With Axially Movable Partition Member Patents (Class 418/162)
  • Patent number: 8636486
    Abstract: The invention provides an accurate powder metal component having a body with opposed surfaces at least one of which has at least one projection of smaller cross-sectional area than the main portion of the body of the component. The distance from the free end of the projection to the opposite end of the component defines one dimension of the component that must be relatively accurate, in one embodiment to slide against and form a seal that inhibits liquid flow against another component of an assembly. In the manufacturing method, the powdered metal component is made by compaction to form the body including a projection at the end, is sintered and thereafter is reduced in the dimension between the end of the projection and the opposite end of the component by coining the free end of the projection so as to reduce the dimension to within a tolerance of the nominal specified dimension.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: January 28, 2014
    Assignee: GKN Sinter, LLC
    Inventors: Gustavo Osvaldo Colombo, Carlos E. Camelo, Ian W. Donaldson
  • Patent number: 8535030
    Abstract: A gerotor pump having an outer rotor defining an inner surface of the outer rotor, a thrust plate, a pressure plate, an inlet chamber for fluid intake through the thrust plate to be pressurized, and an outlet chamber for outputting pressurized fluid from the pressure plate. The gerotor pump includes an inner rotor assembly in rotating engagement with the outer rotor. The inner rotor assembly rotating about an axis, the inner rotor assembly comprises a rotor body, wherein the rotor body includes N (an integer greater than one) vane slots defining a first sealing surface, and the rotor body includes N inner openings around the axis, each of the inner opening adjoining a vane slot; and a plurality of vanes defining a second sealing surface, wherein the vane is disposed in the vane slot and in sealing engagement with the rotor body via the first and second sealing surfaces. The inner rotor assembly is in sealing engagement with the outer rotor by the vane engaging on the inner surface of the outer rotor.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: September 17, 2013
    Inventor: Kelly Hee Yu Chua
  • Patent number: 7080623
    Abstract: An axial vane rotary device includes members defining an outer wing and an inner wing, both of which are affixed to the rotor for rotation therewith. The outer wing defines a surface that carries the radially outer ends of the vanes for axial movement thereon. The outer wing forms a seal between the radially outer end of the vanes and the inner face of the annular outer wall of the stator. In addition frictional wear of the vanes is substantially reduced by elimination of sliding contact between the radially outer ends of the vanes and the stationary annular outer wall of the stator. The inner wing axially slidably carries the radially inner ends of the vanes. In this manner, excessive wear on the radially outer and radially inner ends of the vanes is substantially reduced since the only frictional wear experienced by the ends of the vanes is due to the axial movement of the vanes in the rotor slots. Leakage between the inner housing and the rotor is essentially eliminated by the inner wing.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: July 25, 2006
    Assignee: Advanced Technologies, Inc.
    Inventor: Patrick Badgley
  • Patent number: 6881041
    Abstract: A compressor comprises a sealed chamber to which a suction pipe and a discharge pipe are communicated, a motor unit fixed in the sealed chamber and consisting of a stator and a rotor for generating rotating force by electromagnetic interaction between the stator and rotor, and a compression unit sucking, compressing and discharging compressible fluid according regular volume change and opening/closing of valve caused by rotating force of the motor unit, wherein the compression unit is disposed in the rotor to miniaturize and lighten the compressor, to reduce input energy of the motor unit, and to reduce vibration noise.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: April 19, 2005
    Assignee: LG Electronics Inc.
    Inventor: Chang-Soo Lee