Subsequent Working Patents (Class 419/28)
  • Publication number: 20130196118
    Abstract: A component, in particular an engine component, which has at least one mark with a predetermined three-dimensional shape for determining a stress in the component and where the component is constructed by a generative manufacturing method, is disclosed.
    Type: Application
    Filed: July 31, 2012
    Publication date: August 1, 2013
    Applicant: MTU Aero Engines
    Inventors: Joachim BAMBERG, Roland Hessert
  • Publication number: 20130195711
    Abstract: A high-strength magnesium alloy wire rod suitable for products in which at least one of bending stress and twisting stress primarily acts is provided. The wire rod has required elongation and 0.2% proof stress, whereby strength and formability are superior, and has higher strength in the vicinity of the surface. In the wire rod, the surface portion has the highest hardness in a cross section of the wire rod, the highest hardness is 170 HV or more, and the inner portion has a 0.2% proof stress of 550 MPa or more and an elongation of 5% or more.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 1, 2013
    Applicant: NHK SPRING CO., LTD.
    Inventors: Yuji Araoka, Tohru Shiraishi, Yoshiki Ono
  • Publication number: 20130183188
    Abstract: A mixture of powders for preparing a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy includes Ni—Ti alloy powders comprising from about 55 wt. % Ni to about 61 wt. % Ni and from about 39 wt. % Ti to about 45 wt. % Ti, and RE alloy powders comprising a RE element.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 18, 2013
    Applicants: Medical Engineering and Development Institute, Inc, UNIVERSITY OF LIMERICK
    Inventors: University of Limerick, Medical Engineering and Development Institute, Inc.
  • Patent number: 8480815
    Abstract: A method of making a permanent magnet is described. In one embodiment, the method includes providing a first alloy powder having a desired composition, the alloy powder containing neodymium, iron, and boron; coating the first alloy powder with dysprosium, dysprosium alloy, terbium, or terbium alloy so that the first alloy powder has a surface concentration of dysprosium, terbium, or both in excess of a bulk concentration of dysprosium, terbium, or both; and forming the permanent magnet from the coated alloy powder using a powder metallurgy process, the permanent magnet having a non-uniform distribution of dysprosium, terbium, or both therein. Permanent magnets are also described.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: July 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Yucong Wang
  • Patent number: 8475711
    Abstract: Processes for producing a nickel-titanium alloy are disclosed. The processes are characterized by the production of nickel-titanium alloy articles having improved microstructure. A pre-alloyed nickel-titanium alloy is melted and atomized to form molten nickel-titanium alloy particles. The molten nickel-titanium alloy particles are cooled to form nickel-titanium alloy powder. The nickel-titanium alloy powder is consolidated to form a fully-densified nickel-titanium alloy preform that is hot worked to form a nickel-titanium alloy article. Any second phases present in the nickel-titanium alloy article have a mean size of less than 10 micrometers measured according to ASTM E1245-03 (2008) or an equivalent method.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 2, 2013
    Assignee: ATI Properties, Inc.
    Inventor: C. Craig Wojcik
  • Publication number: 20130156627
    Abstract: Disclosing herein is a method for manufacturing nickel-titanium compositions. The method includes disposing a powdered composition in a mold; the powdered composition comprising nickel and titanium; the titanium being present in an amount of about 38 to about 42 wt % and the nickel being present in an amount of about 58 to about 62 wt %; sintering the powdered composition to produce a sintered preform; compacting the preform; machining the preform to form an article; heat treating the article; the annealing being conducted at a temperature of about 1650° F. to about 1900° F. at a pressure of about 3 Torr to about 5 Kg?f/cm2 for a time period of about 10 minutes to about 5 hours; and quenching the article.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 20, 2013
    Applicants: NASA GLENN RESEARCH CENTER, ABBOTT BALL COMPANY
    Inventors: Abbott Ball Company, NASA Glenn Research Center
  • Publication number: 20130133531
    Abstract: An anvil including a hard phase and a metal matrix in which the hard phase is dispersed, a concentration of the metal matrix phase varying according to a concentration gradient, is disclosed. The anvil may be used in a high pressure press. Methods of making an anvil including forming a hard phase dispersed in a metal matrix phase, a concentration of the metal matrix phase varying according to a concentration gradient, are also disclosed.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 30, 2013
    Applicant: SMITH INTERNATIONAL, INC.
    Inventor: SMITH INTERNATIONAL, INC.
  • Patent number: 8449815
    Abstract: There is provided an oil-impregnated sintered bearing which enable to prevent oil leakage from an outer peripheral surface of an bearing body. The oil-impregnated sintered bearing includes a bearing body which is made of a porous sintered alloy containing vacancies and has a bearing hole in which a rotary shaft can be inserted, wherein the vacancies opened on an outer peripheral surface of the bearing body are crushed. The vacancies may be crushed in the state of a green compact, or in the state of a sintered alloy after sintering the green compact. Consequently, the oil leakage from the outer peripheral surface of the bearing can be prevented, and oil pressure in the bearing hole can be preserved.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: May 28, 2013
    Assignee: Diamet Corporation
    Inventors: Teruo Shimizu, Tsuneo Maruyama
  • Publication number: 20130118312
    Abstract: A manufacturing method for making components includes: providing at least one of a prealloyed powder of a composition of Ni—Ti in the range of Ni-36Ti to Ni-45Ti or a mix of powders that forms a composition of Ni—Ti in the range of Ni-36Ti to Ni-45Ti; loading at least one of the prealloyed powder and the mix powders into a container; hot isostatically pressing (HIP) the container to full density to obtain a compact; rolling the compact in a mill with multiple passes to produce a sheet or other mill form material; and cutting blanks for the components from the sheet material to produce a component blank.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 16, 2013
    Applicant: Summit Materials, LLC
    Inventor: Summit Materials, LLC
  • Publication number: 20130101455
    Abstract: A method of forming a sintered nickel-titanium-rare earth (Ni—Ti-RE) alloy includes adding one or more powders comprising Ni, Ti, and a rare earth constituent to a powder consolidation unit comprising an electrically conductive die and punch connectable to a power supply. The one or more powders are heated at a ramp rate of about 35° C./min or less to a sintering temperature, and pressure is applied to the powders at the sintering temperature, thereby forming a sintered Ni—Ti-RE alloy.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: University of Limerick
    Inventor: University of Limerick
  • Patent number: 8409496
    Abstract: A method and apparatus produces high strength aluminum alloys from a powder containing L12 intermetallic dispersoids. The powder is degassed, sealed under vacuum in a container, consolidated by vacuum hot pressing, and superplastically formed into a usable part.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: April 2, 2013
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 8409498
    Abstract: A sputter target material which is of a sintered material, wherein the sputter target material consists of 0.5 to 50 atomic % in total of at least one metal element (M) selected from the group of Ti, Zr, V, Nb and Cr, and the balance of Mo and unavoidable impurities, and has a microstructure seen at a perpendicular cross section to a sputtering surface, in which microstructure oxide particles exist near a boundary of each island of the metal element (M), and wherein the maximum area of the island, which is defined by connecting the oxide particles with linear lines so as to form a closed zone, is not more than 1.0 mm2.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: April 2, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Keisuke Inoue, Tsuyoshi Fukui, Shigeru Taniguchi, Norio Uemura, Katsunori Iwasaki, Kazuya Saitoh
  • Patent number: 8409497
    Abstract: A method and apparatus for producing high strength aluminum alloys from a powder containing Ll2 intermetallic dispersoids. The powder is degassed, sealed under vacuum in a container, consolidated by vacuum hot pressing, extruded into a rolling preform and rolled into a usable part.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: April 2, 2013
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 8398916
    Abstract: A method and process for at least partially forming a medical device that is at least partially formed of a metal alloy which improves the physical properties of the medical device.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: March 19, 2013
    Assignee: ICON Medical Corp.
    Inventors: Raymond W. Buckman, Udayan Patel, Joseph Furst
  • Publication number: 20130040261
    Abstract: The invention relates to a method for manufacturing an ultrasonic tip for an apicoectomy, such that the tip has a shape suitable for the shape of a tooth root, comprising the steps of: forming a feedstock by mixing a metal powder including stainless steel with a binder; injecting the feedstock to form an injection-molded part having a plurality of projections integrally formed on the surface thereof; performing debinding to remove the binder from the injection-molded part; sintering the injection-molded part; and performing annealing to increase the ductility and facilitate the bending of the sintered part.
    Type: Application
    Filed: August 25, 2010
    Publication date: February 14, 2013
    Applicants: B & L BIOTECH CO., LTD., CETATECH, INC.
    Inventors: Young Sam Kwon, In Hwan Lee
  • Publication number: 20130039796
    Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.
    Type: Application
    Filed: February 15, 2011
    Publication date: February 14, 2013
    Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, JR.
  • Patent number: 8359743
    Abstract: A valve sealant fitting includes a spring coupling unit having an internal screw thread for coupling unit assembly below the ball installation groove of the sealant body, the internal screw thread having a hexagonal groove for preventing a downward separation of the coil spring, allowing a fluid to flow and facilitating fastening and releasing of the screw, and having an external screw thread at an outer circumference of the spring coupling unit, and outer sealing O-rings disposed in O-ring installation grooves formed on respective upper and lower positions of the valve coupling taper screw part formed on the outer lower side of the sealant body.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: January 29, 2013
    Inventors: Do A Kim, Seong Cheol Han
  • Publication number: 20130012773
    Abstract: The invention provides an endoscope having a lens holder, wherein the lens holder comprises a body containing a sintered feedstock and machined surfaces. The invention also provides a method of manufacturing the endoscope which comprises the steps of molding a metal blank by a MIM process, wherein the metal blank is “near net shape” and has a sprue, a post, and optionally an outer shell, machining the inner surfaces and then the outer surfaces of the metal blank to form a lens holder, installing a lens in the lens holder, and assembling the lens holder having the lens into the endoscope.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 10, 2013
    Inventor: Kin Ming Kwan
  • Patent number: 8329092
    Abstract: A metal powder for use in a metal laser-sintering wherein a three-dimensional shaped object is produced by irradiating a powder layer of the metal powder with a light beam to form a sintered layer and thereby laminating the sintered layers. The metal powder of the present invention is characterized in that it comprises an iron-based powder and at least one kind of powder selected from the group consisting of a nickel powder, a nickel-based alloy powder, a copper powder, a copper-based alloy powder and a graphite powder; and the iron-based powder has been annealed. In such metal powder, the iron-based powder is in a softened state due to the annealing treatment thereof. Accordingly, the use of the metal powder in a metal laser-sintering process makes it possible to reduce a machining resistance attributable to the residual metal powder adherent to the surface of the shaped object, which leads to an achievement of an extended lifetime of a machining tool.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: December 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Isao Fuwa, Satoshi Abe
  • Patent number: 8329093
    Abstract: A method for preparing metal-matrix composites including cold-process isostatic compaction of previously mixed powders and hot-process uniaxial pressing of the resulting compact is disclosed. The method enables metal-matrix composites with improved properties to be obtained. A device for implementing isostatic compaction comprising a latex sheath into which the mixture of powders is poured, a perforated cylindrical container in which the latex sheath is arranged, and means for sealed insulation of the mixture of powders contained in the sheath is also disclosed.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: December 11, 2012
    Assignee: Forges de Bologne
    Inventor: Jacques Tschofen
  • Publication number: 20120301344
    Abstract: A method of manufacturing integral head and tube replacement sections includes the steps of providing a reverse mold of a head and tube replacement section, providing an atomized steel powder, and filling the reverse mold with the atomized steel powder. The method further includes the step of inserting the mold into a hot isostatic processing (HIP) furnace to consolidate and sinter the powder into the shape of the head and tube replacement section.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 29, 2012
    Applicant: ELECTRIC POWER RESEARCH INSTITUTE, INC.
    Inventors: David W. Gandy, Kent K. Coleman, John Shingledecker
  • Patent number: 8309018
    Abstract: Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 13, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Jared D. Gladney, James A. Oxford, Benjamin J. Chrest
  • Patent number: 8309019
    Abstract: A method of forming a powder metal forging, including the steps of: forming a preform including a sintered powder metal composition; inserting the preform in a die set having a bottom die and a top die, the die set defining a forge form therewithin, the die set being in a closed position wherein the top die is contacting the bottom die; and compressing the preform in the forge form using an upper punch and a lower punch, the compressing step resulting in a formed part. The closed die set minimizes or eliminates flash in the formed part, particularly in the contoured surfaces, which allows the forging to be through hardened by direct quenching after the forging operation, without the need to remove hardened flash from these surfaces.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: November 13, 2012
    Assignee: GKN Sinter Metals, LLC
    Inventors: Alfred J. Chiesa, David E. Lenhart, Jr.
  • Publication number: 20120282106
    Abstract: Components and methods of processing such components from precipitation-strengthened alloys so that the components exhibit desirable grain sizes following a supersolvus heat treatment. The method includes consolidating a powder of the alloy to form a billet having an average grain size. The billet is then forged at a temperature below the solvus temperature to form a forging having an average grain size of not coarser than the grain size of the billet. The billet is then forged at a total strain of at least 5%, after which at least a portion of the forging is heat treated at a temperature below the solvus temperature to pin grains within the portion. The entire forging can then be heat treated at a temperature above the solvus temperature of the alloy without coarsening the grains in the portion.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert Goller, Raymond Joseph Stonitsch, Richard DiDomizio
  • Patent number: 8303891
    Abstract: The invention describes a method of producing a compression mold profile (21) of a compression mold for a non-circular sintered chain wheel or cog belt wheel (1), whereby a compression mold profile (21) is set up by scaling a desired profile (19) of the chain wheel or cog belt wheel (1) with a scaling factor. The compression mold profile (21) is set up by applying a corrective shift applied in addition to scaling the desired profile (19).
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: November 6, 2012
    Assignee: Miba Sinter Austria GmbH
    Inventors: Wolfgang Siessl, Herbert Schmid, Karl Dickinger
  • Patent number: 8302314
    Abstract: In a method for manufacturing internally and/or externally profiled rings from pipe material or solid material, machine-cutting processes and forming processes are combined with one another sequentially, parallel, or sequentially and parallel, wherein one of the forming processes is roll forming. During roll forming a counterforce is generated relative to a flow direction of the starting material so that a material flow in at least one of an axial direction and a radial direction of the starting material is controlled such that flowing material is integrated into a profile to be shaped on the ring.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: November 6, 2012
    Assignee: Technische Universität Dresden
    Inventors: Thomas Ficker, André Hardtmann, Mario Houska
  • Patent number: 8298479
    Abstract: A process for forming a remateable machined titanium powder base alloy connecting rod using a titanium alloy powder having an average particle size of about 1-20 microns, a mean aspect ratio of about 5 to 300, and a specific surface area of at least about 25 m2/g.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: October 30, 2012
    Inventor: Gerald Martino
  • Patent number: 8298313
    Abstract: A cold-forming steel article which comprises an alloy that comprises carbon, manganese, silicon, chromium, molybdenum, vanadium, tungsten and optionally, niobium in certain concentrations, as well as up to about 0.4 wt. % of accompanying elements, remainder iron and contaminants. The article is formed by atomization of a melt and hot isostatic pressing of the resultant powder. The article exhibits a hardness of at least about 60 HRC and a toughness in terms of impact strength of higher than about 50 J. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: October 30, 2012
    Assignee: Boehler Edelstahl GmbH & Co KG
    Inventors: Gerhard Jesner, Devrim Caliskanoglu
  • Publication number: 20120269671
    Abstract: A process for producing a weldable titanium or titanium alloy wire characterised in that full consolidation of the wire is achieved via solid-state processing entailing compaction, extrusion, and rolling, whereby melting of the constituent titanium sponge particles does not occur.
    Type: Application
    Filed: October 21, 2010
    Publication date: October 25, 2012
    Inventor: Kevin Dring
  • Patent number: 8283046
    Abstract: A ferrous sintered multilayer roll-formed bushing having a ferrous sintered sliding material layer which is sinter-bonded to a back metal steel, wherein the ferrous sintered sliding material layer is produced in such a manner that a Fe—C—Cu—Sn based sintered sliding material mixed powder containing at least carbon of 0.40 to 15 wt %, Cu of 13 to 40 wt % and Sn of 0.5 to 10 wt % is preliminarily sinter-bonded to said back metal steel and then finally sinter-bonded by a liquid-phase sintering at high temperatures higher than 1000° C. after bending into a roll.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: October 9, 2012
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Patent number: 8273290
    Abstract: A method for producing a composite metal material includes preparing a solution containing a surfactant having both hydrophilicity and hydrophobicity, dispersing a nanosized to micro-sized fine carbonaceous substance into a state of being monodispersed in the solution, bringing the solution having the dispersed fine carbonaceous substance into contact with surface of a metal powder particle, drying the metal powder particle to make the fine carbonaceous substance in the monodispersed state adhere to the surface of the metal powder particle via a component of the solution, and thermally decomposing and removing the solution component adhering to the surface of the metal powder particle by heat-treating the metal powder particle either in a hydrogen-containing reducing atmosphere or in a vacuum atmosphere to partially expose the surface of the metal powder particle out of the adhering fine carbonaceous substance, and thus progress diffusion and sintering among the metal powder particles through exposed parts.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 25, 2012
    Assignees: National University Corporation Hokkaido University
    Inventors: Katsuyoshi Kondoh, Bunshi Fugetsu
  • Publication number: 20120228133
    Abstract: A sputtering target including an oxide sintered body including In, Zn and Ga, wherein a surface compound and an interior compound are essentially of the same crystal type(s).
    Type: Application
    Filed: November 18, 2010
    Publication date: September 13, 2012
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Masayuki Itose, Koki Yano
  • Publication number: 20120229244
    Abstract: There are provided a dust core in which, even if the surface of a heat-treated compact is ground, the insulation between soft magnetic particles on the ground surface can be ensured in the grinding step, and a method for producing the dust core. The method includes a preparation step of preparing a heat-treated compact 100 by compacting soft magnetic particles having an insulation coating and heating the resultant compact to a predetermined temperature; and a machining step of removing part of the heat-treated compact 100 using a working tool 2. The machining step is performed while an electric current is supplied with a conductive fluid 7L between the heat-treated compact 100 serving as an anode and a working tool 2 that machines the heat-treated compact 100 or a first counter electrode 5 that faces the working tool 2 with a distance therebetween, the working tool 2 or the first counter electrode 5 serving as a cathode.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 13, 2012
    Applicant: Sumitomo Electric Industries, ltd.
    Inventors: Tomoyuki Ueno, Takao Nishioka
  • Publication number: 20120212249
    Abstract: The present invention relates to a hard and wear-resisting probe and manufacturing method thereof, and particularly relates to a hard and wear-resisting probe comprising tungsten steel (WC) and manufacturing method thereof. This hard and wear-resisting probe is substantially made of a tungsten steel with high hardness and wear resistance so that the probe is difficult to be worn and the lifetime of the probe is longer. Furthermore, the frequencies for changing the probe and the cost of testing are reduced, and the testing efficiency can be improved.
    Type: Application
    Filed: August 10, 2011
    Publication date: August 23, 2012
    Applicant: KING YUAN ELECTRONICS CO., LTD
    Inventors: FONG JAY CHEN, CHIU-FANG CHANG
  • Publication number: 20120212119
    Abstract: An electrode material may be used in spark plugs and other ignition devices including industrial plugs, aviation igniters, glow plugs, or any other device that is used to ignite an air/fuel mixture in an engine. In one embodiment, the electrode material has one or both of iridium (Ir) or ruthenium (Ru), and has rhenium (Re).
    Type: Application
    Filed: February 22, 2012
    Publication date: August 23, 2012
    Applicant: FEDERAL-MOGUL IGNITION COMPANY
    Inventor: Shuwei Ma
  • Publication number: 20120202008
    Abstract: Disclosed are pieces that are produced by sintering, which have well-differentiated surface finish areas including rough areas resulting from the sintering process, the roughness being determined by the size of grain used in sintering, and polished areas that have undergone a three-dimensional machining process. Also, dislosed is a method that, after obtaining a file containing a representation of the piece to be produced, comprises: selecting the parts to be raised; producing the piece by means of sintering; and subsequently subjecting the piece to automatic, semi-automatic or directed programming generation so that, by means of machining, the raised parts are reduced. Consequently, the resulting piece is economical in terms of costs and exhibits a very high degree of precision in the machined areas, a tolerance 9, and improved finish, texture and finishing in the sensitive areas of the piece.
    Type: Application
    Filed: September 3, 2010
    Publication date: August 9, 2012
    Inventors: Juan Carlos García Aparicio, Francesc Al Sina Font
  • Publication number: 20120194056
    Abstract: An electrode material that may be used in spark plugs and other ignition devices including industrial plugs, aviation igniters, glow plugs, or any other device that is used to ignite an air/fuel mixture in an engine. The electrode material is a metal composite and includes a particulate component embedded or dispersed within a matrix component such that the metal composite has a multi-phase microstructure. In one embodiment, the metal composite includes a matrix component that includes a precious metal and makes up about 2-80% wt of the overall composite and a particulate component that includes a ruthenium-based material and makes up about 20-98% wt of the overall composite.
    Type: Application
    Filed: January 23, 2012
    Publication date: August 2, 2012
    Applicant: FEDERAL-MOGUL IGNITION COMPANY
    Inventor: Shuwei Ma
  • Patent number: 8231827
    Abstract: A method of manufacturing powder metal plates comprising feeding a predetermined mass of metal powder onto a moving tape (101), restricting the metal powder by surrounding the metal powder with vibrating boundary walls (201, 202) extending parallel to the direction of movement of the tape, rolling the metal powder at an ambient temperature to form a green compact strip (GS), continuously sintering the green compact strip in a furnace (400), forming the green compact strip to a net shape part (NS) while in the furnace, and cooling the net shape part in a non-oxidizing environment (404) at a temperature in excess of 1000 degrees Celsius.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: July 31, 2012
    Assignee: The Gates Corporation
    Inventors: Yahya Hodjat, Roger Lawcock, Rohith Shivanath
  • Publication number: 20120182102
    Abstract: A method of making a permanent magnet is described. In one embodiment, the method includes providing a first alloy powder having a desired composition, the alloy powder containing neodymium, iron, and boron; coating the first alloy powder with dysprosium, dysprosium alloy. terbium, or terbium alloy so that the first alloy powder has a surface concentration of dysprosium, terbium, or both in excess of a bulk concentration of dysprosium, terbium, or both; and forming the permanent magnet from the coated alloy powder using a powder metallurgy process, the permanent magnet having a non-uniform distribution of dysprosium, terbium, or both therein. Permanent magnets are also described.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 19, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Yucong Wang
  • Patent number: 8167971
    Abstract: A sliding part in which a surface coverage ratio of copper in the sliding part increases. A bearing which is the sliding part is formed by filling the raw powder into the filling portion of the forming mold, compacting the raw powder to form a powder compact, and sintering the powder compact. A copper-based raw powder is composed of a copper-based flat raw powder having an average diameter smaller than that of an iron-based raw powder and an aspect ratio larger than that of the iron-based raw powder, and a copper-based small-sized raw powder having the average diameter is smaller than that of the copper-based flat raw powder. The copper segregates at the surface of the sliding part. In the bearing in which the copper-based flat powder segregates at the surface, the surface is covered with the copper-based small-sized raw powder that has emerged on the surface, as well as the copper-based flat raw powder, thereby it is possible to increase the surface coverage ratio of copper.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: May 1, 2012
    Assignee: Diamet Corporation
    Inventors: Teruo Shimizu, Tsuneo Maruyama
  • Patent number: 8163111
    Abstract: A process of forming a prosthetic implant component, such as the femoral component of a knee replacement prosthesis. The process comprises the steps of: (i) forming a prosthetic component having a shape at least approximating the desired final shape of the component from a metal alloy; (ii) subjecting the component to a relatively elevated temperature and pressure followed by a cooling regime; (iii) machining the surface of the component; (iv) polishing the surface of the component.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: April 24, 2012
    Assignee: Advanced Surgical Design & Manufacture Limited
    Inventor: Gregory James Roger
  • Publication number: 20120058002
    Abstract: A process including: (a) forming a powder blend by mixing titanium powders, (b) consolidating the powder blend by compacting to provide a green compact, (c) heating the green compact thereby releasing absorbed water from the titanium powder, (d) forming ?-phase titanium and releasing atomic hydrogen from the hydrogenated titanium by heating the green compact in an atmosphere of hydrogen emitted by the hydrogenated titanium, (e) reducing surface oxides on particles of the titanium powder with atomic hydrogen released by heating of the green compact, (f) diffusion-controlled chemical homogenizing of the green compact and densification of the green compact by heating followed by holding resulting in complete or partial dehydrogenation to form a cleaned and refined compact, (g) heating the cleaned and refined green compact in vacuum thereby sintering titanium to form a sintered dense compact, and (h) cooling the sintered dense compact to form a sintered near-net shaped article.
    Type: Application
    Filed: August 8, 2011
    Publication date: March 8, 2012
    Applicant: Advance Material Products, Inc.,(ADMA Products, Inc.)
    Inventors: Orest M. IVASISHIN, Dmitro G. SAVVAKIN, Vladimir S. MOXSON, Vladimir A. DUZ, Mykola M. GUMENYAK
  • Publication number: 20120057986
    Abstract: An impeller comprising a wheel portion extending in an axial direction and a plurality of blades arranged around the wheel portion is produced by assembling a mold divisible into a plurality of parts having a cavity adapted for forming an outer profile of the impeller, injecting a kneaded matter including powder of a metal or a ceramic and binder to mold a green body, degreasing and sintering the green body to obtain a sintered body, embedding the sintered body into a die having a cavity adapted for modifying the outer profile of the impeller, and pressurizing the die to modify the outer profile of the impeller.
    Type: Application
    Filed: May 20, 2010
    Publication date: March 8, 2012
    Applicant: IHI Corporation
    Inventors: Tomohiro Inoue, Yukio Takahashi, Yoshimitsu Matsuyama
  • Patent number: 8128865
    Abstract: A method of fabricating a shrouded impeller is disclosed. The method includes providing an open faced impeller, the open faced impeller including a plurality of blades extending at least partially radially from a hub. The method also includes performing a first powder metallurgical process to form a first material over at least part of the open faced impeller. The method further includes forming a shroud circumferentially disposed about the hub and connected to one of more of the blades. Forming the shroud includes performing a second powder metallurgical process to metallurgically bond the shroud to at least some of the blades.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 6, 2012
    Assignee: Solar Turbines Inc.
    Inventors: David Brian Jahnz, Jess Lee Freeman
  • Publication number: 20120051919
    Abstract: A forging preform for a turbine rotor disk is disclosed. The preform includes a body of a superalloy material having a mass of about 5000 lbs or more, the superalloy material having a substantially homogeneous grain morphology and an ASTM average grain size of 10 or smaller. 5. A turbine rotor disk is also disclosed. The disk includes a substantially cylindrical disk of a superalloy material having a mass of about 5000 lbs or more, the superalloy material having a substantially homogeneous grain morphology and an ASTM average grain size of about 10 or smaller. A method of making a turbine rotor disk is also disclosed. The method includes providing a superalloy powder material and pressing the superalloy powder material to form a forging preform for a turbine rotor disk.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raymond Joseph Stonitsch, George Albert Goller, Joseph Jay Jackson, David Paul Mourer, Daniel Yeuching Wei
  • Publication number: 20120039740
    Abstract: Processes for producing a nickel-titanium alloy are disclosed. The processes are characterized by the production of nickel-titanium alloy articles having improved microstructure. A pre-alloyed nickel-titanium alloy is melted and atomized to form molten nickel-titanium alloy particles. The molten nickel-titanium alloy particles are cooled to form nickel-titanium alloy powder. The nickel-titanium alloy powder is consolidated to form a fully-densified nickel-titanium alloy preform that is hot worked to form a nickel-titanium alloy article. Any second phases present in the nickel-titanium alloy article have a mean size of less than 10 micrometers measured according to ASTM E1245-03 (2008) or an equivalent method.
    Type: Application
    Filed: February 14, 2011
    Publication date: February 16, 2012
    Applicant: ATI Properties, Inc.
    Inventor: C. Craig Wojcik
  • Patent number: 8088232
    Abstract: Molybdenum, sputtering targets and sintering characterized as having no or minimal texture banding or through thickness gradient. The molybdenum sputtering targets having a fine, uniform grain size as well as uniform texture, are high purity and can be micro-alloyed to improved performance. The sputtering targets can be round discs, square, rectangular or tubular and can be sputtered to form thin films on substrates. By using a segment-forming method, the size of the sputtering target can be up to 6 m×5.5 m. The thin films can be used in electronic components such as Thin Film Transistor-Liquid Crystal Displays, Plasma Display Panels, Organic Light Emitting Diodes, Inorganic Light Emitting Diode Displays, Field Emitting Displays, solar cells, sensors, semiconductor devices, and gate device for CMOS (complementary metal oxide semiconductor) with tunable work functions.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: January 3, 2012
    Assignee: H.C. Starck Inc.
    Inventors: Brad Lemon, Joseph Hirt, Timothy Welling, James G. Daily, III, David Meendering, Gary Rozak, Jerome O'Grady, Peter R. Jepson, Prabhat Kumar, Steven A. Miller, Richard Wu, Davd G. Schwarz
  • Publication number: 20110318214
    Abstract: A water atomised prealloyed chromium-free, iron-based steel powder is provided which comprises by weight-%: 0.05-0.4 V, 0.09-0.3 Mn, less than 0.1 Cr, less than 0.1 Mo, less than 0.1 Ni, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, and less than 0.5 of unavoidable impurities, with the balance being iron.
    Type: Application
    Filed: March 15, 2010
    Publication date: December 29, 2011
    Applicant: HOGANAS AB (PUBL)
    Inventor: Sven Bengtsson
  • Publication number: 20110319931
    Abstract: The present invention provides a rhenium tungsten wire comprising 10 to 30 mass % of rhenium and balance of tungsten, and having a wire diameter D of 0.10-0.40 mm, wherein a tensile strength T (N/mm2) of the rhenium tungsten wire exists within a range specified by an equation (1). 6314.6×D2?7869.3×D+4516.3?T?5047.4×D2×7206.4×D+5129.2??(1). In a case where the medical needle is manufactured from the above rhenium tungsten wire, crack and breakage hardly occur at a time of performing a pressing work or a bending work, so that a production yield and durability of the resultant products can be greatly improved.
    Type: Application
    Filed: December 25, 2009
    Publication date: December 29, 2011
    Applicants: TOSHIBA MATERIALS CO., LTD., KABUSHIKI KAISHA TOSHIBA
    Inventor: Motoaki Esaki
  • Patent number: 8083989
    Abstract: A method for producing a three-dimensional shaped article, including molding by irradiation of an optical beam to powder and by a rotating tool, providing a hollow part in a base pedestal supporting a shaped object, filling the hollow part with powder, forming a powder layer in the upper part of the hollow part and a surrounding region thereof, after a sintering region supporting the shaped object from the underside is formed in a region containing the powder layer, molding three or more supports of the base pedestal and two or more support frames connecting the shaped object, then the molded product and the base pedestal are then reversed in a vertical direction, thereby cutting and removing the sintering region, and molding the bottom part to achieve the object based on the fact that the supporting frames and the shaped object are cut and separated.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 27, 2011
    Assignee: Matsuura Machinery Corporation
    Inventors: Tsuneji Yamaoka, Kouichi Amaya