Making Composite Or Hollow Article Patents (Class 419/5)
  • Patent number: 6811744
    Abstract: A method and apparatus for embedding features and controlling material composition in a three-dimensional structure (130) is disclosed. The invention enables the control of material characteristics, within a structure (130) made from a plurality of materials, directly from computer rendering of solid models of the components. The method uses stereolithography and solid model computer file formats to control a multi-axis head (480) in a directed material deposition process (123). Material feedstock (126, 127) is deposited onto a pre-heated substrate (19). Depositions (15) in a layer-by-layer pattern, defined by solid models (141, 146), create a three-dimensional article having complex geometric details. Thermal management of finished solid articles (250-302), not available through conventional processing techniques, is enabled by embedded voids (152) and/or composite materials (126, 127), which include dissimilar metals (210, 216).
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: November 2, 2004
    Assignee: Optomec Design Company
    Inventors: David M. Keicher, James W. Love, Kevin J. Dullea, James L. Bullen, Pierrette H. Gorman, Mark E. Smith
  • Publication number: 20040184944
    Abstract: A powder blend for use in laser sintering and a method for forming tough, strong, wear-resistant, corrosion-resistant infiltrated metal products are provided. The powder blend comprises a steel alloy, a polymeric binder and a high melting temperature fine particulate which are blended together, then applied layer by layer to a working surface in a laser sintering system, exposed a layer at a time to fuse together the powder until a green part of high strength is formed, and then the green part is infiltrated with a metal infiltrant in a non-reducing gas atmosphere at an effective temperature for an effective period of time. The preferred steel is a mild steel alloy.
    Type: Application
    Filed: March 19, 2003
    Publication date: September 23, 2004
    Applicant: 3D Systems, Inc.
    Inventors: Brad Geving, Kris Alan Schmidt, Kenneth J. Newell
  • Publication number: 20040141865
    Abstract: A method of manufacturing a cutting element having a substrate and an ultra hard material layer sintered together where at least a portion of the substrate is partially densified prior to sintering, is provided.
    Type: Application
    Filed: September 18, 2003
    Publication date: July 22, 2004
    Inventors: Madapusi K. Keshavan, J. Daniel Belnap, Dave Slutz
  • Patent number: 6756009
    Abstract: A method is provided of producing a hardmetal-bonded metal component with an enhanced bond strength. The method comprises the steps of providing an iron-based metal body, mixing and compressing raw material powder of hardmetal and binder powder containing nickel, silicon and boron into a preform, heating and sintering the preform, and applying heat to the sintered body and the iron-based metal body under a state that the sintered body is brought into contact with the iron-based metal body, to thereby cause the sintered body to be bonded to the iron-based metal body. The sintered body and the iron-based metal body are thermally treated at a temperature of 1,000 to 1,200° C. for 30 or more minutes so that boron present in the sintered body is infiltrated into grain boundaries of the iron-based metal body to form a plurality of boride spikes in a bonding interface.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: June 29, 2004
    Assignee: Daewoo Heavy Industries & Machinery Ltd.
    Inventors: Dong Sub Sim, Kyung Woon Kim, Keun Chul Song, Jung Hwan Cho
  • Patent number: 6723277
    Abstract: A method for producing a milling disc with embedded insets of hard metal, ceramics or other similar hard materials. The milling disc has a centrical bore in the base body of the disc. The tips of the insets protrude over the circumference of the disc body. The invention also relates to a milling disc produced according to the method wherein a powdery sintered metal material is filled into the recess of a mold pertaining to a compression molding die, and the mold matches the outer contour of the disc base body. Pre-fabricated insets are inserted into the sintered metal material and are positioned in the mold of the compression molding die. A green compact is subsequently pressed in the compression molding die and then taken out of the compression molding die. The green compact is sintered with the pressed insets and is subjected to hardening and/or surface treatment, if required.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: April 20, 2004
    Assignee: Karl Simon GmbH & Co. KG
    Inventors: Guido Kurz, Herbert König, Thomas Broghammer
  • Patent number: 6719946
    Abstract: An anode support formed of a three-dimensional interconnected porous nickel plaque fabricated by sintering a bed of pure metallic nickel powder particles.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: April 13, 2004
    Assignee: FuelCell Energy, Inc.
    Inventors: Chao-yi Yuh, Jian Li
  • Patent number: 6716388
    Abstract: A rotary chip-removing tool includes a rotary tool body and a tool tip fastened on a front end thereof. The tool tip is formed of an injection molded body which has an integral cutting edge at its front end, and a coupling structure at its rear end. The coupling structure can be in the form of a threaded hole, or a rearward projection, for coupling the tool tip against the tool body. The tool tip is formed of first and second materials. The first material forms at least part of the cutting edge, and the second material forms the coupling structure. The first material is more brittle than the second material, and the second material is tougher than the first material.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: April 6, 2004
    Assignee: Seco Tools AB
    Inventors: Johnny Bruhn, Mattias Puide, Mikael Gronkvist
  • Patent number: 6706238
    Abstract: The present invention relates to a substrate for a magnetic recording medium that ensures a floating height on a magnetic head. This substrate is made of a sintered body provided with pores having a diameter in the range of 0.05 &mgr;m to 2.0 &mgr;m extending across 5% to 50% of the surface area of the substrate.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: March 16, 2004
    Assignee: Fujitsu Limited
    Inventors: Shinichi Takahashi, Koki Kanda
  • Patent number: 6699431
    Abstract: A method of producing an anode for a capacitor, which includes the steps of molding a continuously deformable material onto a flat anode conductor and simultaneously externally shaping the material, and solidifying the material to form an anode body.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: March 2, 2004
    Assignee: Epcos AG
    Inventors: Helge Clasen, Willy Knabe, Klaus Gnann, Josef Gerblinger, Dieter Hahn
  • Patent number: 6682693
    Abstract: An inclined function material is formed with an iron layer on a surface of a carbon material. This material can be used in a carbon base member and does not limit the choice of desired characteristics in a carbon base member. The process by which the carbon base member is formed also ensures the iron layer is integrated firmly with the surface of the carbon material. A suitable amount of an iron powder having a particle diameter of 5 to 15 &mgr;m is placed directly on the surface of a carbon material, which is sintered in advance under suitable conditions, and stuck to the surface uniformly and flatly. The iron powder and the carbon material are sintered at 1000° C. to 1300° C. and preferably 1050 to 1150° C. for 1 to 2 hours and preferably about 1.5 hours to form a carbon base member in which the iron layer is formed on one surface of the carbon base member.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: January 27, 2004
    Assignee: Mitsuba Corporation
    Inventors: Yoshihiro Tanaka, Mitsunari Ishizaki, Motoaki Kuribara
  • Patent number: 6676891
    Abstract: An armature segment of an electrical machine includes a coil and a core section. A method of producing such a segment comprises the steps of tightly winding the coil, providing a compaction die having a cavity for shaping the tightly wound coil, introducing the tightly wound coil into the compaction die and compacting the coil therein so as to reduce the volume occupied by the coil, providing a compression-moulding die having a moulding cavity, positioning the compacted coil in the moulding cavity of the compression die, filling the moulding cavity with insulated ferromagnetic particles, and compressing the insulated ferromagnetic particles in the moulding cavity so as to form the armature segment as a single-piece unit including the core section and the compacted coil.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: January 13, 2004
    Assignee: Höganäs AB
    Inventor: Alan G. Jack
  • Patent number: 6667112
    Abstract: Dental restorations are fabricated using metal powder. Preferably, the metal powder is a high fusing metal and preferably, the metal powder comprises a non-oxidizing metal. The metal powder is applied to a die and is covered with a covering material such as a refractory die material preferably in the form of a flowable paste. A second covering material may be sprinkled or dusted onto the paste. The model is then dried prior to firing. After drying, the model is sintered to provide a high strength metal restoration. After sintering, the outer shell can be broken off easily with one's hand to expose the sintered coping.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: December 23, 2003
    Assignee: Pentron Laboratory Technologies, LLC
    Inventors: Arun Prasad, Gregg Daskalon
  • Patent number: 6652805
    Abstract: Highly filled composite materials, e.g. comprising approximately 60 volume % or greater of finely powdered particles of filler in a polymer matrix, are made by dissolving polymer in a volatilisable solvent, adding filler and forming a homogeneous mixture by high shear mixing. Most solvent is then removed while maintaining homogeneity in the mixture, preferably by evaporation in a high shear mill. Then, extruding a thin layer of the composite material and removing remaining solvent, as by heating. Bodies are formed from the dried layer, which are heated and pressed to melt and disperse melted polymer into the interstices between filler particles. Thereby, certain polymers unusable at low solids contents become effective bonding materials at high solids contents. Filler materials are chosen to tailor electrical and physical properties of the articles, which may comprise substrates for electronic circuits. Suitable polymers are certain polyarylene ethers soluble in cyclohexanone.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: November 25, 2003
    Assignee: Holl Technologies Company
    Inventors: Richard A. Holl, Philip L. Lichtenberger, Kenneth S. Yao
  • Patent number: 6635219
    Abstract: A method of regenerating a phase-change sputtering target for optical storage media. First, a used powder-metallurgy sputtering target composed of a target material, an adhesion material, and a backing plate is recycled. Then, the target material is separated from the backing plate. Then, the target adhesion material is scraped from the recycled target material Thereafter, the surface of the recycled target material is processed. Finally, the backing plate, a new adhesion material, the recycled target material, and new powders are placed in a vacuum thermal-pressure furnace in sequence to perform a thermal-pressure sintering process.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: October 21, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Jyh-Chung Wen, Ming-Shyong Lai, Bean-Jon Li
  • Patent number: 6635357
    Abstract: The lightweight bulletproof metal matrix macrocomposites (MMMC) contain (a) 10-99 vol. % of permeable skeleton structure of titanium, titanium aluminide, Ti-based alloys, and/or mixtures thereof infiltrated with low-melting metal selected from Al, Mg, or their alloys, and (b) 1-90 vol. % of ceramic and/or metal inserts positioned within said skeleton, whereby a normal projection area of each of said inserts is equal to or larger than the cross-section area of a bullet or a projectile body. The MMMC are manufactured as flat or solid-shaped, double-layer, or multi-layer articles containing the same inserts or different inserts in each layer, whereby insert projections of each layer cover spaces between inserts of the underlying layer. The infiltrated metal contains 1-70 wt. % of Al and Mg in the balance, optionally, alloyed with Ti, Si, Zr, Nb, V, as well as with 0-3 wt. % of TiB2, SiC, or Si3N4 sub-micron powders, to promote infiltrating and wetting by Al-containing alloys.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: October 21, 2003
    Inventors: Vladimir S. Moxson, Eugene Ivanov
  • Patent number: 6630009
    Abstract: A paste composition, including a binding agent charged with metallic powder, to be used in a solid freeform fabrication procedure, comprising: a) a solidifiable binding agent comprised of at least one polymerizable resin, with a viscosity of less than 4000 mPa.s, measured at 25° C.; b) at least one initiator, in a concentration greater than about 0.1% by mass with respect to the mass of the resin; and c) a mixture of at least two metallic powders, said mixture having a volumetric concentration greater than 40% with respect to the composition, wherein said mixture of metal powders is either i) a bimodal or trimodal mixture in nature, or ii) is a majority of stainless steel with an amount of NiB or NiP and combinations thereof effective to lower the sintering temperature.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: October 7, 2003
    Assignee: 3D Systems, Inc.
    Inventors: Khalil M. Moussa, Kenneth J. Newell, Catherine Hinczewski, Charles H. Zenuk
  • Publication number: 20030180172
    Abstract: When a cylinder block is cast, a bearing housing is constituted by a preform integrally cast with the cylinder block. In order to raise the strength of the bearing housing, a metal matrix composite is formed around the preform. The preform is constituted by a high volume factor member having a relatively high volume factor and two low volume factor members having a relatively low volume factor connected with top and under surfaces of the high volume factor member respectively. The high volume factor member is made of solid metal and the low volume factor member is made of sintered metal filaments. Base material of the cylinder block infiltrates into the low volume factor member to form a metal matrix composite in the preform.
    Type: Application
    Filed: March 17, 2003
    Publication date: September 25, 2003
    Inventor: Teruyuki Oda
  • Publication number: 20030173720
    Abstract: Channeled articles having very small diameter channels spaced very closely can be made by packing elongated cores in a fixture, clamping them, and then introducing matrix material around the cores. The matrix material is formed into a unitary body and solidified. The cores are pulled out, leaving open channels where they had been. Some core and matrix combinations will permit the cores to be pulled out. Others require a core release coating to be applied to the cores. The cores can be metal or ceramic or polymer, and the matrix can be metal or ceramic or polymer. The cores can be solid, or hollow. Rather than pulling the cores out, if they are polymer, they can be burned out. The matrix can be formed by liquid state, solid state, or hybrid liquid/solid state techniques. A related technique uses hollow cores, which are not pulled out, but which remain in the body after unification. For such tube-walled articles, the matrix can be formed similarly. Rather than insuring core release, core retention is required.
    Type: Application
    Filed: March 12, 2002
    Publication date: September 18, 2003
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher S. Musso, Thomas W. Eagar
  • Patent number: 6613273
    Abstract: Dental restorations are fabricated using metal powder. Preferably, the metal powder is a high fusing metal and preferably, the metal powder comprises a non-oxidizing metal. The metal powder is applied to a die and is covered with a covering material such as a refractory die material preferably in the form of a flowable paste. A second covering material may be sprinkled or dusted onto the paste. The model is then dried prior to firing. After drying, the model is sintered to provide a high strength metal restoration. After sintering, the outer shell can be broken off easily with one's hand to expose the sintered coping.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: September 2, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Gregg Daskalon, Arun Prasad, Denise L. North, Elie Zammarieh
  • Patent number: 6610244
    Abstract: The invention relates to a method for connecting a metallic support element to at least one body consisting of a powder metallurgical sintered material. The method is characterised in that said body is brought into contact with the support element in the form of a green body which is compacted from a sintered powder, in that a thin, flat copper body is brought into contact with the green body respectively and in that the entire resulting arrangement is heated to the temperature required to sinter the green body before being cooled again once the sintering process is complete.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: August 26, 2003
    Assignee: GKN Sinter Metals GmbH
    Inventors: Klaus Dollmeier, Jens Wahnschaffe
  • Patent number: 6602545
    Abstract: A method and apparatus for directly making rapid prototype tooling from a computer model having a free-form shape. The method steps comprise essentially: (a) machining a soft metal tooling base so as to contour at least one free-form surface in conformity with the computer model; (b) cold-gas dynamic spraying the contoured surface to form superimposed impact welded metal particle layers, the layers consisting of at least one thermal management under-layer comprising primarily copper, and at least an outer wear resistant layer comprising primarily tool steel.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: August 5, 2003
    Assignee: Ford Global Technologies, L.L.C.
    Inventors: Furqan Z Shaikh, Howard Douglas Blair, Tsung-Yu Pan
  • Publication number: 20030140987
    Abstract: A ductile particle-reinforced amorphous matrix composite characterized in that ductile powder is dispersed into amorphous matrix and the mixture is plastically worked to be consolidated and a method for manufacturing the same are provided. The amorphous powder includes any alloy, which can be produced in the form of amorphous structure and which is selected from the group consisting of Ni-, Ti-, Zr-, Al-, Fe-, La-, Cu- and Mg-based alloys. The method for manufacturing a ductile particle-reinforced amorphous matrix composite, the method comprising steps of preparing a mixture consisting of amorphous powder and ductile powder, obtaining a billet by compacting the mixture in a hermetically sealing condition, and plastic working the mixture by processing the billet at the temperature in the super-cooled liquid region of the amorphous alloy.
    Type: Application
    Filed: January 25, 2002
    Publication date: July 31, 2003
    Inventors: Dong Hyun Bae, Jin Kyu Lee, Do Hyang Kim, Won Tae Kim, Daniel J. Sordelet, Min Ha Lee
  • Patent number: 6599465
    Abstract: According to the inventive method for producing a composite part (4), a support body (1) is produced from a powder with a ferrous alloy base using powder metallurgy. A magnet body (2) which is based on an alloy that is rich in rare earths is applied to the support body (1) and both are then sintered in a furnace (1), whereby a solid joint is formed between the support body (1) and the magnet body (2).
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 29, 2003
    Assignee: Vacuumschemlze GmbH
    Inventors: Georg-Werner Reppel, Volker Zellmann
  • Patent number: 6582651
    Abstract: A process for forming a shaped metallic article, including the steps of combining the starting materials, forming the starting materials into a shape to produce a nonmetallic metal precuror article of a certain geometry, and converting the nonmetallic article to a metallic article by reduction or decomposition, while substantially retaining the geometry of the nonmetallic article. The forming step in which the starting materials are fabricated into a shape can include extrusion, dry pressing, or slurry casting. Further, another embodiment is a metallic article produced by converting a nonmetallic article with a certain geometry, including a plurality of open-ended channels, substantially to the same geometry as the nonmetallic article from which it was converted.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: June 24, 2003
    Assignee: Geogia Tech Research Corporation
    Inventors: Joe Kennedy Cochran, Jr., Kon Juin Lee, Thomas H. Sanders, Jr.
  • Publication number: 20030106395
    Abstract: The invention relates to agglomerates containing iron and at least one further element of groups 5 or 6 of the periodic system, characterized in that they have a porosity in the range of 20 to 65% by volume, in particular of 30 to 45% by volume. Hereby, a rapid dissolubility of the agglomerates in a metal melt is achieved.
    Type: Application
    Filed: August 1, 2002
    Publication date: June 12, 2003
    Applicant: Treibacher Industrie AG
    Inventor: Jurgen Leitner
  • Patent number: 6572814
    Abstract: A method of fabricating a semiconductor wafer support chuck apparatus having a first sintered layer and a second sintered layer. The method comprising the steps of providing the first sintered layer having a plurality of gas distribution ports and providing the second sintered layer having a plurality of grooves. The first sintered layer is stacked on top of the second sintered layer, where a diffusion bonding layer is disposed between the first sintered layer and the second sintered layer. Thereafter, the stacked first and second sintered layers are resintered such that the diffusion bonding layer joins the first and second sintered layers together to form a semiconductor wafer support apparatus.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: June 3, 2003
    Assignee: Applied Materials Inc.
    Inventors: Shamouil Shamoulian, Arnold Kholodenko, Senh Thach, Wing Cheng
  • Patent number: 6569380
    Abstract: A method to form a combined enclosure and heat sink structure for a semiconductor device is achieved. A first feedstock comprising a first mixture of powdered metal materials, lubricants, and binders is prepared. A second feedstock comprising a second mixture of powdered metal materials, lubricants, and binders is prepared such that the difference between the sintering shrinkage of each of the first and second feedstocks is less than 1%. The first and second feedstocks are pressed to form a first green part having an enclosure shape and a second green part having a heat sink shape. The lubricants and the binders from said first and second green parts are removed to form a first powdered skeleton and a second powdered skeleton. The first and second powdered skeletons are sintered to complete the combined enclosure and heat sink structure. The first and second powdered skeletons are in intimate contact during the sintering.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: May 27, 2003
    Assignee: Advanced Materials Technologies Pte, Ltd.
    Inventors: Kay-Leong Lim, Lye-King Tan, Eng-Seng Tan
  • Patent number: 6554882
    Abstract: A rapid tooling method is provided for molding metal particles, ceramic particles or mixtures thereof directly from patterns comprising a meltable, soluble or decomposable substance and preferably formed by rapid prototyping technology, as well as particle compositions therefor. The method comprises mixing at least about 95% by weight sinterable metal particles, sinterable ceramic particles or mixtures thereof with at least about 0.5 wt. % to about 5.0 wt. % binder to form a powder mixture; casting the mixture around a pattern; applying pressure sufficient to compact the mixture to form a preform; removing the pattern; and heating the preform at a sintering temperature sufficient to sinter the particles and form a molded article.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: April 29, 2003
    Assignee: Drexel University
    Inventors: Gongyao Zhou, Zongyan He
  • Patent number: 6551551
    Abstract: A method for joining powder metallurgy components, in particular, those made by metal injection molding is provided. The method includes providing a first and a second powder metallurgy compact each having a bonding surface and a bonding agent including a binder and fine particles. The bonding agent is placed between the bonding surfaces of the first and second powder metallurgy compacts. The first and second powder metallurgy compacts are then consolidated during a sintering cycle in which the first and second powder metallurgy compacts are joined by at least solid state diffusion of the fine particles.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: April 22, 2003
    Assignee: Caterpillar Inc
    Inventors: Gerald Albert Gegel, Eric Allen Ott
  • Publication number: 20030059331
    Abstract: There are disclosed a method for producing a composite material composed of a dispersing agent and a matrix, and a composite material produced by the method. The matrix is formed by the steps of coating a metal-coated dispersing agent to form a metal-coated layer on the surface of the dispersing agent, filling the metal-coated dispersing agent in a jig prepared in a fixed shape, and then causing the reaction of the metal-coated layer with a molten Al by impregnating the metal-coated dispersing agent with the molten Al filled in the jig.
    Type: Application
    Filed: March 25, 2002
    Publication date: March 27, 2003
    Applicant: NGK Insulators, Ltd.
    Inventors: Masayuki Shinkai, Masahiro Kida, Takahiro Ishikawa, Toshimasa Ochiai
  • Patent number: 6517774
    Abstract: The present invention is related to a family of materials that may act as a replacement for lead in applications where the high density of lead is important, but where the toxicity of lead is undesirable. The present invention more particularly provides a high density material comprising tungsten, fiber and binder. Methods and compositions of such materials and applications thereof are disclosed herein.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: February 11, 2003
    Assignee: Ideas to Market, L.P.
    Inventors: Alan V. Bray, Brian A. Muskopf, Michael L. Dingus
  • Patent number: 6514627
    Abstract: A plurality of catalyst disks pressed from porous catalyst material are stacked one on the other and together sintered with the application of pressure to make a stacked reactor for hydrogen production from hydrocarbons. To form especially tight seams the catalyst disks have projections formed in the area of contact with an adjacent catalyst disk. Hollow spaces formed in the catalyst disk or formed by two adjacent catalyst disks have a system for supporting the hollow spaces, as for example a cooper grid placed in the hollow space, which can be covered at least partially by a metal sheet or supporting bars pressed onto the catalyst disk.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: February 4, 2003
    Assignee: Ballard Power Systems AG
    Inventors: Dietmar Heil, Oskar Lamla, Martin Schübler
  • Patent number: 6508978
    Abstract: The use of hot pressing for weighting of a golf club head is disclosed herein. The preferred weighting material is a multiple component material that includes a high-density component and a binding component. A preferred multiple component material includes tungsten and tin. The hot pressing process is performed in an open air environment at standard atmospheric conditions.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: January 21, 2003
    Assignee: Callaway, Golf Company
    Inventor: Uday V. Deshmukh
  • Patent number: 6500226
    Abstract: This disclosure features a process of making a two part drill bit insert, namely, a body portion of hard particles such as tungsten carbide particles mixed in an alloy binding the particles. The alloy preferably comprises 6% cobalt with amounts up to about 10% permitted. The body is sintered into a solid member, and also joined to a PDC crown covering the end. The crown is essentially free of cobalt. The process sinters the crown and body while preserving the body and crown cobalt differences.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: December 31, 2002
    Assignee: Dennis Tool Company
    Inventor: Mahlon D. Dennis
  • Patent number: 6488887
    Abstract: A first compact (11) is molded by injection according to the MIM method in which a molding material composed of a mixture of metal powder and a binder is injected into a die for molding, after which a second compact (12) is molded by injection in close contact with the joining surface (110) of the first compact (11) thereby to fabricate a metal composite compact (1). The second compact (12) is molded by injection by making it flow and fill a die (8) in such a manner as to obtain a flow component (R) in the direction parallel to the joining surface (110) of the first compact (11) on the same joining surface (110). In a method according to another embodiment, cavity surfaces (60, 61) formed on a reference die (50) and a first replacement die (51), respectively, are placed in opposed relation to each other thereby to form a first cavity (71), in which the first compact (11) is molded by injection.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: December 3, 2002
    Assignee: Denso Corporation
    Inventors: Tsuyoshi Arai, Isao Makino, Eiji Mimura, Hisashi Kayano
  • Patent number: 6482533
    Abstract: An article having a hollow cavity formed therein and a method for forming the same. The article includes a hollow structure having an open end and a body portion that is surrounded by a powdered material. The article is processed in, for example, a hot isostatic pressing operation, to permit a pressurized fluid to consolidate the powdered material. The pressurized fluid is permitted to pass through the open end of the hollow structure and into the body portion to thereby prevent the body portion from collapsing while the powdered material is being consolidated.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: November 19, 2002
    Assignee: The Boeing Company
    Inventors: Thomas J. Van Daam, Timothy J. Hosking
  • Publication number: 20020155312
    Abstract: A coated body that has a substrate of tungsten, carbon, and cobalt, and wherein the substrate presents a surface. Eta phase is present at the surface of the substrate. Fibrous tungsten carbide grains are present at the surface of the substrate. The surface of the substrate has a surface roughness, Ra, of greater than about 12 microinches. A coating layer is on the surface of the substrate.
    Type: Application
    Filed: March 22, 2002
    Publication date: October 24, 2002
    Inventors: Alfred S. Gates, Aharon Inspektor
  • Patent number: 6461563
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different physical properties such as magnetic characteristics or hardness. This is accomplished through careful control of the relative shrinkage rates of these various parts. Additionally, care is taken to ensure that only certain selected physical properties are allowed to differ between the parts while others may be altered through relatively small changes in the composition of the feedstocks used. An additional application of the present invention is a process for forming, in a single integrated operation, an object that is contained within an enclosure while not being attached to said enclosure. This is accomplished by causing the shrinkage rate of the object to be substantially greater than that of the enclosure. As a result, after sintering, the object is found to have detached itself from the enclosure and is free to move around therein.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: October 8, 2002
    Assignee: Advanced Materials Technologies Pte. Ltd.
    Inventors: Kay-Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Patent number: 6461401
    Abstract: A composite structural metal use, for example, in drill bit bodies is disclosed. The metal includes powdered tungsten carbide, and binder metal consisting of a composition by weight of manganese in a range of about zero to 25 percent, nickel in a range of about zero to 15 percent, zinc in a range of about 3 to 20 percent, tin in a range of more than 1 percent to about 10 percent, and copper making up about 24 to 96 percent by weight of the composition. In one embodiment, the composition includes about 6 to 7 percent tin therein. In another embodiment, the composition includes about 0-6 percent by weight of cobalt.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: October 8, 2002
    Assignee: Smith International, Inc.
    Inventors: Kumar T. Kembaiyan, Thomas W. Oldham
  • Patent number: 6451249
    Abstract: This invention provides a composite product and an effective method for producing the same, based on an SHS or intense heat producing process. Said composite essentially comprises either (1) one or more skeletal structures of three dimensionally joined pieces of at least one ceramic material selected from carbide, boride, nitride and silicide of titanium, zirconium, tantalum, niobium, silicon, chromium, tungsten, and molybdenum, and metallic material of alloy and/or intermetallic compound which fills the gaps within each and between adjacent skeletal structures, or (2) a matrix consisting of SHS products of metallic and/or ceramic substances, and particles of superabrasive selected from diamond and high pressure polymorphism of boron nitride, which are held and distributed in the matrix in the whole, in the surface or surface area comprising the portion corresponding to the end working face.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: September 17, 2002
    Assignees: Ishizuka Research Institute, Ltd., Mitsue Koizumi, Manshi Ohyanagi, Moscow Steel & Alloys Institute SHS-Center
    Inventors: Mitsue Koizumi, Manshi Ohyanagi, Satoru Hosomi, Evgeny A. Levashov, Alexander V. Trotsue, Inna P. Borovinskaya
  • Patent number: 6416709
    Abstract: A base metal repair tape includes a first layer formed braze alloy bonded together with fibrillated polytetrafluoroethylene, a second layer formed from powdered base metal bonded together by fibrillated polytetrafluoroethylene and a third layer comprising a brazing alloy bonded together by fibrillated polytetrafluoroethylene. This is used to repair base metal by placing the first layer on the base metal and brazing the base metal powder so that the brazing alloy melts and diffuses into the base metal powder bonding it to the surface of the article. This permits the braze powder to be bonded to the base metal surface with minimal distance between the base powder particles. The number of alternating layers of base metal and braze alloy can be increased to increase the thickness of the repair. This can also be used to form small intricate parts.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: July 9, 2002
    Assignee: C.A. Patents, L.L.C.
    Inventors: Kevin Rafferty, Bruce Rowe
  • Publication number: 20020085941
    Abstract: A sintering process for producing an aluminide by reacting a first powder with a second powder, the first powder comprising MxAly wherein M is Fe, Ni or Ti, x≧1, y≧1 and x>y or y>x and the second powder comprises pure M or M alloy powder. Iron aluminides such as Fe3Al, FeAl or alloys thereof can be made by reacting powders of one or more of Fe3Al, FeAl3, FeAl2, Fe2Al5 or alloys thereof with pure iron or an iron alloy. Nickel aluminides such as Ni3Al or NiAl or alloys thereof can be made by reacting powders of one or more of NiAl3, Ni2Al3, Ni3Al2, Ni5Al3 or alloys thereof with pure Ni or a Ni alloy powder. Titanium aluminides such as Ti3Al, TiAl or alloys thereof can be made by reacting one or more of TiAl3, TiAl2 or alloys thereof with pure Ti or Ti alloy powder. The process provides a more dense product by solid state reaction of an intermediate intermetallic compound with a component of the final aluminide compact.
    Type: Application
    Filed: December 29, 2000
    Publication date: July 4, 2002
    Inventors: Seetharama C. Deevi, Shalva Gedevanishvili
  • Patent number: 6413061
    Abstract: A rotary compressor comprises a cylinder having an inner space and a groove, a roller sliding along the inside of the inner space of the cylinder, a vane penetrating through the groove, and refrigerant. The groove penetrates through the outside and inner space of the cylinder. The vane slides on the roller, and the vane also slides in and out of the groove. The vane includes stainless steel formed by sintering of powder material, a nitrogen diffusion layer disposed on the surface of the stainless steel, and a compound layer of iron and nitrogen disposed on the surface of the nitrogen diffusion layer. The stainless steel has a plurality of fine pores formed by sintering of powder material. The plurality of fine pores have a porosity of 15% or less.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: July 2, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mototaka Esumi, Kiyoharu Kyutoku
  • Publication number: 20020071781
    Abstract: The invention shows how powder injection molding may be used to form a continuous body having multiple parts, each of which has different functional properties such as corrosion resistance or hardness, there being no connective materials such as solder or glue between the parts. This is accomplished through careful control of the relative shrinkage rates of these various parts. Although there is no limit to how many parts with different functional properties can make up an object, special attention is paid to certain pairs of functional properties that are difficult and/or expensive to combine in a single object when other manufacturing means are used.
    Type: Application
    Filed: September 24, 2001
    Publication date: June 13, 2002
    Applicant: Advanced Materials Technologies Pte., Ltd
    Inventors: Kay Leong Lim, Lye-King Tan, Eng-Seng Tan, Robin Baumgartner
  • Patent number: 6399018
    Abstract: Solid objects are made by means of a novel multi-step forming, debinding, sintering and infiltrating process, using a metal-ceramic composition. In this process, the mixture is held for a period of time to degas and settle the powdered material from a liquid binder. The packed geometry is then heated to above the melting temperature of the binder to remove the binder portion of the solid geometry. Upon removal of the binder the binder-free solid geometry is raised to a temperature where the metal pre-sinters together into a three-dimensional rigid matrix with interconnected porosity to form a solid precursor. The porous matrix includes the particulate ceramic material and a first metal, which are at least partially sintered. A molten second metal is then introduced to the fill the porous matrix and form an infiltrated matrix.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: June 4, 2002
    Assignee: The Penn State Research Foundation
    Inventors: Randall M. German, Timothy J. Weaver, Julian A. Thomas, Sundar V. Atre, Anthony Griffo
  • Publication number: 20020020470
    Abstract: A method and apparatus for manufacturing a rare earth magnet is disclosed. In a first step, a compact is produced by compacting rare earth alloy powder in a predetermined space in an orienting magnetic field. Next, a demagnetizing process is performed for the compact, and the compact is ejected from the predetermined space. Then, a additional demagnetizing process is performed for magnetic powder adhering to a surface of the compact by applying an magnetic field to the compact after the compact is ejected.
    Type: Application
    Filed: June 27, 2001
    Publication date: February 21, 2002
    Inventors: Shuhei Okumura, Akira Nakamura
  • Patent number: 6315945
    Abstract: A consolidated complex shaped article having a density of at least about 95 percent of theoretical density is prepared by placing a plurality of separate bodies in an arrangement, such that each separate body is in contact with at least one other separate body to form an aggregate body and wherein at least one of the separate bodies is essentially dense. The material of each separate body is comprised of a ceramic, a cermet or a metal. The aggregate body is then consolidated at a consolidating temperature, superatmospheric pressure and time at temperature and time at superatmospheric pressure sufficient to form a consolidated shaped article. In consolidating the aggregate body, the consolidating temperature is a temperature that fails to form a liquid within at least one separate body and the superatmospheric temperature is applied for at least a portion of the time at the consolidating temperature.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: November 13, 2001
    Assignee: The Dow Chemical Company
    Inventors: James M. Macki, Eric A Ness, Robert T. Nilsson, Ellen M. Dubensky, Walter J. Rozmus, Jr., Clifford A. Kelto, Edward E. Timm
  • Patent number: 6312495
    Abstract: The present invention relates to a powder-metallurgically produced composite material comprising a matrix and a granular additive comprising at least one fine-grained refractory metal with an average grain size of at most 2 &mgr;m uniformly distributed in the matrix, so that the composite exhibits a residual porosity of <0.5%. Furthermore, the invention relates to a method for the production of the composite and its use as an electrical contact material.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: November 6, 2001
    Assignee: Louis Renner GmbH
    Inventors: Gerd Renner, Udo Siefken
  • Publication number: 20010033039
    Abstract: A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.
    Type: Application
    Filed: April 24, 2001
    Publication date: October 25, 2001
    Inventors: Robert J. Lauf, Paul A. Menchhofer, Claudia A. Walls, Arthur J. Moorhead
  • Patent number: 6306340
    Abstract: A brake rotor for automotive vehicles can be manufactured by a process that involves designing the rotor as two separate sections, forming each rotor section as a separate powdered metal compact, assembling the metal compacts together in a final configuration, and sintering the assembly to densify and bond the rotor sections into a unitary brake rotor body.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: October 23, 2001
    Assignee: DaimlerChrysler Corporation
    Inventors: David R. Seifrit, Jr., Maryanne R. Farkas