Metal And Nonmetal In Final Product Patents (Class 419/10)
  • Patent number: 8651203
    Abstract: Polycrystalline compacts include a polycrystalline material comprising a plurality of inter-bonded grains of hard material, and a metallic material disposed in interstitial spaces between the inter-bonded grains of hard material. At least a portion of the metallic material comprises a metal alloy that includes two or more elements. A first element of the two or more elements comprises at least one of cobalt, iron, and nickel. A second element of the two or more elements comprises at least one of dysprosium, yttrium, terbium, gadolinium, germanium, samarium, neodymium, and praseodymium. The metal alloys may comprise eutectic or near-eutectic compositions, and may have relatively low melting points. Cutting elements and earth-boring tools include such polycrystalline compacts. Methods include the formation of such polycrystalline compacts, cutting elements, and earth-boring tools.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: February 18, 2014
    Assignee: Baker Hughes Incorporated
    Inventor: Anthony A. DiGiovanni
  • Publication number: 20140043125
    Abstract: Provided is a method for producing a fully dense rare earth-iron-based bonded magnet, the method comprising: kneading a non-tacky thermosetting resin composition with rare earth-iron-based magnet flakes to produce a solid granular composite magnetic material; filling the granular composite magnetic material into a cavity, applying a uniaxial pressure higher than or equal to the yield stress of the thermosetting resin composition to the granular composite magnetic material so as to produce a green compact in which voids are reduced as a result of an interaction between brittle fracture of the magnet flakes and plastic deformation of the thermosetting resin composition, the rare earth-iron-based magnet flakes are piled on top of one another highly compact in the direction of the pressure axis, and the mutual positional relations of the magnet flakes are set almost regularly; and heating the green compact to cure the thermosetting resin composition constituting the green compact.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 13, 2014
    Applicant: Minebea Co., Ltd.
    Inventors: Fumitoshi YAMASHITA, Toshinori SUZUKI, Haruhiro KOMURA
  • Publication number: 20140034491
    Abstract: Provided are a sputtering target that is capable of forming a Cu—Ga film, which has an added Ga concentration of 1 to 40 at % and into which Na is well added, by a sputtering method and a method for producing the sputtering target. The sputtering target has a component composition that contains 1 to 40 at % of Ga, 0.05 to 2 at % of Na as metal element components other than F, S and Se, and the balance composed of Cu and unavoidable impurities. The sputtering target contains Na in at least one form selected from among sodium fluoride, sodium sulfide, and sodium selenide, and has a content of oxygen of from 100 to 1,000 ppm.
    Type: Application
    Filed: April 24, 2012
    Publication date: February 6, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Shoubin Zhang, Masahiro Shoji
  • Publication number: 20140002220
    Abstract: A method of making a nanocomposite permanent magnet is provided. The method comprises applying an extreme shear deformation to hard magnetic phase nanoparticles and soft magnetic phase nanoparticles to align at least a portion of the hard phase magnetic particles and to produce a nanocomposite permanent magnet.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Francis Johnson, Robert Edgar Colborn, Judson Sloan Marte, Peter John Bonitatibus, JR., Binil Itty Ipe Kandapallil, Mohammed Haouaoui, Christina Chen
  • Publication number: 20130343943
    Abstract: Provided are methods of preparing high density compacted components that increase that lubricity of metallurgical powder compositions while reducing the overall organic content of the compacted component. Method of preparing high density compacted components having a high density include the steps of providing a metallurgical powder composition having particles at least partially coated with a metal phosphate layer, and compacting the metallurgical powder composition in the die at a pressure of at least about 5 tsi. The metallurgical powder composition comprises a base-metal powder, optional alloying powders, and a particulate internal lubricant. The metal phosphate at least partially coats the base-metal powder, the optional alloying powder, or both. The metal phosphate coating increases the lubricity of metallurgical powders without the need for large quantities of organic material, e.g., lubricants and binders.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 26, 2013
    Inventor: Francis G. Hanejko
  • Publication number: 20130323107
    Abstract: A method and composition of a sintered superhard compact is provided. The sintered superhard compact body may comprise superhard particles and a binder phase. The binder phase may bond the superhard particles together. The binder phase comprises tungsten and cobalt. The ratio of tungsten to cobalt is between 1 and 2 and sum of W and Co in the sintered superhard compact is in a range of from about 2 to about 20 percent by weight.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Gerold Weinl, Torbjorn Selinder, Rui Shao
  • Patent number: 8591804
    Abstract: A method of metal injection molding on an injection molding machine having a heated barrel with an increasing temperature gradient is disclosed. A first step includes providing a metal alloy feedstock including a first component having a first melting point and a second component having a second melting point that is higher than the first melting point, the first melting point and the second melting point selected to match the temperature gradient of the heated barrel of the injection molding machine. A second step includes feeding the metal alloy feedstock into the injection molding machine. A third step includes melting the metal alloy feedstock within the heated barrel of the injection molding machine. A fourth step includes maintaining the percentage of solids to liquids in the metal alloy feedstock of the first component and second component within a processable range of about 5% to about 30%.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: November 26, 2013
    Assignee: Cool Polymers, Inc.
    Inventors: Kevin A. McCullough, James D. Miller
  • Publication number: 20130298730
    Abstract: A composite soft magnetic material having low magnetostriction and high magnetic flux density contains: pure iron-based composite soft magnetic powder particles that are subjected to an insulating treatment by a Mg-containing insulating film or a phosphate film; and Fe—Si alloy powder particles including 11%-16% by mass of Si. A ratio of an amount of the Fe—Si alloy powder particles to a total amount is in a range of 10%-60% by mass. A method for producing the composite soft magnetic material comprises the steps of: mixing a pure iron-based composite soft magnetic powder, and the Fe—Si alloy powder in such a manner that a ratio of the Fe—Si alloy powder to a total amount is in a range of 10%-60%; subjecting a resultant mixture to compression molding; and subjecting a resultant molded body to a baking treatment in a non-oxidizing atmosphere.
    Type: Application
    Filed: February 22, 2012
    Publication date: November 14, 2013
    Applicants: DIAMET CORPORATION, MITSUBISHI MATERIALS CORPORATION
    Inventors: Hiroaki Ikeda, Hiroshi Tanaka, Kazunori Igarashi
  • Publication number: 20130289184
    Abstract: The master batch for molding includes at least one inorganic powder, advantageously ceramic or metallic; an organic mixture, advantageously polymer, comprising: a stable polymer having good ductility features, from 30 to 90% by mass of the mixture; a lubricant, from 5 to 50% by mass of the mixture; a plasticizing polymer, from 5 to 30% by mass of the mixture; with a [% by mass of the lubricant]/[% by mass of the stable polymer] ratio smaller than or equal to 1, advantageously strictly smaller than 1.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 31, 2013
    Inventors: Florence SERVANT, Pascal TIQUET
  • Publication number: 20130277626
    Abstract: A tungsten powder having tungsten silicide such as W5Si3 on the surface of the particles and having a silicon content of 0.05 to 7 mass %; an anode body for capacitors; an electrolytic capacitor; a method for producing the tungsten powder; and a method for producing the anode body for capacitors. The tungsten powder has an average primary particle diameter of 0.1 to 1 ?m, wherein tungsten silicide is localized within 50 nm from the particle surface. Further, the tungsten powder contains at least one member selected from tungsten nitride, tungsten carbide and tungsten boride on a part of the particle surface.
    Type: Application
    Filed: September 7, 2011
    Publication date: October 24, 2013
    Applicant: SHOWA DENKO K.K.
    Inventor: Kazumi Naito
  • Publication number: 20130264894
    Abstract: An amorphous magnetic component for use in a high-power, high-speed electric motor, in which amorphous metal materials are powdered, compressed, and molded, to be easily molded into magnetic components of a complex shape, and crystalline metal powder of excellent soft magnetic properties is added to the amorphous alloy powder, to promote improvement of a magnetic permeability and improvement of a packing density at the time of compression molding. A method of manufacturing the amorphous magnetic component; includes the steps of: pulverizing ribbons or strips of amorphous alloys to obtain plate-shaped amorphous alloy powder; classifying the amorphous alloy powder, and mixing the amorphous alloy powder with spherical soft magnetic powder, in order to improve magnetic permeability and packing density, to obtain mixed powder; mixing the mixed powder with a binder, to be molded into a shape of the magnetic components; and sintering the molded magnetic components to implement magnetic properties.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 10, 2013
    Applicant: AMOTECH CO., LTD.
    Inventor: Byoung Soo KIM
  • Publication number: 20130259733
    Abstract: A sintered alloy for a valve seat may be manufactured using a method including: mixing MnS with an alloy powder for a valve seat including C at 0.8-1.2 wt %, Ni at 2.0-4.5 wt %, Cr at 3.0-5.0 wt %, Mo at 16.0-20.0 wt %, Co at 9.0-13.0 wt %, V at 0.05-0.15 wt %, S at 0.2-0.8 wt %, Fe, and additional inevitable impurities; making a first shape by forming the mixed materials; pre-sintering the first formed shape; making a secondary shape by re-pressing the first pre-sintered shape; main-sintering the secondary shape; and tempering the main-sintered secondary shape.
    Type: Application
    Filed: December 18, 2012
    Publication date: October 3, 2013
    Applicants: Hyundai Motor Company, Korea Powder Metallurgy Co., Ltd., Kia Motors Corporation
    Inventors: Philgi Lee, Gyuhwan Kim, Jae Suk Park, Ki Bum Kim, Chang-Jin Shin
  • Patent number: 8535604
    Abstract: A method of producing composites of micro-engineered, coated particulates embedded in a matrix of metal, ceramic powders, or combinations thereof, capable of being tailored to exhibit application-specific desired thermal, physical and mechanical properties to form substitute materials for nickel, titanium, rhenium, magnesium, aluminum, graphite epoxy, and beryllium. The particulates are solid and/or hollow and may be coated with one or more layers of deposited materials before being combined within a substrate of powder metal, ceramic or some combination thereof which also may be coated. The combined micro-engineered nano design powder is consolidated using novel solid-state processes that prevent melting of the matrix and which involve the application of varying pressures to control the formation of the microstructure and resultant mechanical properties.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: September 17, 2013
    Inventors: Dean M. Baker, Henry S. Meeks
  • Patent number: 8530363
    Abstract: New cermets with improved properties and applications are provided. These new cermets have lower density and/or higher hardness than B4C cermet. By incorporating other new ceramics into B4C powders or as a substitute for B4C, lower densities and/or higher hardness cermets result. The ceramic powders have much finer particle size than those previously used which significantly reduces grain size of the cermet microstructure and improves the cermet properties.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 10, 2013
    Assignee: Lawrence Livermore National Security, LLC.
    Inventor: Richard L. Landingham
  • Patent number: 8523976
    Abstract: The present invention relates to a metal powder mixture that is suitable for producing sintered bodies. The powder mixture is suitable as a binder for hard metals and contains: a) at least one prealloyed powder selected from the group of iron/nickel, iron/cobalt, iron/nickel/cobalt and nickel/cobalt; b) at least one element powder selected from the group of iron, nickel and cobalt or a prealloyed powder selected from the group consisting of iron/nickel, iron/cobalt, iron/nickel/cobalt and nickel/cobalt which is different from component a). The invention also relates to a cemented hard material which uses the inventive powder mixture and a hard material powder, wherein the overall composition of the components a) and b) together contains not more than 90% by weight of cobalt and not more than 70% by weight of nickel and the iron content.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: September 3, 2013
    Assignee: H.C. Starck GmbH
    Inventors: Benno Gries, Leo Prakash
  • Patent number: 8524148
    Abstract: A method of making a medical device which is at least partially bio-erodible and which exhibits controlled elution of therapeutic agent.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: September 3, 2013
    Assignee: Abbott Laboratories
    Inventors: Sanjay Shrivastava, John Toner, Sandra Burke, Keith Cromack, Peter Tarcha, Donald Verlee, Ho-Wah Hui
  • Publication number: 20130218281
    Abstract: A method of pressure forming a brown part from metal and/or ceramic particle feedstocks includes: introducing into a mold cavity or extruder a first feedstock and one or more additional feedstocks or a green or brown state insert made from a feedstock, wherein the different feedstocks correspond to the different portions of the part; pressurizing the mold cavity or extruder to produce a preform having a plurality of portions corresponding to the first and one or more additional feedstocks, and debinding the preform. Micro voids and interstitial paths from the interior of the preform part to the exterior allow the escape of decomposing or subliming backbone component substantially without creating macro voids due to internal pressure. The large brown preform may then be sintered and subsequently thermomechanically processed to produce a net wrought microstructure and properties that are substantially free the interstitial spaces.
    Type: Application
    Filed: April 30, 2010
    Publication date: August 22, 2013
    Applicant: ACCELLENT INC.
    Inventors: Mark W. Broadley, James Alan Sago, Hao Chen, Edward J. Schweitzer, John Eckert, Jeffrey M. Farina
  • Patent number: 8506881
    Abstract: An intermetallic bonded diamond composite composition and methods of processing such a composition are provided by the present invention. The intermetallic bonded diamond composite composition preferably comprises a nickel aluminide (Ni3Al) binder and diamond particles dispersed within the nickel aluminide (Ni3Al) binder. Additionally, the composite composition has a processing temperature of at least about 1,200° C. and is processed such that the diamond particles remain intact and are not converted to graphite or vaporized by the high-temperature process. Methods of forming the composite composition are also provided that generally comprise the steps of milling, pressing, and sintering the high-temperature intermetallic binder and diamond particles.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: August 13, 2013
    Assignee: Board of Trustees at the Southern Illinois University
    Inventors: Dale E. Wittmer, Peter Filip
  • Patent number: 8501048
    Abstract: The present invention provides a metal-graphite composite material favorable to two-dimensional diffusion of heat and having a high thermal conductivity in two axial directions, and a production method therefor. The metal-graphite composite material of the present invention includes: 20 to 80% by volume of a scaly graphite powder; and a matrix selected from the group consisting of copper, aluminum and alloys thereof, wherein the scaly graphite powder in which a normal vector to a scaly surface thereof is tilted at 20° or higher with respect to a normal vector to a readily heat-conducting surface of the metal-graphite composite material is 15% or less relative to a whole amount of the scaly graphite powder, and the metal-graphite composite material has a relative density of 95% or higher.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: August 6, 2013
    Assignee: Shimane Prefectural Government
    Inventors: Toshiyuki Ueno, Takashi Yoshioka
  • Publication number: 20130181802
    Abstract: Provided are a soft magnetic powder for obtaining a dust core having a low iron loss, the dust core, and a method for producing a dust core. The present invention relates to a soft magnetic powder including a plurality of soft magnetic particles, each having an insulating layer. The Vickers hardness HV0.1 of a material constituting the soft magnetic particles is 300 or more, and the insulating layer contains Si, O, and at least one of an alkali metal and Mg. As long as the soft magnetic powder has such features, a material having a high electric resistance, such as an iron-based alloy, can be used. The eddy current loss can be reduced, and it is possible to effectively obtain a dust core having a low iron loss.
    Type: Application
    Filed: October 25, 2011
    Publication date: July 18, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Asako Watanabe, Toru Maeda, Tomoyuki Ueno, Tomoyuki Ishimine
  • Patent number: 8460602
    Abstract: A sintering method with uniaxial pressing includes: a powder filling step of disposing a spent target in an inner space of a frame jig having the inner space piercing in a uniaxial direction, and filling the inner space with a raw material powder for a target to cover an erosion part side of the spent target with the raw material powder for a target, a cushioning-material disposition step of disposing a deformable cushioning material so that the raw material powder for a target with which the inner space has been filled in the powder filling step is sandwiched between the spent target and the deformable cushioning material; and a sintering step of pressing the raw material powder for a target with which the inner space has been filled and the spent target in the uniaxial direction through the cushioning material and sintering them.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 11, 2013
    Assignee: Tanaka Holdings Co., Ltd
    Inventors: Toshiya Yamamoto, Takanobu Miyashita, Osamu Itoh
  • Publication number: 20130139603
    Abstract: A jointless pressure sensor port which includes a body portion, a flange portion integrally formed with the body portion, and a cylindrical portion integrally formed with and extending away from the flange portion. The port also includes an aperture having a first area, where the aperture is formed as part of the cylindrical portion. A channel is located along an axis and has at least one channel region. The channel at least partially extends through the cylindrical portion, the flange portion, and the body portion. A diaphragm includes a second area which is larger than the first area, the diaphragm also has a top surface and a bottom surface. A pressure sensor is disposed on the top surface, and the diaphragm is substantially perpendicular to the axis of the channel. The body portion, flange portion, and cylindrical portion form a jointless and seamless pressure sensor part.
    Type: Application
    Filed: March 20, 2012
    Publication date: June 6, 2013
    Applicant: CONTINENTAL AUTOMOTIVE SYSTEMS, INC.
    Inventors: Yanling Kang, Daniel J. Bratek, Robert C. Kosberg
  • Publication number: 20130133481
    Abstract: A composition for injection molding includes: an inorganic powder composed of at least one of a metal material and a ceramic material; and a binder containing a polyacetal-based resin, an unsaturated glycidyl group-containing polymer, and a lubricant. In the composition, the unsaturated glycidyl group-containing polymer is contained in an amount of 1% by mass or more and 30% by mass or less with respect to the amount of the polyacetal-based resin.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 30, 2013
    Applicant: Seiko Epson Corporation
    Inventor: Seiko Epson Corporation
  • Publication number: 20130071627
    Abstract: A process is provided for producing a component. The process comprising the steps of: producing a former corresponding to the internal dimensions of the component to be formed; providing a layer of a second material on at least one surface of the former; locating the former in a containment and filling the containment with a first material; subjecting the containment to hot isostatic pressing such that the second material diffuses into the first material.
    Type: Application
    Filed: December 22, 2010
    Publication date: March 21, 2013
    Inventor: Geoffrey Frederick Archer
  • Publication number: 20130071283
    Abstract: Titanium alloy complex powder is yielded by hydrogenating titanium alloy raw material to generate hydrogenated titanium alloy, grinding and sifting it to obtain hydrogenated titanium alloy powder, adding ceramic powder selected from SiC, TiC, SiOx, TiOx (here, index x is a real number which is in 1?x?2) and Al2O3, and dehydrogenating the mixture of the hydrogenated titanium alloy powder and the ceramic powder. In addition, consolidated titanium alloy material is obtained by CIP process and subsequent HIP process to the titanium alloy complex powder or by HIP process after filling the titanium alloy complex powder into capsule.
    Type: Application
    Filed: May 30, 2011
    Publication date: March 21, 2013
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Osamu Kano, Hideo Takatori, Satoshi Sugawara
  • Publication number: 20130057371
    Abstract: A coated metal powder is a metal powder that contains iron as a main component, and an insulating layer that is formed on a surface of the metal powder and is formed from calcium phosphate and a metal oxide, in which an organosilicon compound is contained on a surface of the insulating layer or inside the insulating layer.
    Type: Application
    Filed: April 8, 2011
    Publication date: March 7, 2013
    Inventors: Takehiro Shimoyama, Tetsushi Maruyama
  • Patent number: 8366994
    Abstract: A method for manufacturing a cobalt (Co) alloy-based ceramic composite sputtering target is provided. A cobalt ingot and a chromium (Cr) ingot are melted in vacuum and then nebulized to form a cobalt-chromium (CoCr) alloy powder. Additionally, a ceramic powder and a platinum powder are wetly mixed to form a platinum-ceramic (Pt-ceramic) slurry, in which the ceramic powder is applied onto the platinum powder's surface uniformly. Next, the CoCr alloy powder and the Pt-ceramic slurry are wetly mixed to form a CoCrPt-ceramic slurry. Thereafter, the CoCrPt-ceramic slurry is dried, molded and compressed to form the cobalt alloy-based ceramic composite sputtering target. The resulted cobalt alloy-based ceramic composite sputtering target, which has a fine and dense structure, uniform composition and lower magnetic permeability, is beneficial to a magnetron sputter deposition process, as well as a film sputtering process used in the magnetic recording industry.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 5, 2013
    Assignee: China Steel Corporation
    Inventors: Rong-Zhi Chen, Chun-Hao Chiu, Jui-Tung Chang, Deng-Far Hsu, Chih-Huang Lai
  • Patent number: 8361381
    Abstract: A process for making a diffusion hardened medical implant having a porous surface is disclosed. The medical implant is made by a hot isostatic pressing process which simultaneously forms that porous surface and the diffusion hardened surface.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 29, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: Daniel A. Heuer, Vivek Pawar, Marcus Lee Scott, Shilesh C. Jani
  • Publication number: 20130015939
    Abstract: The present invention provides a powder magnetic core which has a low iron loss and an excellent constancy of magnetic permeability and is suitably used as a core for a reactor mounted on a vehicle. The powder magnetic core is a compact of a mixed powder containing an iron-based soft magnetic powder having an electrical insulating coating formed on its surface and a powder of a low magnetic permeability material having a heat-resistant temperature of 700° C. or higher than 700° C. and a relative magnetic permeability of not more than 1.0000004. The density of the compact is 6.7 Mg/m3 or more, and the low magnetic permeability material exists in the gap among the soft magnetic powder particles in the green compact.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 17, 2013
    Applicant: HITACHI POWDERED METALS CO. LTD.
    Inventors: Takashi Inagaki, Chio Ishihara
  • Patent number: 8355815
    Abstract: Methods include one or more of robotically positioning a cutting element on an earth-boring tool, using a power-driven device to move a cutting element on an earth-boring tool, and robotically applying a bonding material for attaching a cutting element to an earth-boring tool. Robotic systems are used to robotically position a cutting element on an earth-boring tool. Systems for orienting a cutting element relative to a tool body include a power-driven device for moving a cutting element on or adjacent the tool body. Systems for positioning and orienting a cutting element on an earth-boring tool include such a power-driven device and a robot for carrying a cutting element. Systems for attaching a cutting element to an earth-boring tool include a robot carrying a torch for heating at least one of a cutting element, a tool body, and a bonding material.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: January 15, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: David Keith Luce, Sean W. Wirth, Alan J. Massey, Crystal A. Parrott
  • Publication number: 20130011660
    Abstract: Composite particles comprising core particles completely or partially coated with a precipitated polymer, where the d50 median diameter of the core particles is 1 ?m or greater and the ratio of the d50 median diameter of the composite particles to the d50 median diameter of the core particles is 1.15 or greater, are provided. A method to prepare the particles includes dissolution of a polymer in a solvent and reprecipitation of the polymer in the presence of a suspension of the core particles. Further provided is a layer by layer moulding process employing the composite particles and mouldings obtained therefrom.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 10, 2013
    Applicant: Evonik Degussa GmbH
    Inventors: Wolfgang DIEKMANN, Franz-Erich BAUMANN, Maik GREBE, Kristiane WARNKE, Sylvia MONSHEIMER
  • Publication number: 20130001078
    Abstract: [Problems to be Solved] To provide a sputtering target that is capable of forming a Cu—Ga film to which Na is favorably added by a sputtering method, and a method for producing the same. [Means to Solve the Problems] The sputtering target is provided wherein 20 to 40 at % of Ga, 0.05 to 2 at % of Na, and 0.025 to 1.0 at % of S are contained and a remaining portion has a component composition consisting of Cu and unavoidable impurities. Also, a method for producing the sputtering target includes the step of hot pressing a mixed powder of Na2S powder and Cu—Ga alloy powder or a mixed powder of Na2S powder, Cu—Ga alloy powder, and pure Cu powder in a vacuum atmosphere or an inert gas atmosphere or sintering a mixed powder of Na2S powder and Cu—Ga alloy powder or a mixed powder of Na2S powder, Cu—Ga alloy powder, and pure Cu powder by hot isostatic pressing.
    Type: Application
    Filed: March 8, 2011
    Publication date: January 3, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Shoubin Zhang, Masahiro Shoji, Yoshinori Shirai
  • Publication number: 20120329659
    Abstract: A sintering apparatus comprising a container for holding small particles that contact one another, an electric current generator generating an alternating electric current and a flux concentrator having a collector positioned to be exposed to an alternating magnetic field generated by the alternating electric current and a tip that focuses the alternating magnetic field so that the particles are exposed to the alternating magnetic field, the alternating magnetic field heating surfaces of the particles so that they join and are fused together.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 27, 2012
    Applicant: Grid Logic Incorporated
    Inventor: Matthew J. Holcomb
  • Patent number: 8329093
    Abstract: A method for preparing metal-matrix composites including cold-process isostatic compaction of previously mixed powders and hot-process uniaxial pressing of the resulting compact is disclosed. The method enables metal-matrix composites with improved properties to be obtained. A device for implementing isostatic compaction comprising a latex sheath into which the mixture of powders is poured, a perforated cylindrical container in which the latex sheath is arranged, and means for sealed insulation of the mixture of powders contained in the sheath is also disclosed.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: December 11, 2012
    Assignee: Forges de Bologne
    Inventor: Jacques Tschofen
  • Publication number: 20120304694
    Abstract: In a method for producing jewelry articles, forming a predetermined shape from a plurality of sinterable materials, heating the plurality of sinterable materials to a first temperature and for a first time period sufficient to produce a substrate that retains the predetermined shape during manipulation, cooling the substrate to a second temperature at which the substrate is manipulable, manipulating the substrate to incorporate at least one design feature in the substrate, heating the substrate to a third temperature and for a second time period sufficient to sinter the substrate, and cooling the substrate to obtain the jewelry article.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 6, 2012
    Applicant: FREDERICK GOLDMAN INC.
    Inventor: Andrew Derrig
  • Patent number: 8318082
    Abstract: A composition containing: about 45 to about 75 volume % of cubic boron nitride (CBN), where the CBN has finer and coarser particles having two different average particle sizes, the range of the average particle size of the finer particles being about 0.1 to about 2 ?m, the range of the average particle size of the coarser particles being about 0.3 to about 5 ?m, the ratio of the content of the coarser CBN particles to the finer CBN particles being 50:50 to 90:10; a secondary hard phase containing a nitride or carbonitride of a Group 4, 5 or 6 transition metal or a mixture or solid solution thereof, and a binder phase.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: November 27, 2012
    Assignee: Element Six Abrasives S.A.
    Inventors: Nedret Can, Stig Ake Andersin
  • Publication number: 20120294749
    Abstract: Process for producing a shaped metallic body from a thermoplastic composition by injection molding or extrusion to form a shaped part, removal of the binder and sintering, wherein a thermoplastic composition composed of a metal powder and a polymer mixture B1) and B2) based on a polyoxymethylene homopolymer or copolymer B1) is used as binder and to remove the binder a) the shaped part is treated with a solvent which extracts the binder component B2) from the shaped part and in which the binder component B1) is insoluble, b) the solvent is then removed from the shaped part by drying and c) the shaped part is treated thermally at from 140 to 200° C. in an oxygen-comprising atmosphere, as a result of which the binder component B1) is removed from the shaped part; and also a shaped metallic body which can be obtained in this way.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: BASF SE
    Inventors: Johan ter Maat, Martin Blömacher, Hans Wohlfromm
  • Publication number: 20120294750
    Abstract: When a Cu—Sn—Bi had-particle based sliding material is used for sliding, Cu of Cu matrix flows and covers up Bi phase. Seizure resistance lowers as time passes. A Pb-free sliding material preventing the reduction of seizure resistance is provided. (1) Composition: from 1 to 15% of Sn, from 1 to 15% of Bi, from 0.02 to 0.2% of P, and from 1 to 10% of hard particles having an average diameter of from 50 to 70 ?m, with the balance being Cu and unavoidable impurities. (2) Structure: Bi phase and the hard particles are dispersed in the copper matrix, and all of said hard particles are bonded to the copper matrix.
    Type: Application
    Filed: July 23, 2012
    Publication date: November 22, 2012
    Inventors: HIROMI YOKOTA, Daisuke Yoshitome
  • Patent number: 8309018
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 13, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Publication number: 20120279412
    Abstract: In making frangible objects, including lead-free bullets and other projectiles, powdered metal primary and powdered ceramic secondary phases are mixed and densified at an elevated temperature such that the ceramic phase forms a brittle network. Different combinations of metal and ceramic phases may be used to achieve desired chemical and physical properties. Any appropriate mixing, forming, and/or thermal processing methods and equipment may be used. Degrees of frangibility, strength, and toughness can be adjusted to suit a given application by precursor selection, degree of mixing, relative amounts of metal and ceramic phases, forming method, and thermal and mechanical processing parameters.
    Type: Application
    Filed: January 6, 2011
    Publication date: November 8, 2012
    Applicant: Ervin Industries, Inc.
    Inventors: Mark C. Hash, Trent Pearson
  • Publication number: 20120276393
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Inventor: Robert G. LEE
  • Patent number: 8282748
    Abstract: The invention relates to a method for producing metal matrix composite materials, including at least one proportion of magnesium or one magnesium alloy and involving at least one production step in which a thixomolding ensues. According to the invention, an Mg2Si phase having a volume fraction of at least 2% is incorporated in a metal matrix preferably comprised of magnesium or of a magnesium alloy. The inventive method uses the thixomolding method for the in-situ production of a metallic composite material and is advantageous in that a broad range of adjustable volume fractions of the Mg2Si phase in the composite material results whereby enabling the properties of the composite material to be individually modified. The inventive metal matrix composite material is particularly suited for producing thermally stressed parts of motor vehicles such as pistons or the like.
    Type: Grant
    Filed: October 16, 2004
    Date of Patent: October 9, 2012
    Assignee: Mahle GmbH
    Inventors: Florian Moll, Lutz Oemisch, Ulrich Bischofberger, Karl Ulrich Kainer, Norbert Hort, Hajo Dieringa, Hagen Frank
  • Publication number: 20120251375
    Abstract: A method of producing a Pb-free copper-alloy sliding material containing 1.0 to 15.0% of Sn, 0.5 to 15.0% of Bi and 0.05 to 5.0% of Ag, and Ag and Bi from an Ag—Bi eutectic. If necessary, at least one of 0.1 to 5.0% of Ni, 0.02 to 0.2% P, 0.5 to 30.0% of Zn, and 1.0 to 10.0 mass % of at least one of a group consisting of Fe3P, Fe2P, FeB, NiB and AlN may be added.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Inventors: Hiromi YOKOTA, Ryo Mukai, Shinichi Kato, Nahomi Hamaguchi
  • Patent number: 8277722
    Abstract: A method of forming a PDC cutter having solvent metal catalyst located adjacent the diamond and/or in the diamond and a layer of reactive material on the layer of diamond, the layer of reactive material for promoting the flow of the solvent metal catalyst material from the layer of diamond under high pressure and high temperature.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: October 2, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Anthony A. DiGiovanni
  • Patent number: 8268452
    Abstract: Methods for forming earth-boring tools include providing a metal or metal alloy bonding agent at an interface between a first element and a second element and sintering the first element, the second element, and the boding agent to form a bond between the first element and the second element at the interface. The methods may be used, for example, to bond together portions of a body of an earth-boring tool (which may facilitate, for example, the formation of cutting element pockets) or to bond cutting elements to a body of an earth-boring tool (e.g., a bit body of a fixed-cutter earth-boring drill bit or a cone of a roller cone earth-boring drill bit). At least partially formed earth-boring tools include a metal or metal alloy bonding agent at an interface between two or more elements, at least one of which may comprise a green or brown structure.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: September 18, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Nicholas J. Lyons, Jimmy W. Eason, Redd H. Smith, John H. Stevens
  • Patent number: 8268234
    Abstract: New cermets with improved properties and applications are provided. These new cermets have lower density and/or higher hardness than B4C cermet. By incorporating other new ceramics into B4C powders or as a substitute for B4C, lower densities and/or higher hardness cermets result. The ceramic powders have much finer particle size than those previously used which significantly reduces grain size of the cermet microstructure and improves the cermet properties.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 18, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Richard Lee Landingham
  • Publication number: 20120217157
    Abstract: [Problems] To provide a sputtering target that is capable of forming a Cu—Ga film to which Na is favorably added by a sputtering method, and a method for producing the same. [Means for Solving the Problems] The sputtering target is provided wherein 20 to 40 at % of Ga and 0.05 to 1 at % of Na are contained as metal components except fluorine (F) of the sputtering target, a remaining portion has a component composition consisting of Cu and unavoidable impurities, and Na is contained in the state of a NaF compound. Also, a method for producing the sputtering target includes the steps of forming a molded article consisting of a mixed powder of NaF powder and Cu—Ga powder or a mixed powder of NaF powder, Cu—Ga powder, and Cu powder; and sintering the molded article in a vacuum atmosphere, an inert gas atmosphere, or a reducing atmosphere.
    Type: Application
    Filed: November 4, 2010
    Publication date: August 30, 2012
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Shoubin Zhang, Yoshinori Shirai
  • Publication number: 20120207640
    Abstract: High strength aluminum alloys and methods for producing them. The alloys consist essentially of about 9.0 to 10.3 wt. % zinc, about 2.5 to 3.5 wt. % magnesium, about 1.5 to 3.0 wt. % copper and less than about 0.05 wt. % of any other alloying constituent. The balance consists of aluminum. These alloys are compatible with ceramic reinforcements used in metal matrix composites.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 16, 2012
    Applicant: Gamma Technology, LLC
    Inventor: William C. Harrigan, JR.
  • Publication number: 20120189484
    Abstract: A molding is produced with a disk-shaped or plate-shaped basic body having a large number of knob-like and/or web-like elevations which merge into the basic body with inclined side surfaces. The molding is produced by pressing and sintering powdery raw materials close to the final shape. First, the boundary surfaces of the basic body are pressed to final shape as far as the transition regions of the elevations and the elevations are pressed to an oversize. The projection height of the elevations from the basic body is greater than the projection height in the finally pressed state. Their side surfaces form an angle of inclination in the range from 90°-150° with the respectively adjacent boundary surface of the basic body. Then the elevations are pressed to near final shape while the angle of inclination is enlarged to a greater value.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 26, 2012
    Applicant: PLANSEE SE
    Inventors: Gebhard Zobl, Wolfgang Glatz, Wolfgang Kraussler, Robert Oberbreyer
  • Patent number: 8216508
    Abstract: A method for preparing an article of a base metal alloyed with an alloying element includes the steps of preparing a compound mixture by the steps of providing a chemically reducible nonmetallic base-metal precursor compound of a base metal, providing a chemically reducible nonmetallic alloying-element precursor compound of an alloying element, and thereafter mixing the base-metal precursor compound and the alloying-element precursor compound to form a compound mixture. The compound mixture is thereafter reduced to a metallic alloy, without melting the metallic alloy. The step of preparing or the step of chemically reducing includes the step of adding an other additive constituent. The metallic alloy is thereafter consolidated to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: July 10, 2012
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti