Subsequent Working Patents (Class 419/28)
  • Publication number: 20080107238
    Abstract: In some embodiments, an X-ray target includes a target cap formed of a substrate material and a focal track layer of emitting material, and at least one of the substrate material and the emitting material has a density greater than about 95.0% of theoretical density. In some embodiments, a method of manufacturing an X-ray target includes forming an intermediate target cap form of substrate material and a focal track layer of emitting material, and compacting the intermediate target cap form by application of gas pressure at elevated temperature to form a final target cap form, and at least the substrate material is dense substrate material having a final density greater than an intermediate density or the emitting material is dense emitting material having a final emitting material density greater than an intermediate emitting material density.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 8, 2008
    Applicant: GENERAL ELECTRIC COMPANY, A NEW YORK CORPORATION
    Inventors: Gregory Alan Steinlage, Thomas Carson Tiearney, Michael Scott Hebert, Paul Alfred Siemers, Kirk Alan Rogers, Ray Alden Henrichsen
  • Publication number: 20080027556
    Abstract: A tibial component. The tibial component includes a discontinuous metal backing formed by a plurality of discrete metal elements, and a non-metal bearing secured to the discontinuous metal backing.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 31, 2008
    Applicant: Biomet Manufacturing Corp.
    Inventor: Robert Metzger
  • Patent number: 7311874
    Abstract: A method of fabricating a sputter target comprises: homogenously blending a plurality of powders including at least a first powder and a second powder. The first powder is comprised of chromium (Cr), cobalt (Co), ruthenium (Ru), nickel (Ni), or iron (Fe). The second powder is comprised of boron (B), carbon (C), a nitrogen (N)-containing material, a boride, a carbide, a nitride, a silicide, an oxygen (O)-containing material or an oxide. The second powder has a particle size of between 0.01 microns and 50 microns. The method further comprises: canning the blended plurality of powders to form a substantially non-segregated encapsulated powdered material mix; pressing the encapsulated powdered material mix to form a billet; and machining the billet to form a sputter target.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: December 25, 2007
    Assignee: Heraeus Inc.
    Inventor: Wenjun Zhang
  • Patent number: 7258833
    Abstract: In accordance with the present invention, a method for manufacturing tungsten carbide components is provided. The method includes forming a composite material out of tungsten carbide powder and binder powder, pressing the composite material into a plurality of components, heating the plurality of components, optionally under pressure, to liquefy the binder, cooling the plurality of components until the binder solidifies, optionally grinding each of the plurality of components to a desired size, and cascading the plurality of components in a cascading machine under high energy conditions.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: August 21, 2007
    Assignee: Varel International Ind., L.P.
    Inventors: Allan William Rainey, John Franklin Kita
  • Patent number: 7217388
    Abstract: The present invention provides a method in which a strengthened platinum material can be produced, in which no blisters occur on the surface of the material even after heat treatment of 1,400° C. or higher and a metal oxide such as zirconium oxide is finely dispersed, and which has excellent high-temperature creep properties, when the strengthened platinum material is produced using a melt-sprayed platinum alloy powder. The method for producing a strengthened platinum material includes oxidizing a platinum alloy powder obtained by melt-spray, wet-milling the platinum alloy powder by adding an organic solvent, sintering, and forging, wherein the wet-milled platinum alloy fine powder is charged into a heat resistant container and heated to 1,200 to 1,400° C. in a vacuum atmosphere to be subjected to degassing.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: May 15, 2007
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Haruki Yamasaki
  • Patent number: 7186288
    Abstract: A method of production of large Ingots of neutron attenuating composites using a vacuum-bellows system allows for large cross-sectional shapes to be extruded and rolled. This method uses a vacuum-bellows technology which allows the manufacturing of large 8–16 inch diameter ingots (50–450 lbs. each). A variety of primary metal matrix materials can be used in this technology. High specific strength and stiffness can be achieved because the technology allows for final densities of 99% and higher. The vacuum-bellows technology allows metals and ceramics to blend and mesh together at compression pressures of 800 tons with elevated temperatures. The controlled compression movement allows for any oxide layer, on the metal, to be broken up and consolidated with the chosen ceramic particulate.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: March 6, 2007
    Inventor: Robin A. Carden
  • Patent number: 7169351
    Abstract: A method for densification of the surface layer of an optionally sintered powder metal component comprising the steps of decarburizing the surface layer for softening the surface layer of the component, and densifying the surface layer of the component.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: January 30, 2007
    Assignee: Höganäs AB
    Inventors: Sven Bengtsson, Yang Yu, Martin Svensson
  • Patent number: 7141209
    Abstract: There is provided a method for producing oxide dispersion strengthened ferritic steel tube by fabricating a raw tube by mixed sintering of a metal powder and an oxide powder and producing a tube of the desired shape by repeating cold rolling and heat treatment for a total of three times or more. The method comprises performing each of the intermediate heat treatments during the cold rolling by a two-step heat treatment consisting of a first step heat treatment of 1100° C. or lower and a second step heat treatment of 1100 to 1250° C. and higher than the first step temperature, and performing the final heat treatment at 1100° C. or higher.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: November 28, 2006
    Assignee: Japan Nuclear Cycle Development Institute
    Inventors: Takeji Kaito, Shigeharu Ukai, Satoshi Ohtsuka, Toshimi Kobayashi
  • Patent number: 7087202
    Abstract: This invention concerns particulate reinforced Al-based composites, and the near net shape forming process of their components. The average size of the reinforced particle in the invented composites is 0.1–3.5 ?m and the volume percentage is 10–40%, and a good interfacial bonding between the reinforced particulate and the matrix is formed with the reinforced particles uniformly distributed. The production method of its billet is to have the reinforced particles and Al-base alloy powder receive variable-speed high-energy ball-milling in the balling drum. Then, with addition of a liquid surfactant, the ball-mill proceeds to carry on ball-milling. After the ball-milling, the produced composite powder undergoes cold isostatic pressing and the subsequent vacuum sintering or vacuum hot-pressing to be shaped into a hot compressed billet, which in turn undergoes semisolid thixotropic forming and may be shaped into complex-shaped components. These components can be used in various fields.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: August 8, 2006
    Assignees: ASM Assembly Automation Ltd., General Research Institute for Non-Ferrous Metals
    Inventors: Deming Liu, Chou Kee Peter Liu, Jian Zhong Fan, Jun Xu, Tao Zuo, Zhao Zu Gao
  • Patent number: 7083759
    Abstract: A material for a semiconductor-mounting heat dissipation substrate comprises a copper-molybdenum rolled composite obtained by impregnating melted copper into a void between powder particles of a molybdenum powder compact to obtain a composite of molybdenum and copper and then rolling the composite. In a final rolling direction of a plate material, the coefficient of linear expansion is 8.3×10?6/K at 30–800° C. The material for a semiconductor-mounting heat dissipation substrate is superior in thermal conductivity to a CMC clad material and easy in machining by a punch press. The substrate material is used as a heat dissipation substrate (13) of a ceramic package (11).
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: August 1, 2006
    Assignee: A.L.M.T. Corp.
    Inventors: Mitsuo Osada, Norio Hirayama, Tadashi Arikawa, Yoshinari Amano, Hidetoshi Maesato, Hidefumi Hayashi, Hiroshi Murai
  • Patent number: 7041149
    Abstract: A sintered sprocket has a high overall density and excellent contact pressure resistance. The sprocket is produced from a sintered alloy selected from the following alloys ((1) to (3)), is densified to have a relative density of 95% or higher in the surface layer of the gear teeth by forming by rolling, having a surface hardness of 700 HV or higher, and is useful for a crankshaft, a cam shaft, a balancer shaft, or a water pump shaft of an internal combustion engine: (1) an Fe—Mo—C based sintered alloy containing Mo at 1.0 to 2.0% by mass; (2) an Fe—Mo—Ni—C based sintered alloy containing Mo at more than 1.0 and not more than 2.0% by mass, and Ni at more than 1.0 and not more than 2.5% by mass, or (3) an Fe—Mo—Ni—Cu—C based sintered alloy containing Mo at 0.3 to 1.0% by mass, Ni at not less than 1.5 to less than 3.0% by mass, and Cu at 1.0 to 2.5% by mass.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: May 9, 2006
    Assignees: Nissan Motor Co., Ltd., Hitachi Powdered Metals Co., Ltd.
    Inventors: Akira Fujiki, Yukihiro Maekawa, Yutaka Mabuchi, Takashi Murata, Takashi Suzuki, Jyun-ichi Yamada, Tadayuki Tsutsui, Kei Ishii
  • Patent number: 7025929
    Abstract: The invention provides a method and apparatus for densifying the teeth of a powder metal preform gear. The die includes an aperture for receiving a body of the gear and a plurality of grooves for receiving the teeth of the gear. The grooves have a length and a variable width along the length. The grooves narrow tangentially relative to the aperture. The powder metal preform gear is urged through the die and the teeth are plastically and elastically deformed at a relatively narrow portion of the groove. After passing through the narrow portion of the groove and being compressed, the teeth can at least partially recover. The grooves defined by the die can be helical for forming a helical groove.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: April 11, 2006
    Assignee: PMG Ohio Corp.
    Inventors: Juan R. L. Trasorras, Eric T. Riley
  • Patent number: 7025928
    Abstract: A method of flow forming sintered metal parts. The first step is forming a round disk by conventional powder metal process. The disk can be a donut shape part with or without a flange on one side of its outer diameter. The disk can then be copper impregnated or used as is, depending on the requirements. The disk is placed in a spinner held in proper tooling and grooves are spun in its outer diameter. The spinning can be done with a finishing roller or by a pre-finishing roller, followed by a finishing roller. This process not only creates a part with great accuracy, it also densifies and eliminates the powder metal porosities on the surface layer by the pressures inserted in spinning.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: April 11, 2006
    Assignee: The Gates Corporation
    Inventor: Yahya Hodjat
  • Patent number: 6986297
    Abstract: A cutting element for a drill bit used in drilling subterranean formations is formed with an internal chamber or passage for the flow of drilling fluid therethrough. The cutting element includes a substrate having at least one internal passage, and prior to attaching a superabrasive table thereto, the at least one internal passage is filled with a removable, substantially incompressible filler material. Attachment or bonding of the superabrasive table to the substrate under high temperature and high pressure is accomplished without significant distortion of the shape and size of the internal passage. The filler material may be a crystalline salt such as sodium chloride or halite, which is removable by dissolution in water, or may be boron nitride or a volcanic material such as Pyrofolyte material which is mechanically removable.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: January 17, 2006
    Assignee: Baker Hughes Incorporated
    Inventor: Danny E. Scott
  • Patent number: 6902697
    Abstract: An aluminum powder is mixed with a neutron absorber powder through cold isostatic press to form a preliminary molding. The preliminary molding is then subjected to sintering under no pressure in vacuum. After sintering, a billet is subjected to induction heating and hot extrusion to form a square pipe.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: June 7, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsunari Ohsono, Kazuo Murakami, Yasuhiro Sakaguchi, Toshiro Kobayashi, Toyoaki Yasui
  • Patent number: 6902809
    Abstract: The present invention provides a method for preparing a rhenium-tantalum alloy with improved strength and ductility characteristics. The method includes mixing powders of rhenium and tantalum with a weight ration of approximately 97% rhenium to approximately 3% tantalum. The powdered blend is then compressed to a green state. The green compress of rhenium and tantalum is then sintered such that tantalum goes into solid solution with rhenium. The sintered material is then cold rolled. The cold rolling disperses oxides away from concentrations in the alloy grain boundaries. If desired, the alloy may then be annealed. The result is a rhenium-tantalum alloy that displays improved high temperature strength and ductility over pure rhenium materials. The present alloy is particularly suited to fabrication of rocketry components such as valve bodies, poppets, seats, and nozzles.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 7, 2005
    Assignee: Honeywell International, Inc.
    Inventor: Don L. Mittendorf
  • Patent number: 6899846
    Abstract: A method of producing powder metal articles includes compacting and sintering powder metal to produce a shaped powder metal preform having at least one exposed surface to be surface densified which extends parallel to an axis of the preform between a free end and a blind end adjacent a transverse portion of the preform. The blind surface is cold worked by forcing a shaped densifying tool axially along the surface in a direction from the free end toward the blind end, and then reversing the direction of the tool toward the free end to densify a layer of the material at the exposed surface. In addition to the blind surface, the article can include one or more additional surfaces that can be densified in the same manner in a simultaneous operation.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: May 31, 2005
    Assignee: Sinterstahl Corp.-Powertrain
    Inventor: Richard Mark Woolf
  • Patent number: 6841121
    Abstract: This invention aims to provide a process for producing an oxide-dispersion strengthened platinum material which allows zirconium oxide to be more finely dispersed in a platinum material, and to further improve creep strength in an oxide-dispersion strengthened platinum material.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: January 11, 2005
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Toru Shoji, Soichi Hitomi, Yoshikazu Takagi, Yoshinobu Watanabe
  • Publication number: 20040219050
    Abstract: A method for forming superdeformable metal alloy preforms that have high strength alloy compositions by selecting metal powders which will define the desired alloy, mixing the selected metal powders, performing either one of cold pressing the metal powders or fast heating the metal powders to define a desired preform shape, and fast heating the metal powder preform shape so as to consolidate it to a desired form.
    Type: Application
    Filed: April 28, 2004
    Publication date: November 4, 2004
    Inventor: Robert W. Hailey
  • Publication number: 20040208772
    Abstract: A sinter metal part with a homogeneous distribution of non-homogeneously melting components, essentially comprising non-homogeneously melting non ferrous metal powder mixtures, produced in the following manner: continuous isostatic pressure sintering of the starting material to obtain densities which substantially correspond to the density of a high-temperature isostatically pressed solid having the same composition, using die in conditions avoiding the occurrence of a liquid phase in powder at temperatures of up to 70% of the metal melting point, preferably up to 60% of the metal melting point, forming a sinter profile substantially possessing a final contour.
    Type: Application
    Filed: January 13, 2004
    Publication date: October 21, 2004
    Inventors: Anton Eiberger, Manfred Arlt, Manfred Heinritz, Rainhard Laag, Angelika Pohl, Jochen Schmid, Otto Stock, Gerhard Subek, Alfred Bolstler
  • Publication number: 20040197219
    Abstract: The invention relates to a method for producing a metal component, in particular an internal joint part of a Cardan joint, which is provided with a ball path.
    Type: Application
    Filed: February 26, 2004
    Publication date: October 7, 2004
    Inventors: Guido Degen, Wolfgang Schiemenz, Eberhard Ernst, Rainer Schmitt
  • Patent number: 6793705
    Abstract: A method of forming a powder metal material or article includes the steps of molding a compact from a metallurgical powder, and then sintering the compact. The metallurgical powder may include at least one of a stainless steel powder and a low-chromium steel-base powder, and about 0.5 to about 15 weight percent of glass powder. Alternatively, the metallurgical powder may include at least one of a stainless steel powder and a low-chromium steel-base powder, about 3 to about 15 weight percent molybdenum, and about 1 to about 15 weight percent of nickel-base alloy powder. The present invention also is directed to metallurgical powders useful in and materials and articles made by the methods of the present invention. Such articles include, but are not limited to, valve guides for internal combustion engine EGR systems, valve seats, exhaust system components, combustion chambers, other combustion engine parts subjected to high temperature, and chemical industry valve and corrosion parts.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: September 21, 2004
    Assignee: Keystone Investment Corporation
    Inventor: John C. Kosco
  • Publication number: 20040177719
    Abstract: Embodiments of the present invention relate to methods of forming powder metals materials and parts. More specifically, certain embodiments of the present invention relate to methods of forming powder metals materials and parts by densifying at least a portion of a surface of the materials and/or parts after sintering and prior to densifying one or more core regions of the materials and/or parts. Other embodiment provide powder metal parts, such as gears and sprockets, having surface regions that are uniformly densified to full density to depth ranging from 0.001 inches to 0.040 inches, and core regions that can have at least 92 percent theoretical density and further can have essentially full density, or full density. Still other embodiments relate to brazed, welded, plated and gas-tight powder metal parts and components that can be made in accordance with the various non-limiting methods disclosed herein.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 16, 2004
    Inventor: John C. Kosco
  • Publication number: 20040175285
    Abstract: A heat-resistant, creep-resistant aluminum alloy containing from 10 to 30 mass % of silicon, from 3 to 10 mass % of at least either iron or nickel in total, from 1 to 6 mass % of at least one rare earth element in total, and from 1 to 3 mass % of zirconium, preferably excluding titanium, magnesium and copper, with the rest substantially consisting of aluminum, is prepared by a method including providing a rapidly cooled aluminum alloy powder, molding the powder into a pressurized powder compact, and performing hot plastic working on the compact to form a product shape such as a billet. The compact is exposed to a temperature of at least 450° C. for at least 10 seconds and not more than 30 minutes before forming the product shape by the hot plastic working.
    Type: Application
    Filed: December 18, 2003
    Publication date: September 9, 2004
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hisao Hattori, Terukazu Tokuoka, Takatoshi Takikawa
  • Publication number: 20040156736
    Abstract: A shaped charged liner for oil well perforating is made from composite metal powder of clusters of pre-agglomerated particles of a denser metal with an agglutinating metal which is press-molded or tap-molded into a near net-shape liner preform which is then sintered to form a sintered body which is hot-coined or forged to form the final shape liner. The powder is formed by different density metal particles which are preclustered.
    Type: Application
    Filed: October 23, 2003
    Publication date: August 12, 2004
    Inventors: Vlad Ocher, Frank J. Polese, Jack A. Rubin
  • Patent number: 6773482
    Abstract: A cold work steel alloy for the manufacture of parts, comprising the elements C, Si, Mn, Cr, W, Mo, V, Nb, Co, S, N, Ni and accompanying elements in the concentration ranges recited in claim 1 and having an oxygen content of less than 100 ppm and a content of nonmetallic inclusions corresponding to a K0 value of a maximum of 3 when tested according to DIN 50 602, as well as a method of making a part of said steel alloy by powder metallurgy.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: August 10, 2004
    Assignee: Bohler Edelstahl, GmbH
    Inventors: Werner Liebfahrt, Roland Rabitsch
  • Publication number: 20040136858
    Abstract: A method of producing powder metal articles includes compacting and sintering powder metal to produce a shaped powder metal preform having at least one exposed surface to be surface densified which extends parallel to an axis of the preform between a free end and a blind end adjacent a transverse portion of the preform. The blind surface is cold worked by forcing a shaped densifying tool axially along the surface in a direction from the free end toward the blind end, and then reversing the direction of the tool toward the free end to densify a layer of the material at the exposed surface. In addition to the blind surface, the article can include one or more additional surfaces that can be densified in the same manner in a simultaneous operation.
    Type: Application
    Filed: January 14, 2003
    Publication date: July 15, 2004
    Inventor: Richard Mark Woolf
  • Patent number: 6759005
    Abstract: The present invention relates to a method of manufacturing sputtering targets doped with non-metal components including boron, carbon, nitrogen, oxygen and silicon. A powder process is utilized whereby alloyed powders, which contain non-metal elements of B/C/N/O/Si and non-metal containing phases of less than ten microns in microstructure, are blended, canned and subjected to hot isostatic press consolidation. The sputtering targets of the present invention avoid spitting problems during sputtering of the target material on a substrate.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: July 6, 2004
    Assignee: Heraeus, Inc.
    Inventor: Wenjun Zhang
  • Patent number: 6751832
    Abstract: A method of manufacturing a piezoelectric/electrostrictive device includes the following steps. An integrated layered body is obtained by laminating at least one green sheet that is to be a thin plate, at least one green sheet having at least one rectangular-shaped hole portion, and at least one green sheet that is to be another thin plate. A piezoelectric/electrostrictive element is formed on a surface of the green sheets that form the thin plates by one of a thick film method or a thin film method. The layered body is cut in the laminating direction of the green sheets such that the rectangular-shaped hole portion is open on the side of the layered body after sintering the layered body.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: June 22, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Toshikazu Hirota, Koji Kimura, Yukihisa Takeuchi
  • Publication number: 20040115083
    Abstract: A high-strength titanium alloy of the present invention includes Ti as a major component, 15 to 30 at % Va group element, and 1.5 to 7 at % oxygen (O) when the entirety is taken as 100 atomic % (at %), and its tensile strength is 1,000 MPa or more.
    Type: Application
    Filed: September 26, 2003
    Publication date: June 17, 2004
    Inventors: Tadahiko Furuta, Kazuaki Nishino, Takashi Saito, JungHwan Hwang
  • Publication number: 20040105775
    Abstract: A process of manufacturing dispersion strengthened copper (DSC) and/or hyper-nucleated metal matrix composite (HNMMC) resistance welding electrodes directly from a sintered powdered metal compact pre-form, and the electrode formed by the process. A major amount of DSC and/or HNMMC may be alloyed with a minor amount of a non-ferrous metal powder, such as silver, wherein to change a physical property of the final product, and the pre-form thus formed then cold formed or thixomolded into its final net shape.
    Type: Application
    Filed: November 14, 2003
    Publication date: June 3, 2004
    Inventor: Bryan Prucher
  • Publication number: 20040101429
    Abstract: A powder compacting method includes the steps of: providing a powder material; loading the powder material into a cavity; uniaxially pressing the powder material, which has been loaded into the cavity, between two opposed press surfaces, thereby obtaining a compact, wherein at least one of the two press surfaces is deformed elastically under a compacting pressure when contacting with the powder material in the cavity; and unloading the compact from the cavity. According to this powder compacting method, even when the powder material has a non-uniform fill density distribution, a compact with a uniform density distribution can be obtained at a high productivity.
    Type: Application
    Filed: May 2, 2003
    Publication date: May 27, 2004
    Inventor: Atsushi Ogawa
  • Publication number: 20040071580
    Abstract: There is provided a method for producing oxide dispersion strengthened ferritic steel tube by fabricating a raw tube by mixed sintering of a metal powder and an oxide powder and producing a tube of the desired shape by repeating cold rolling and heat treatment for a total of three times or more. The method comprises performing each of the intermediate heat treatments during the cold rolling by a two-step heat treatment consisting of a first step heat treatment of 1100° C. or lower and a second step heat treatment of 1100 to 1250° C. and higher than the first step temperature, and performing the final heat treatment at 1100° C. or higher.
    Type: Application
    Filed: September 25, 2003
    Publication date: April 15, 2004
    Inventors: Takeji Kaito, Shigeharu Ukai, Satoshi Ohtsuka, Toshimi Kobayashi
  • Publication number: 20040062673
    Abstract: A method of fabricating clutch races for one-way clutch mechanisms includes compacting and sintering a ferrous-based powder metal to near-net shape to produce a core density of between about 6.8 to 7.6 g/cc and a race surface that is near-net shape. The cam surface is cold worked in a manner that locally increases the density at the surface to develop a highly densified layer of essentially fully densified material and with a final surface finish that, after heat treatment, is ready to use in a one-way clutch application without further working. Both the inner and outer clutch races of one-way clutch mechanisms can be formed in this fashion and yield races that exhibit excellent strength, toughness, fatigue strength and wear resistance.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 1, 2004
    Applicant: FEDERAL-MOGUL WORLD WIDE, INC.
    Inventors: Juan R.L. Trasorras, Salvator Nigarura
  • Publication number: 20040005237
    Abstract: A process of forming powder metal components which minimizes decarburization and oxidation of the component prior to final forging. The process begins by molding powder metal material into a preform configuration. The preform is delubricated to extract lubricant found in the pores of the preform. Passing the preform through a shot peening operation closes a majority of the surface pores creating a densified layer within which interconnected pores are eliminated. Following post-delubrication peening (PDP), the component is sintered and then forged into its final configuration.
    Type: Application
    Filed: February 14, 2003
    Publication date: January 8, 2004
    Inventor: Fuping Liu
  • Patent number: 6670048
    Abstract: A sintered sprocket is provided in which surface pressure resistance can be improved without using a forging processing. An Fe-based sintered alloy which contains C at 0.2 to 0.5% by weight, Mo at 0.2 to 1.0% by weight, and Ni at 0.2 to 1.0% by weight, and which exhibits a metallic structure in which an internal base layer comprises ferrite and bainite and in which the ferrite adjoins voids, is subjected to a rolling and is then subjected to carburizing and hardening.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: December 30, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Akira Fujiwara
  • Patent number: 6660109
    Abstract: A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as ≦1% Cr, ≧0.05% Zr ≦2% Ti, ≦2% Mo, ≦1% Ni, ≦0.75% C, ≦0.1% B, ≦1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, ≦1% rare earth metal, and/or ≦3% Cu.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: December 9, 2003
    Assignee: Chrysalis Technologies Incorporated
    Inventors: Mohammad R. Hajaligol, Clive Scorey, Vinod K. Sikka, Seetharama C. Deevi, Grier Fleishhauer, A. Clifton Lilly, Jr., Randall M. German
  • Patent number: 6655234
    Abstract: The cutting element including a cutting element for a drill bit used in drilling subterranean formations is formed with an internal chamber or passage for the flow of drilling fluid therethrough. A substrate having at least one internal passage, and prior to attaching a superabrasive table thereto, the at least one internal passage is filled with a removable substantially incompressible filler material. Attachment or bonding of the superabrasive table to the substrate under high temperature and high pressure is accomplished without significant distortion of the shape and size of the internal passage. The filler material may be a crystalline salt such as sodium chloride or halite, which is removable by dissolution in water, or may be boron nitride or a volcanic material such as Pyrofolyte material which is mechanically removable.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: December 2, 2003
    Assignee: Baker Hughes Incorporated
    Inventor: Danny E. Scott
  • Patent number: 6651328
    Abstract: A method for manufacturing a sliding part for a hermetic compressor is disclosed. Since the abrasion resistance and corrosion resistance of the sliding part is increased, the energy consumption efficiency is improved and the performance of the compressor can be enhanced. In addition, since the manufacturing process is shortened, the production cost can be reduced and the manufacturing time can be reduced. Moreover, since the thickness change of the sliding part is minimized, the defective rate of the part size can be reduced and its quality can be improved.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: November 25, 2003
    Assignee: LG Electronics Inc.
    Inventor: Jong Hyuk Kim
  • Patent number: 6652617
    Abstract: A high-speed steel article, particularly a cutting tool, produced by powder metallurgy and its production, the steel having a high degree of purity corresponding to a K0 value of no higher than 3 according to DIN 50 602 and being of a particular composition which comprises the elements C, Si, Mn, Cr, W, Mo, V, Co, S and N. Also provided is a process for the high-speed machining of metal parts without lubricants.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: November 25, 2003
    Assignee: Böhler Edelstahl GmbH
    Inventors: Ingrid Maili, Roland Rabitsch, Werner Liebfahrt
  • Patent number: 6641917
    Abstract: A spray powder to be used for forming a coating, which comprises from 80 to 97 wt %, based on the total weight, of a cermet powder and from 3 to 20 wt %, based on the total weight, of a metal powder, wherein the metal powder comprises Cr and Ni in a total amount of at least 90 wt %, based on the total weight of the metal powder, and the content of Cr is from 0 to 55 wt %, based on the total weight of the metal powder.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: November 4, 2003
    Assignee: Fujimi Incorporated
    Inventors: Tsuyoshi Itsukaichi, Satoru Osawa
  • Patent number: 6635098
    Abstract: A low cost titanium, titanium alloy material, or Ti matrix composite comprising clean and divided titanium turnings that are blended with titanium, titanium alloy powder, and/or ceramic powder and consolidated is provided. A method of making the material is also provided. The low cost material is formed into preshapes, such as a billet, which is subsequently used as feedstock for extrusion, forging, casting, or rolling.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: October 21, 2003
    Assignee: Dynamet Technology, Inc.
    Inventors: Stanley Abkowitz, Susan M. Abkowitz, Harold L. Heussi, Kevin M. McCarthy
  • Patent number: 6630102
    Abstract: The invention relates to a process for the powder metallurgical production of material having improved isotropy of its mechanical properties with a rectangular or flat elliptical cross section, so-called broad-flat material, in particular raw material for producing cutting or piercing tools, in which process a powder of an alloy produced with gas, in particular pulverized with nitrogen, is placed into a capsule, compressed, and the capsule is closed, optionally after an evacuation, whereupon a heating and isostatic pressing (HIPing) of the powder capsules occur and the hot isostatically pressed slug produced in this manner is subjected to a forming by forging.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: October 7, 2003
    Assignee: Böhler-Uddeholm Aktiengesellschaft
    Inventor: Siegfried Wilmes
  • Patent number: 6630101
    Abstract: A method of producing a gear from a metallurgical powder includes molding at least a portion of the powder to provide a gear preform. The gear preform is sintered and hot formed, and subsequently may be carburized. The gear preform is resintered and cooled at a cooling rate suitable to provide a bainitic microstructure in at least a surface region of the preform. The gear teeth of the preform may be shaved to, for example, adjust dimensions, and enhance dimensional uniformity.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: October 7, 2003
    Assignee: Keystone Investment Corporation
    Inventors: Gary L. Anderson, William J. Olson
  • Patent number: 6599467
    Abstract: The invention provides a process for forging a titanium-based material comprises the steps of: preparing a titanium-based sintered workpiece including at least one of ceramics particles and pores in a total amount of 1% or more by volume, the ceramics particles being thermodynamically stable in a titanium alloy; and heating the workpiece to a forging temperature and forging the same. In the production process, the pores or the ceramics particles inhibit the grain growth during forging. Accordingly, it is possible to carry out the forging at a relatively high temperature at which the titanium-based material exhibits a small resistance to deformation. Moreover, the titanium-based material can maintain an appropriate microstructure even after the forging. Consequently, the impact value and the fatigue strength are inhibited from decreasing.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: July 29, 2003
    Assignees: Toyota Jidosha Kabushiki Kaisha, Aisan Kogyo Kabushiki Kaisha
    Inventors: Toshiya Yamaguchi, Akio Hotta, Yoshinori Shibata, Tadahiko Furuta, Takashi Saito, Satoru Iwase, Takashi Haruta, Tatsuya Kitamura
  • Publication number: 20030133821
    Abstract: Lightweight metal matrix composites containing a skeleton structure of titanium, titanium aluminide, or Ti-based alloy are manufactured by low temperature infiltration with molten Mg-based alloy or Mg—Al alloy at 450-750° C., with molten In, Pb, or Sn at 300-450° C., or with molten Ag and Cu at 900-1100° C. The skeleton structure with a density of 25-35% is produced by loose sintering of Ti or Ti-based alloy powders. A primary deformation of the Ti skeleton structure before the infiltration is carried out by cold or hot rolling or forging to obtain a porous flat or shaped preform with a porosity <50% and pores drawn out in one direction such as the direction of future rolling of the composite plate.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 17, 2003
    Applicant: Advanced Materials Products, Inc.
    Inventors: Vladimir S. Moxson, Eugene Ivanov
  • Patent number: 6592809
    Abstract: A method for producing a fully dense powder metal helical gear including placing powder metal in a preform die wherein it can be compacted axially by punches to create a gear preform having various gear profiles such as a helical profile, sintering the preform, and inserting the sintered preform into a hot forming die wherein it is impacted axially by punches to fully densify the gear preform. The densified gear can be inserted in a burnishing die where a more precise gear profile can be imparted resulting in more precise dimensions. Finishing treatments, such as rolling, shaving, heat treating, machining to length and inner diameter sizing can be subsequently performed.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: July 15, 2003
    Assignee: Keystone Investment Corporation
    Inventors: Gary L. Anderson, Jerome E. Muroski
  • Publication number: 20030124015
    Abstract: The present invention provides a method in which a strengthened platinum material can be produced, in which no blisters occur on the surface of the material even after heat treatment of 1,400° C. or higher and a metal oxide such as zirconium oxide is finely dispersed, and which has excellent high-temperature creep properties, when the strengthened platinum material is produced using a melt-sprayed platinum alloy powder. The method for producing a strengthened platinum material includes oxidizing a platinum alloy powder obtained by melt-spray, wet-milling the platinum alloy powder by adding an organic solvent, sintering, and forging, wherein the wet-milled platinum alloy fine powder is charged into a heat resistant container and heated to 1,200 to 1,400° C. in a vacuum atmosphere to be subjected to degassing.
    Type: Application
    Filed: November 25, 2002
    Publication date: July 3, 2003
    Inventor: Haruki Yamasaki
  • Patent number: 6579492
    Abstract: These forged articles are useful as connecting rods. The bushing is assembled during the forging operation of the powder metal connecting rod. This reduces the number of manufacturing operations required to process a powder metal article. The main components of this article are a sintered powder metal perform and preferably a bronze bushing. The bronze bushing is inserted in the bore of the sintered perform of a connecting rod and thereafter forged in during forging then heated to provide bonding between the bushing and connecting rod.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: June 17, 2003
    Assignee: Metaldyne Sintered Components, Inc.
    Inventor: Dale E. Wehler
  • Patent number: RE40100
    Abstract: The present invention relates to a method of manufacturing sputtering targets doped with non-metal components including boron, carbon, nitrogen, oxygen and silicon. A powder process is utilized whereby alloyed powders, which contain non-metal elements of B/C/N/O/Si and non-metal containing phases of less than ten microns in microstructure, are blended, canned and subjected to hot isostatic press consolidation. The sputtering targets of the present invention avoid spitting problems during sputtering of the target material on a substrate.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: February 26, 2008
    Assignee: Heraeus Inc.
    Inventor: Wenjun Zhang