiency of the optical communications system.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 22, 2010
    Applicant: Xtera Communications, Inc.
    Inventors: DO-IL CHANG, Wayne S. Pelouch
  • Publication number: 20100178053
    Abstract: In an optical communications system in which an OLT transceiver and a plurality of ONU transceivers are connected to each other via an optical fiber and a TDMA system in which a signal from each of the ONU transceivers is issued at a timing assigned by the OLT transceiver is used, each of the ONU transceivers includes a light source which has modulation function of a Fabry-Perot laser that oscillates multi-mode lights of different wavelengths, the OLT transceiver includes a single-longitudinal-mode light source which has modulation function of a DFB laser that oscillates a single-longitudinal-mode light, and the light source which has modulation function included in each of the ONU transceivers and the single-longitudinal-mode light source which has modulation function included in the OLT transceiver are optically connected to each other via an optical fiber.
    Type: Application
    Filed: January 13, 2010
    Publication date: July 15, 2010
    Applicant: HITACHI, LTD.
    Inventors: Misuzu SAGAWA, Toshiki SUGAWARA
  • Patent number: 7756181
    Abstract: A device including a semiconductor laser device having a semiconductor laser chip, and a molded resin having a light diffusion capability. The semiconductor laser chip is covered with the molded resin.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: July 13, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hidenori Kawanishi, Toshihiro Inooka, Atsushi Shimonaka, Keiji Kumatani
  • Patent number: 7751712
    Abstract: A Passive Optical Network includes: an Optical Line Terminal, an Optical Distribution Network, and an Optical Network Unit or an Optical Network Terminal, wherein the Optical Line Terminal is adapted to exchange data with the Optical Network Unit or the Optical Network Terminal by using an optical module via the Optical Distribution Network, and the optical module is an optical module sending data in a continuous mode. Further, a method for data communication based on the Passive Optical Network includes: sending data by using an optical module sending data in a continuous mode; receiving the data by an optical module based on a set optical power threshold of data “0” and a set optical power threshold of data “1”.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: July 6, 2010
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jun Zhao, Jiang Feng, Nanling Li, Peilong Tan, Yu Liu, Chuanhai Huang, Wensheng Wu, Guangxiang Yang, Yong He, Wenwen Dong
  • Publication number: 20100162332
    Abstract: Generating oscillator signals with which selected signals may be mixed. Such oscillator signals may be generated by dividing a pilot tone, such as a 120 MHz pilot tone found on many cable TV systems. Oscillator signals for demodulating received selected signals may be similarly generated.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 24, 2010
    Inventors: Jack Needle, Dimitrios Kokkinos
  • Publication number: 20100142950
    Abstract: The invention relates to a passive optical network comprising an optical exchange linked by at least one optical fiber to at least one line termination device of said network, able to transmit a downlink optical signal phase-modulated in NRZ-DPSK format and to receive an uplink optical signal. According to the invention, said line termination device comprises means of converting the transmitted downlink optical signal phase-modulated in NRZ-DPSK format into an optical data signal amplitude-modulated in duobinary modulation format and means of generating an uplink optical signal phase-modulated in NRZ-DPSK format from the downlink optical signal phase-modulated in NRZ-DPSK format. The optical exchange is able to convert the uplink optical signal phase-modulated in NRZ-DPSK format into an optical data signal amplitude-modulated in duobinary modulation format.
    Type: Application
    Filed: June 18, 2008
    Publication date: June 10, 2010
    Applicant: France Telecom
    Inventors: Erwan Pincemin, Naveena Genay
  • Patent number: 7734179
    Abstract: A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: June 8, 2010
    Assignee: AT&T Corp.
    Inventors: Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Sheryl Leigh Woodward
  • Patent number: 7734178
    Abstract: In a PON system by WDM, IP broadcast can be received without oppressing a band used by a user for Internet communication. An OLT provides a first wavelength received in common by respective ONUs and plural second wavelengths by which the OLT and the respective ONUs perform communication individually. With respect to signals in the downstream direction, each of the OLTs includes a transmitter to transmit the first wavelength and plural transmitters to transmit the second wavelengths used for the individual communication with the respective ONUs. Each of the ONUs includes a receiver to receive the first wavelength and a receiver to receive the second wavelength used in the ONU itself. The OLT transmits data of the IP broadcast by the first wavelength and transmits individual data of each of the ONUs by the second wavelength corresponding to the ONU.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: June 8, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Tohru Kazawa
  • Patent number: 7725029
    Abstract: A technique for asymmetric transport is disclosed. In one particular exemplary embodiment, the technique may be realized by/as a method for asymmetric transport. The method may comprise transmitting, from a network element, at least one first signal through at least one first transport interface at a first rate, where the at least one first transport interface accommodates the transmission of the at least one first signal through an optical medium. The method may also comprise receiving, at the network element, at least one second signal through at least one second transport interface at a second rate different from the first rate, where the at least one second transport interface accommodates the reception of the at least one second signal through the optical medium. At least one of the at least one first transport interface and the at least one second transport interface may be integrated with the network element.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: May 25, 2010
    Inventors: Eric Bernier, Dominic John Goodwill
  • Patent number: 7715719
    Abstract: In accordance with the teachings of the present invention, a system and method for transmitting traffic in a plurality of passive optical networks (PONs) is provided. In a particular embodiment, a method for transmitting traffic in a plurality of passive optical networks (PONs) includes transmitting traffic at a first wavelength and at a second wavelength from an optical line terminal (OLT). The method also includes combining the traffic in the first wavelength and the traffic in the second wavelength and splitting the combined traffic into a plurality of copies. The method further includes forwarding a first copy to a first wavelength router at a first distribution node and forwarding a second copy to a second wavelength router at a second distribution node, wherein the first wavelength router is coupled to a first set of optical network units (ONUs) and the second wavelength router is coupled to a second set of ONUs.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: May 11, 2010
    Assignee: Fujitsu Limited
    Inventors: Martin Bouda, Takao Naito
  • Publication number: 20100111532
    Abstract: A method, a device, and a system for realizing data transmission extension in a passive optical network (PON) are provided. Between a burst-mode clock and data recovery (BCDR) module and an electrical-optical (E/O) amplification module, the device includes a delimiter matching module and a preamble buffering and compensating module. The delimiter matching module is adapted to receive a data frame sent by the BCDR module and determine a location of a delimiter in the data frame. An optical-electrical (O/E) amplification module performs O/E conversion, amplification, and shaping on the data frame. The BCDR module then performs clock and data recovery processing on the data frame.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 6, 2010
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Juan Chen, Shimin Zou, Jianlin Zhou
  • Patent number: 7711268
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 4, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Publication number: 20100104288
    Abstract: A method, apparatus and system for bearing Internet Protocol (IP) packets over a Passive Optical Network (PON) are disclosed. The method includes obtaining an IP packet, converting the IP packet into a Gigabit PON Encapsulation Method (GEM) frame. The method further includes performing a Gigabit PON Transmission Convergence (GTC) framing on the GEM frame to obtain a GTC frame and performing a PON physical layer processing on the GTC frame.
    Type: Application
    Filed: December 30, 2009
    Publication date: April 29, 2010
    Inventor: Ruobin Zheng
  • Publication number: 20100104287
    Abstract: This disclosure describes techniques for providing a communication path for upstream communications originating from a node of an optical network. In particular, methods and devices are described for combining upstream communications originating from the node of the optical network with upstream communications originating from subscriber devices coupled to the node. The upstream communication originating from the node may, for example, include status information about the node. The upstream communication, which may include status information about the node, essentially piggy-backs onto upstream communication originating from the subscriber devices coupled to the node.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 29, 2010
    Applicant: Calix Networks, Inc.
    Inventors: Mark R. Biegert, Peter O. Lee