With Variable Frequency Channel Assignment Patents (Class 398/69)
  • Patent number: 11977929
    Abstract: The resource allocation method and apparatus are based on edge computing. The method includes: decomposing all application systems in a server into a plurality of meta-service units according to the coupling degree between different service modules in the application systems, and obtaining the quality of experience (QoE) index parameter value of each meta-service unit; clustering the plurality of meta-service units by using a clustering algorithm based on the QoE index parameter value of each meta-service unit; and allocating resources to each cluster according to the QoE index parameter values of all meta-service units in each cluster, so that all meta-service units in each cluster share the allocated resources. According to the invention, the resource allocation is more reasonable, the QoE value of a user is increased, and the resource use is more effective.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: May 7, 2024
    Assignee: SHANDONG COMPUTER SCIENCE CENTER (NATIONAL SUPERCOMPUTER CENTER IN JINAN)
    Inventors: Wei Zhang, Huiling Shi, Xinchang Zhang, Yanling Zhao, Lu Wang, Meng Sun
  • Patent number: 11575441
    Abstract: This application provides an optical processing module and an optical processing apparatus. The optical processing apparatus includes at least two optical processing modules. The optical processing module includes a processing unit, and further includes at least one first interface, at least one second interface, and at least one third interface. Each of at least one first interface is configured to connect to and communicate with an upper-layer device, each of the at least one second interface is configured to connect to and communicate with a user-side device, each of the at least one third interface is configured to connect to and communicate with a third interface of another optical processing module, and the processing unit is configured to process, according to a first control instruction, data received from the at least one first interface and the at least one third interface.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: February 7, 2023
    Assignee: HUAWEI TECHNOLOGIES, CO., LTD.
    Inventor: Liankui Lin
  • Patent number: 11368240
    Abstract: A signal processing method and apparatus are provided. The method includes: receiving an optical signal in a target receive channel, and converting the optical signal into an electrical signal; determining, in the converted electrical signal, an electrical signal associated with a non-overlapping frequency band between the target receive channel and another channel, where the another channel is a channel that overlaps the target receive channel; and determining, based on the electrical signal associated with the non-overlapping frequency band, an electrical signal corresponding to a valid received optical signal that does not include an interfering optical signal in the target receive channel. According to the application, the target transmit channel and the another channel are set to channels that overlap each other, thereby reducing bandwidths occupied by the channels.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: June 21, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xu Zhou, Xiang Liu, Yansi Le, Zhiyong Feng
  • Patent number: 10516923
    Abstract: A bandwidth assignment method and apparatus, and an optical network system are disclosed. The method includes: setting a maximum bandwidth grant size and a maximum burst bandwidth grant size for an optical network unit; receiving a bandwidth assignment request of the optical network unit; and when an optical line terminal determines, according to the bandwidth assignment request, that a bandwidth grant size requested to be assigned in the bandwidth request is greater than the set maximum bandwidth grant size and less than or equal to the set maximum burst bandwidth grant size, determining, by the optical line terminal, in response to the request, to assign the requested bandwidth grant size to the optical network unit. Therefore, timely and accurate transmission of massive uplink burst data traffic is ensured, a transmission delay is reduced, service performance is improved, and system bandwidth utilization is greatly increased.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: December 24, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Gang Zheng, Xifeng Wan
  • Patent number: 10402527
    Abstract: Embodiments are directed towards a reconfigurable stream switch formed in an integrated circuit. The stream switch includes a plurality of output ports, a plurality of input ports, and a plurality of selection circuits. The output ports each have an output port architectural composition, and each is arranged to unidirectionally pass output data and output control information. The input ports each have an input port architectural composition, and each is arranged to unidirectionally receive first input data and first input control information. Each one of the selection circuits is coupled to an associated one of the output ports. Each selection circuit is further coupled to all of the input ports such that each selection circuit is arranged to reconfigurably couple its associated output port to no more than one input port at any given time.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: September 3, 2019
    Assignees: STMICROELECTRONICS S.R.L., STMICROELECTRONICS INTERNATIONAL N.V.
    Inventors: Thomas Boesch, Giuseppe Desoli
  • Patent number: 9973296
    Abstract: An optical line terminal (OLT) comprising a processor configured to process a first power consumption data associated with a first optical network unit (ONU) for a plurality of wavelength channels in a multiple-wavelength passive optical network (PON), and select a first target wavelength channel from the plurality of wavelength channels based on the first power consumption data in order to reduce power consumption at the first ONU, and a transmitter coupled to the processor and configured to transmit to the first ONU a tuning control message instructing the first ONU to tune to the first target wavelength channel.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: May 15, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Jianhe Gao, Yuanqiu Luo, Dekun Liu
  • Patent number: 9927593
    Abstract: A method for connecting a number of users with at least one signal bearing optical fiber contained in an optical cable. The method includes: a) interrupting the signal bearing optical fiber at a first branch point, obtaining a first optical fiber segment upstream of the branch point and a second optical fiber segment downstream of the branch point; b) providing an optical splitter at the branch point, the optical splitter including an input and two outputs; c) coupling the first optical fiber segment with the input of the optical splitter; d) coupling a first output of the optical splitter with a first user; e) coupling a second output of the optical splitter with a downstream optical fiber segment of an interrupted optical fiber contained in the optical cable; and f) coupling the downstream optical fiber segment with at least one further user at a further branch point downstream the first branch point.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: March 27, 2018
    Assignee: PRYSMIAN S.p.A.
    Inventor: Lluis Ramon Sales Casals
  • Patent number: 9853721
    Abstract: Apparatus for enabling an M:N recovery scheme in an optical network includes a set of N working DSP-enabled optical transceivers/transponders including at least one working DSP-enabled optical transceiver/transponder that uses a first set of transmission parameters and at least one working DSP-enabled optical transceiver/transponder that uses a second set of transmission parameters which is different from the first set of transmission parameters, and a set of M protection DSP-enabled optical transceivers/transponders operable to protect the set of N working DSP-enabled optical transceivers/transponders and including L protection DSP-enabled optical transceivers/transponders, each having a capability of using a set of adjustable transmission parameters enabling it to protect every one of the N working DSP-enabled optical transceivers/transponders, and, when M>L, M-L protection DSP-enabled optical transceivers/transponders, each having a capability of protecting at least one, but not all, of the N working DS
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: December 26, 2017
    Inventor: Doron Handelman
  • Patent number: 9804333
    Abstract: A coarse wavelength division multiplexing (CWDM) device includes a supporting frame, a collimating lens, focusing lenses, a supporting block, and a light splitter. The supporting frame includes first frame portion with collimating lens and a second frame portion with focusing lenses arranged in an array along an extending direction of the second frame portion. The supporting block includes a first sidewall facing the first frame portion and a second sidewall facing the second frame portion. The light splitter includes a mirror on the first sidewall and a plurality of filters on the second sidewall, the filters being arranged in an array along an extending direction of the second sidewall. The filters correspond to the focusing lenses.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: October 31, 2017
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Po-Yu Lin
  • Patent number: 9693302
    Abstract: An OLT of a PON obtains information on discontinuous reception of a UE from a BBU of LTE, and adjusts a sleep start timing and a sleep cycle of an ONU so that a recovery waiting time in the OLT with respect to downlink data transmitted from the BBU to the UE can be minimized.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: June 27, 2017
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Noriko Iiyama, Jun-ichi Kani, Naotaka Shibata
  • Patent number: 9667673
    Abstract: A method implemented by a middlebox comprising registering a customer premises equipment (CPE) in the middlebox, wherein the CPE is coupled to the middlebox via an electrical line, and facilitating registration of the CPE in a central office (CO) equipment coupled to the middlebox.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: May 30, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Liming Fang, Jim Chen, Li Zhang
  • Patent number: 9655042
    Abstract: An OLT of a PON obtains information on discontinuous reception of a UE from a BBU of LTE, and adjusts a sleep start timing and a sleep cycle of an ONU so that a recovery waiting time in the OLT with respect to downlink data transmitted from the BBU to the UE can be minimized.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: May 16, 2017
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Noriko Iiyama, Jun-ichi Kani, Naotaka Shibata
  • Patent number: 9548808
    Abstract: Mechanisms, in a data processing system comprising an input/output subsystem implementing an industry standard optical bus, for handling a failure of an optical channel in an optical bus are provided. The mechanisms detect, by failure detection logic of the input/output (I/O) subsystem, failure of an optical channel of the optical bus. The mechanisms send, by a controller of the I/O subsystem, a control signal to channel routing logic of the I/O subsystem to control a routing of data signals between active bus lanes of the data processing system and optical channels of the optical bus in response to detecting the failure of the optical channel. The mechanisms control, by the channel routing logic, routing of data signals between the active bus lanes and the optical channels so as to remove the failed optical channel from further use and use a spare optical channel instead of the failed optical channel.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: January 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Patrick A. Buckland, Daniel M. Dreps, Nanju Na, Suzanne M. Nolen
  • Patent number: 9490895
    Abstract: Described herein is an optical channel monitor (1) including a protective housing (3), an input port (5) disposed in the housing (3) and configured for receiving at least one input optical signal (7) including one or more optical channels separated by wavelength. A wavelength configurable laser (9) is located within the housing (3) and is configured to provide an optical reference signal (11) at a first wavelength (?r). The laser (9) is adapted to scan across a range of wavelengths covering the one or more optical channels. An optical mixing module (13) is coupled to the input port (5) and the laser (9) for mixing the input optical signal (7) with the optical reference signal (11) to produce a mixed output signal. A receiver module (15) is configured to receive the mixed output signal and extract signal information indicative of at least the optical power of the at least one input optical signal at the first wavelength (?r).
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: November 8, 2016
    Assignee: Finisar Corporation
    Inventors: Steven James Frisken, Cibby Pulikkaseril, Simon Poole
  • Patent number: 9270404
    Abstract: The present invention relates transmission network, which involves Passive Optical Network and thereto connected units, e.g. Optical Network Units. It is an object of the present invention to provide a solution to the upstream data packet traffic congestion problem in transmission networks that comprises a PON system. Said problem is solved by providing adapted node devices and methods for such scheduling control that within the prescribed standard requirements, e.g. QoS, for passive optical network systems eliminate the congestion problem.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: February 23, 2016
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Ole Helleberg Andersen, Michael Valentin Juhl
  • Publication number: 20150131997
    Abstract: Systems and methods are disclosed including a computer system, comprising a software defined networking configuration manager having a processor computing and provisioning paths through an optical transport network for multiple switch nodes to be provisioned as head end nodes, the processor managing and interpreting data indicative of managed entities within the optical transport network to create a first network Sub-Network Connection (SNC) for a first customer, and a second network SNC for a second customer, the first network SNC being representative of a first graphical illustration of a state of first resources within the transport network that are allocated to the first customer, and the second network SNC being representative of a second graphical illustration of a state of second resources within the transport network that are allocated to the second customer.
    Type: Application
    Filed: December 31, 2013
    Publication date: May 14, 2015
    Inventors: Sharfuddin Syed, Abhinava Shivakumar Sadasivarao, Chris Liou
  • Patent number: 9008512
    Abstract: An Optical Access Network, a Optical Network Unit (ONU) and various methods for exchanging information are provided.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 14, 2015
    Assignees: Technion Research and Development Foundation Ltd., Yissum Research Development Company of the Hebrew University of Jerusalem Ltd
    Inventors: Moshe Nazarathy, Amos Agmon, Dan M. Marom
  • Patent number: 8995832
    Abstract: The present principles are directed to a transponder aggregator-based optical loopback in a multi-degree colorless, directionless, contention-less, reconfigurable optical add/drop multiplexer. The multiplexer includes a reconfigurable optical add/drop multiplexer section for performing connect operations for wavelength division multiplexing signals among all degrees. The section has a plurality of subsections. Each of the subsections corresponds to a respective one of the degrees and has an optical separator at an input side and an optical combiner at an output side. The multiplexer further includes a transponder aggregator section having a split-and-select switch-based transponder aggregator. The multiplexer also includes an optical line loopback having a connection path between the optical separator at the input side and the optical combiner at the output side of at least one of the subsections.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: March 31, 2015
    Assignees: NEC Laboratories America, Inc., NEC Corporation
    Inventors: Philip N. Ji, Yoshiaki Aono, Ting Wang
  • Patent number: 8977127
    Abstract: A system comprising a first optical line terminal (OLT) comprising a first integrated optical network unit (ONU), and a first OLT transceiver, and a second OLT coupled to the first OLT, wherein the second OLT comprises a second integrated ONU, and a second OLT transceiver. Included is a first OLT comprising an optical transceiver, at least one processor coupled to the optical transceiver, wherein the processor working in conjunction with the optical transceiver is configured to determine an upstream wavelength corresponding to a second OLT, join, via a first ONU in the first OLT, the second OLT using the upstream wavelength corresponding to the second OLT, and transmit data to the second OLT by the first OLT via the first ONU, wherein the second OLT comprises a second ONU.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 10, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Yuanqiu Luo, Bo Gao, Frank Effenberger
  • Publication number: 20150055955
    Abstract: The invention presents the channel management technology in a Time and Wavelength Division Multiplexing-Passive Optical network (TWDM-PON). According to an exemplary embodiment, the channel management technology is a wavelength management method for an Optical Network Unit (ONU) having a tunable receiver in the TWDM-PON in which a service is provided through multiple channels, the wavelength management method including: setting a wavelength of the tunable receiver as a first channel to receive a physical synchronization signal from an Optical Line Terminal (OLT); extracting either or both service utilization information and service operator information from the physical synchronization signal; and based on either or both of the service utilization information and the service operator information, determining whether to perform follow-up procedures for activation via the first channel or whether to change the wavelength of the tunable receiver into a second channel.
    Type: Application
    Filed: August 26, 2014
    Publication date: February 26, 2015
    Inventors: Kwang Ok KIM, Han Hyub LEE, Sang Soo LEE
  • Patent number: 8965206
    Abstract: An aspect of this invention is a network system including subscriber apparatuses and a station-side apparatus for communicating with the subscriber apparatuses. The station-side apparatus communicates with the subscriber apparatuses using wavelengths. The station-side apparatus determines a wavelength to be used by each of at least one subscriber apparatus of the subscriber apparatuses based on effective transmission rates used by the subscriber apparatuses in communications with the station-side apparatus.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: February 24, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Jun Sugawa, Toshiyuki Odaka, Hidehiro Toyoda
  • Patent number: 8948598
    Abstract: A method for communicating in a passive optical network (PON), includes receiving traffic from a plurality of optical network units (ONUs) transmitting in an upstream transmission channel, wherein each of the ONUs may transmit at any wavelength within a wavelength band associated with the upstream transmission channel. The method also includes dividing the upstream transmission channel into a plurality of sub-channels, that each include a subset of the wavelength band associated with the upstream transmission channel. The method further includes determining the identity of each of the plurality of ONUs transmitting in each of the sub-channels, assigning a plurality of ONUs transmitting in the upstream transmission channel to each of at least two of the sub-channels based on the determination of the ONUs transmitting in that sub-channel, and allocating transmission timeslots for time-shared transmission by the ONUs in one or more of the sub-channels.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 3, 2015
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda
  • Patent number: 8938163
    Abstract: In accordance with embodiments of the present disclosure, a method may include sorting potential optical layer link failures in a network in an increasing order of failed traffic amount. The method may further include, for each potential optical link failure in increasing order of failed traffic amount: determining the additional higher layer link capacity required on existing higher layer links associated with the potential optical link failure using higher layer restoration of the potential optical link failure; determining the additional optical layer capacity required for restoring the existing higher layer links associated with the potential optical link failure using optical layer restoration; and selecting one of the higher layer and the optical layer as a restoration layer for restoration of the existing higher layer links associated with the potential optical link failure based on the determined additional higher layer link capacity and the determined additional optical layer capacity.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: January 20, 2015
    Assignee: Fujitsu Limited
    Inventors: Qiong Zhang, Xi Wang, Paparao Palacharia, Motoyoshi Sekiya
  • Patent number: 8934773
    Abstract: A method for data processing in an optical network includes providing several main wavelengths and processing a subcarrier modulation for the several main wavelengths. An optical network component and a communication system including such an optical network component are also provided.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 13, 2015
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Erich Gottwald, Karl Kloppe, Harald Rohde
  • Patent number: 8929728
    Abstract: A method for realizing an automatic protection switching of a transmission device is provided, and the method includes that: according to a received automatic protection switching trigger condition and information of each line sub-card, which are transmitted by a cross sub-card via a Time Division Multiplexing Fabric to Framer Interface (TFI5) frame, a control sub-card determines to execute protection switching, and sends a protection switching command to the cross sub-card; and the cross sub-card completes the protection switching action. A system for realizing an automatic protection switching of a transmission device is also provided. According to the technical solution of the present invention, the automatic protection switching of the transmission device in an Optical Transport Network (OTN) is achieved conveniently.
    Type: Grant
    Filed: September 26, 2010
    Date of Patent: January 6, 2015
    Assignee: ZTE Corporation
    Inventors: Changlong Zhong, Jian Geng
  • Patent number: 8917991
    Abstract: In fiber-to-the-home (FTTH) RF over Glass (RFoG) Architecture a customer-premise-equipment (CPE) includes a wavelength separator. A method includes up-converting a baseband upstream data signal to a frequency band above a frequency band of a baseband downstream data signal; combining the up-converted upstream data signal with an upstream cable return signal; transmitting the up-converted upstream data signal and the upstream cable return signal using a single upstream laser; and separating, with a wavelength separator, A) a downstream data signal and a downstream cable feed signal from B) the combined up-converted upstream data signal and upstream cable return signal.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: December 23, 2014
    Assignee: Aurora Networks, Inc.
    Inventors: Sudhesh Mysore, Charles Barker, Oleh Sniezko, Krzysztof Pradzynski
  • Patent number: 8909049
    Abstract: In accordance with embodiments of the present disclosure, a method may include determining individual spectrum requirements for each of a plurality of signals to be communicated in an optical network, wherein a first signal of the plurality of signals has a first spectrum requirement and a second signal of the plurality of signals has a second spectrum requirement. The method may also include calculating a minimum spectrum granularity based on the individual spectrum requirements. The method may further include assigning each particular signal a channel spectrum equal to an integer multiple of the minimum spectrum granularity.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 9, 2014
    Assignee: Fujitsu Limited
    Inventors: Xi Wang, Qiong Zhang, Inwoong Kim, Paparao Palacharla, Motoyoshi Sekiya
  • Patent number: 8849118
    Abstract: The embodiments of the present invention describe a method for optimizing the capacity of an optical communication network that uses wavelength division multiplexing, wherein the spectral distribution of the signals intended to be transmitted over a plurality of channels is done dynamically through the use of a variable spectrum grid whose spectral spacings between two successive channels are determined based on the spectral width of said signals and in which dynamic filtering of said signals is carried out before their transmission in order to adjust their spectral width based on the available spectral space, and thereby reduce crosstalk between adjacent channels when the signals are transmitted.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 30, 2014
    Assignee: Alcatel Lucent
    Inventors: Gabriel Charlet, Oriol Bertran-Pardo, Francesco Vacondio
  • Publication number: 20140270776
    Abstract: An optical communication apparatus, in the sending side, distributes client signals according to destinations and a communication capacity of each destination, electrical-to-optical converts the distributed signals to optical signals having different center frequencies, and multiplexes the optical signals to output, and in the receiving side, the optical communication apparatus divides the wavelength division multiplexed signal to each wavelength (for each sending source), optical-to-electrical converts the divided optical signals to electrical signals, and multiplexes the electrical signals to output. An add/drop port of an optical route switching apparatus includes an input/output port to the optical communication apparatus, and an optical frequency bandwidth is variable according to an optical spectrum width of the optical signal. A network is constructed by using the optical communication apparatus and the optical route switching apparatus.
    Type: Application
    Filed: April 26, 2012
    Publication date: September 18, 2014
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Masahiko Jinno, Hidehiko Takara, Kazushige Yonenaga, Akira Hirano, Yoshiaki Sone
  • Patent number: 8817589
    Abstract: Methods and apparatus for line coding in a communications network are described. According to one embodiment of the invention, downstream communications traffic bits are received and mapped into downstream bit positions of a transmission structure. A pre-selected bit in each upstream bit positions of the transmission structure is provided to form a downstream transmission structure. A downstream optical signal carrying the downstream transmission structure is generated for transmission. Upstream communications traffic bits are also received and mapped into the upstream bit positions of the transmission structure to form an upstream transmission structure. An upstream optical signal carrying the upstream transmission structure is generated for transmission.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 26, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Fabio Cavaliere, Stefan Dahlfort, Luca Giorgi
  • Publication number: 20140233938
    Abstract: A system for interconnecting one or more leaf nodes attached to the leaves of an optical distribution network (ODN), comprising: A first and a second optical distribution network respectively comprising a remote node for distributing signals from a central office and/or an optical line terminal to a plurality of leaf nodes connected to said optical distribution network; a link connecting a first leaf node connected to the first optical distribution network to a second leaf node connected to the second optical distribution network, wherein the remote node of the second optical distribution network is adapted to forward an optical signal from said second leaf node which has received the signal from said first leaf node to the other leaf nodes of said second optical distribution network.
    Type: Application
    Filed: September 26, 2012
    Publication date: August 21, 2014
    Applicant: NTT DOCOMO, Inc.
    Inventor: Wolfgang Kiess
  • Patent number: 8731400
    Abstract: A tunable optical filter is configured to take point measurements at a few optical frequencies per frequency channel of a DWDM optical network. The measurement frequencies are shifted by pre-determined amounts relative to the optical frequency channel being characterized. Since the spectral shape of the tunable optical filter is known, the center optical frequency, the modulation bandwidth, and the total optical power of the channel can be obtained from as few as three optical measurements. The center optical frequency and the total optical power can be continuously monitored by providing a tunable filter stage coupled to an interleaver stage, and computing a ratio and a weighted sum the optical signals at the two outputs of the interleaver stage.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: May 20, 2014
    Assignee: JDS Uniphase Corporation
    Inventors: Jinxi Shen, David R. Walker, Leonid Frenkel, Yu Zhang, Barthelemy Fondeur, Vlatko Milinkovic, Yimin Hua
  • Publication number: 20140099114
    Abstract: An optical signal transmitting apparatus is disposed in an optical frequency division multiplex transmission system that includes plural nodes that are in an optical transmission path and respectively use a unique frequency to frequency-multiplex information with a carrier wave to transmit the information to an optical signal receiving apparatus in the optical transmission path. The optical signal transmitting apparatus outputs the carrier wave and includes a transmitting unit into which information to be delivered to the nodes is input, the transmitting unit transmitting the information using a frequency that does not overlap the unique frequencies used by the nodes; and a multiplexing unit that frequency-multiplexes output of the transmitting unit and the carrier wave, and sends the frequency-multiplexed output to the optical transmission path.
    Type: Application
    Filed: August 26, 2013
    Publication date: April 10, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Masato NISHIHARA, Toshiki TANAKA, Tomoo TAKAHARA, Tomoyuki KATO, Shigeki WATANABE
  • Patent number: 8693871
    Abstract: A method for routing and wavelength assignment (RWA) in an optical network with improved heuristics for reducing the computational times required for the RWA. The method minimizes the number of wavelengths by packing the lightpaths using a minimum number of bins in a bin packing problem. Computational efficiency is enhanced by using several novel methods to determine shortest paths and eliminate arcs in a graph that represents the network topology.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: April 8, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Mauricio Guilherme de Carvalho Resende, Thiago Ferreira de Noronha, Celso C. Ribeiro
  • Patent number: 8687962
    Abstract: Bidirectional data signals are exchanged between a central unit and a plurality of network terminals. The optical carrier frequencies of the downstream and upstream signals are chosen so that reflections do not interfere with the selected signal at the optical network unit and not with the received upstream signals at the central unit. The optical network units select their associated downstream signal and generate an associated upstream signal.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: April 1, 2014
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Erich Gottwald, Sylvia Smolorz
  • Patent number: 8649681
    Abstract: An optical network unit for a passive optical network (10), configured to: initiate an upstream wavelength (wus) for an upstream signal (US) from the optical network unit to an optical line terminal (10); iteratively, until an iteration criterion is met, i) transmit the upstream signal (US) to the optical line terminal (10), ii) receive from the optical line terminal (10) power level data (p) for the upstream signal (US) as measured by the optical line terminal (10), and iii) set the upstream wavelength (wus) for the upstream signal (US) to a new wavelength-value; and adjust the upstream wavelength (wus) to a wavelength-value previously set for the upstream signal (US) and associated with power level data corresponding to a certain power level. A passive optical network system, the optical line terminal and related methods are also disclosed.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: February 11, 2014
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventor: Peter Öhlén
  • Patent number: 8644704
    Abstract: In accordance with an embodiment of the present disclosure a method for adaptively spacing channels of an optical network comprises determining a first desired power level of a first channel of an optical network. The method further comprises determining a second desired power level of a second channel of the optical network, the second desired power level being less than the first desired power level. Additionally, the method comprises determining a first spectral space between the first channel and one or more channels neighboring the first channel based at least on the first desired power level. The method also comprises determining a second spectral space between the second channel and one or more channels neighboring the second channel based at least on the second desired power level, the second spectral space less than the first spectral space.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: February 4, 2014
    Assignee: Fujitsu Limited
    Inventors: Olga I Vassilieva, Motoyoshi Sekiya, Martin Bouda
  • Patent number: 8638489
    Abstract: Techniques and configurations are provided to generate multiple coherent optical subcarriers. A laser source generates as output a light beam at a carrier frequency. A multicarrier generator is provided that is coupled to the laser source and comprises one or more dual carrier generators each configured to modulate the light beam at the same modulation frequency or different modulation frequencies so as to output a plurality of light beams each at a different subcarrier frequency that is offset from the carrier frequency. The multicarrier generator generates the plurality of light beams on individual outputs, e.g., fibers, without the need for an optical demultiplexing filter.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: January 28, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Thomas Duthel, James Whiteaway
  • Patent number: 8634719
    Abstract: Systems and methods for enabling different network nodes of a network access system to share a backhaul communication link are disclosed. In one embodiment, the method includes: connecting a first modem to a first node of the network access system; connecting a second modem to a second node of the network access system; connecting the first modem to a first port of a splitter filter; connecting the second modem to a second port of the splitter filter; and connecting a backhaul communication link to a third port of the splitter filter, which is configured to multiplex signals transmitted by the modems onto the backhaul communication link, wherein the frequency spectrum of the signal transmitted by the first modem does not overlap substantially with the frequency spectrum of the signal transmitted by the second modem.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 21, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Per-Erik Eriksson
  • Patent number: 8630541
    Abstract: Provided is a wavelength division multiplexing transmission apparatus that enables operation control of transponders each carrying an FBTL optical module from the monitoring control unit by the same operation control as one for the transponders each carrying an NB optical module with four wavelengths assigned. For that purpose, the wavelength division multiplexing transmission apparatus includes the transponders for converting optical signals from wideband wavelengths to narrowband wavelengths, and a monitoring control unit for controlling the transponders by instructions from an operator.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 14, 2014
    Assignee: Fujitsu Telecom Networks Limited
    Inventor: Wataru Kawasaki
  • Patent number: 8630542
    Abstract: An apparatus, comprising a first node configured to communicate with a second node to generate a wavelength assignment, wherein the first node is configured to send a wavelength availability information to the second node. Included is a network component comprising at least one processor configured to implement a method, comprising receiving a wavelength availability information, and updating the wavelength availability information using a local wavelength availability information. Also included is a method, comprising acquiring a local wavelength assignment information, calculating a local wavelength availability information, and transmitting the local wavelength availability information to a subsequent network element on a lightpath.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: January 14, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Greg Bernstein, Young Lee
  • Patent number: 8630543
    Abstract: An apparatus comprising a path computation element (PCE) coupled to a path computation client (PCC) and configured to perform a path computation using port wavelength restriction information for a network element (NE), wherein the port wavelength restriction information is encoded and received in a port wavelength restriction Type-Length-Value (TLV) that comprises a matrix identifier (ID), a restriction type, and the port wavelength restriction information. Also disclosed is a network component comprising at least one processor coupled to a memory and configured to receive a port wavelength restriction information TLV that corresponds to a NE, and obtain a restriction type and port wavelength restriction information based on the restriction type from the port wavelength restriction TLV, and use the port wavelength restriction information to calculate a path for the NE.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: January 14, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Young Lee, Greg Bernstein, Jianrui Han
  • Patent number: 8611744
    Abstract: The present disclosure provides a system, apparatus and method to provide for monitoring of characteristics of optical signals, as part of wavelength division multiplexed signals for example, transmitted over a network infrastructure. The characteristics of each optical signal may be monitored and maintained at desired values in order to optimize system performance. A system including a coherent detector, as part of a coherent receiver for example, may be employed to associate each transmitted optical signal with a modulated source. Control signals generated by the system can then be provided to elements of the modulated source to control characteristics, such as optical power, optical frequency, and optical phase, for example, of the transmitted optical signal.
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: December 17, 2013
    Assignee: Infinera Corporation
    Inventor: Michael Francis Van Leeuwen
  • Patent number: 8582966
    Abstract: Systems and methods for performing protection switching in a passive optical network are provided. When a fiber cut is detected, control and management plane applications are not immediately informed. A rapid re-registration procedure is instigated upon detection of a fiber cut event. This allows multiple optical network units to re-register quickly without restarting control and management applications.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: November 12, 2013
    Assignee: Cortina Systems, Inc.
    Inventor: Charles Chen
  • Patent number: 8559817
    Abstract: A communication system includes a communication unit with a first part and a number of a second part, where the second part is arranged to be placed at the location of an end user, and where the first part is common for a number of second parts. The first part and the second part respectively include a laser, and each second part is connected with the first part by a fiber optic cable and a frequency filter, the first part and the relevant second part being arranged to exchange information by laser light. Each second part includes a tunable laser, the first part is arranged to analyze light received from a second part, and to transmit information to the second part while the first part is receiving light from the second part, and the information contains information for the second part that it should adjust, where required, its frequency or wavelength, and the second part thus is arranged to change its frequency or wavelength.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 15, 2013
    Assignee: Syntune AB
    Inventors: Gert Sarlet, Pierre-Jean Rigole
  • Patent number: 8554079
    Abstract: A wavelength division and time division hybrid multiplexing passive optical network system, terminals and a signal transmission method are disclosed in the present invention. The system comprises: a plurality of optical modules at the optical line terminal side connecting to an office all-optical wavelength conversion unit, the all-optical wavelength conversion unit connecting with a subscriber all-optical wavelength conversion unit via a fiber, and the subscriber all-optical wavelength conversion unit connecting with a plurality of optical couplers, and each optical couplers connecting with a plurality of optical network units respectively; the present invention facilitates full use of the existing source of access network and ensures a smooth transition from the time division multiplexing passive optical network to the optical access network of the next generation without changing the structure of the current time division passive optical network.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 8, 2013
    Assignee: ZTE Corporation
    Inventors: Deming Liu, Songlin Zhu, Minming Zhang, Hai Liu, Li Zhang, Changjian Ke, Sui Xiao
  • Patent number: 8553725
    Abstract: A node is configured to receive an instruction to establish a channel having a bandwidth that corresponds to an operating spectrum an optical fiber; obtain information that identifies a channel spacing and a pointer that identifies where, within the spectrum, to establish bandwidth allocations; identify a group of bandwidth segments based on the spectrum and the channel spacing; and generate bit words that correspond to the bandwidth allocations, where the bit words includes bits that, when set to a value, cause sets of segments to be reserved within the spectrum, and where the sets of segments identify where the bandwidth allocations begin and end, within the spectrum, relative to the pointer.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 8, 2013
    Assignee: Infinera Corporation
    Inventors: Iftekhar Hussain, Abinder Dhillon, Zhong Pan, Marco E. Sosa
  • Patent number: 8532491
    Abstract: A passive optical network system such that the power consumption can be reduced as much as possible according to the end-user traffic. An OLT uses the DBA function thereof and sequentially uses frequencies in ascending order of transmission rate in order to sequentially allocate bands to ONUs in ascending order of the requested bandwidth. At this time, a frequency to be allocated is selected so that the bandwidth allocated to each ONU is narrower than a maximum bandwidth through which transmission using the allocated wavelength is enabled. An OLT uses a grant area to specify the transmission timing of the secondary station and to inform the specified transmission timing to the secondary station. In addition, an area is set for storing information used to inform the secondary station of a new frequency to be used.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: September 10, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Norihiro Sakamoto, Tohru Kazawa, Yusuke Yajima, Akihiko Tsuchiya
  • Patent number: 8521030
    Abstract: In order to reduce the power consumption of a transceiver apparatus, In a transceiver apparatus that comprises a plurality of transmitting sections that divide input data and sends the divided data using a plurality of parallel transmission channels, at least one parallel transmission channel is determined from the plurality of parallel transmission channels in accordance with an amount of data, and a power source is supplied to the transmitting section from the plurality of transmitting sections which sends the divided data using the determined parallel transmission channel, while not supplying a power source to transmitting sections from the plurality of transmitting sections which do not send the divided data.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: August 27, 2013
    Assignee: Fujitsu Limited
    Inventor: Yasuhiko Aoki
  • Patent number: 8519803
    Abstract: Tunable resonator systems and methods for tuning resonator systems are disclosed. In one aspect, a resonator system includes an array of resonators disposed adjacent to a waveguide, at least one temperature sensor located adjacent to the array of resonators, and a resonator control electronically connected to the at least one temperature sensor. Each resonator has a resonance frequency in a resonator frequency comb and channels with frequencies in a channel frequency comb are transmitted in the waveguide. Resonance frequencies in the resonator frequency comb are to be adjusted in response to ambient temperature changes detected by the at least one temperature sensors to align the resonance frequency comb with the channel frequency comb.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 27, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Moray McLaren, Raymond G. Beausoleil, Marco Fiorentino, Nathan Lorenzo Binkert, Norman Paul Jouppi, Alan Lynn Davis