Chromium Containing, But Less Than 9 Percent Patents (Class 420/104)
  • Patent number: 8815025
    Abstract: A high strength steel, including about 0.05 to about 0.25% of C, less than about 0.5% of Si, about 0.5 to about 3.0% of Mn, not more than about 0.06% of P, not more than about 0.01% of S, about 0.50 to about 3.0% of Sol. Al, not more than about 0.02% of N, about 0.1 to about 0.8% of Mo, about 0.02 to about 0.40% of Ti, and the balance of iron and unavoidable impurities, wherein the steel has a structure formed of at least three phases including a bainite phase, and a retained austenite phase in addition to a ferrite phase having a composite carbide containing Ti and Mo dispersed and precipitated therein, wherein the total volume of the ferrite phase and the bainite phase is not smaller than 80%, the volume of the bainite phase is about 5% to about 60%, and the volume of the retained austenite phase is about 3 to about 20%.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: August 26, 2014
    Assignees: JFE Steel Corporation, ThyssenKrupp Steel AG
    Inventors: Takeshi Yokota, Akio Kobayashi, Kazuhiro Seto, Yoshihiro Hosoya, Thomas Heller, Brigitte Hammer, Rolf Bode, Günter Stich
  • Patent number: 8801872
    Abstract: A case hardened gear steel having enhanced core fracture toughness includes by weight percent about 16.3Co, 7.5Ni, 3.5Cr, 1.75Mo, 0.2W, 0.11C, 0.03Ti, and 0.02V and the balance Fe, characterized as a predominantly lath martensitic microstructure essentially free of topologically close-packed (TCP) phases and carburized to include fine M2C carbides to provide a case hardness of at least about 62 HRC and a core toughness of at least about 50 ksi?in.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 12, 2014
    Assignee: QuesTek Innovations, LLC
    Inventors: James A. Wright, Jason Sebastian
  • Patent number: 8801874
    Abstract: A steel plate for line pipes containing, in terms of % by weight, C: 0.02 to 0.06%, Si: 0.5% or less, Mn: 0.8 to 1.6%, P: 0.008% or less, S: 0.0008% or less, Al: 0.08% or less, Nb: 0.005 to 0.035%, Ti: 0.005 to 0.025%, and Ca: 0.0005 to 0.0035%, and optionally contains one or more of Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, Mo: 0.5% or less and V: 0.1% or less, and has a CP value of 0.95 or less represented by CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%), and a Ceq value of 0.30 or more represented by Ceq=C(%)+Mn(%)/6+{Cr(%)+Mo(%)+V(%)}/5 +{Cu(%)+Ni(%)}/15.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: August 12, 2014
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Makoto Suzuki, Tomohiro Matsushima, Akiyoshi Tsuji, Shinichi Kakihara, Nobuo Shikanai, Yutaka Awajiya
  • Publication number: 20140219859
    Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are families of alloys capable of forming crack-free weld overlays after multiple welding passes.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 7, 2014
    Applicant: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok
  • Publication number: 20140193288
    Abstract: The present invention provides a spring steel, which is finally formed into a spring, by making use of, at a maximum, the temper softening resistance effect due to alloying elements while suppressing the formation of hard inclusions of SiO2 and the generation of decarburization, which may cause deterioration of fatigue characteristics of the spring. The spring steel is characterized by comprising, in % by mass, C: 0.50 to 0.70%, Si: 1.00 to 5.00%, Mn: 0.30 to 2.00%, P: 0.0002 to 0.0500%, S: 0.0002 to 0.0500%, Cr: 0.10 to 3.50%, Al: 0.0005 to 0.0500%, and N: 0.0020 to 0.0100%, with the balance being Fe and inevitable impurities, wherein the H-value defined by the following equation (a) is 160 or more, and the C-value defined by the following equation (b) is 3.25 or less: H=33.6[C]+10.0[Si]+5.95[Mn]+11.1[Cr]+90.0??(a), and C=[Si]/[Mn]??(b).
    Type: Application
    Filed: August 15, 2012
    Publication date: July 10, 2014
    Inventors: Shinya Teramoto, Manabu Kubota
  • Publication number: 20140182414
    Abstract: There is provided an induction hardening steel excellent in quenching crack resistance. The induction hardening steel of the present embodiment includes, by mass percent, C: 0.35 to 0.6%, Si: at least 0.01% and less than 0.40%, Mn: 1.0 to 2.0%, S: more than 0.010% and at most 0.05%, Cr: 0.01 to 0.5%, Al: 0.001 to 0.05%, N: Ti/3.4 to 0.02%, and Ti: 0.005 to 0.05%, the balance being Fe and impurities, and satisfies the following formula (1): 2S-3Ti<0.040??(1) where, into each element symbol in formula (1), the content (mass %) of the corresponding element is substituted.
    Type: Application
    Filed: July 4, 2012
    Publication date: July 3, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kisung Kim, Hiroaki Tahira, Kaori Kawano, Koji Watari
  • Publication number: 20140161659
    Abstract: This high-strength hot-rolled steel plate contains specific amounts of C, Si, Mn, Al, V and also Ti and/or Nb so as to fulfill C?12(V/51+Ti/48+Nb/93)>0.03, and the rest consists of iron and unavoidable impurities. Ferrite is the main microstructure, the remaining microstructure is one or more selected from the group consisting of bainite, martensite and retained austenite, wherein the average particle diameter of precipitated carbides (the total content of V, Ti and Nb is 0.02% or greater) in the ferrite is less than 6 nm.
    Type: Application
    Filed: August 15, 2012
    Publication date: June 12, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Toshio Murakami, Masao Kinefuchi, Hideo Hata
  • Publication number: 20140150930
    Abstract: The present invention relates to a hot press forming steel plate made of a composition comprising: 0.3-1.0 wt % of C; 0.0-4.0 wt % of Mn; 1.0-2.0 wt % of Si; 0.01-2.0 wt % of Al; 0.015 wt % or less of S; 0.01 wt % or less of N; and the remainder being Fe and unavoidable impurities. Further, the present. invention relates to a method for manufacturing the hot press forming steel plate, characterized by comprising the steps of: heating, to between 1100 and 1300° C., a steel slab having the composition; performing hot rolling finishing between. an Ar3 transformation point and 950° C.; and performing winding between MS and 720° C. Further, the present invention. relates to a hot press formed member characterized by having the composition, and having a dual phase microstructure made of bainite and residual austenite.
    Type: Application
    Filed: July 15, 2011
    Publication date: June 5, 2014
    Inventors: Kyoo-Young Lee, Jin-Keun Oh, Jong-Sang Kim, Tae-Kyo Han
  • Publication number: 20140150249
    Abstract: A semi-processed electrical steel is provided comprising the elements .005 ? Tin ? .09% 0 < Carbon ? 0.050% .10 ? Manganese ? 1.00% .005 ? Phosphorus ? .120% .0 < Sulfur ? .010% .50 ? Silicon ? 2.50% .01 ? Aluminum ? 1.60% .0 ? Antimony < .
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Inventor: Gwynne Johnston
  • Patent number: 8709336
    Abstract: The invention concerns a method for making an abrasion resistant steel plate having a chemical composition comprising: 0.35%?C?0.8%, 0%?Si?2%, 0%?Al?2%, 0.35%?Si+Al?2%, 0%?Mn?2.5%, 0%?Ni?5%, 0%?Cr?5%, 0%?Mo?0.50%, 0%?W?1.00%, 0.1%?Mo+W/2?0.50%, 0%?B?0.02%, 0%?Ti?2%, 0%?Zr?4%, 0.05%?Ti+Zr/2?2%, 0%?S?0.15%, N<0.03%; optionally from 0% to 1.5% of Cu; optionally Nb, Ta or V with Nb/2+Ta/4+V?0.5%; optionally less than 0.1% of Se, Te, Ca, Bi or Pb; the rest being iron and impurities; the composition satisfying: 0.1%?C*=C?Ti/4?Zr/8+7×N/8?0.55% and 1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K>1.8, with K=0.5 if B?0.0005% and K=0 if B<0.0005% and Ti+Zr/2?7×N/2?0.05%; hardening after austenitization while cooling at a speed>0.5° C./s between a temperature>AC3 and ranging between T=800?270×C*?90×Mn?37×Ni?70×Cr?83×(Mo+W/2) and T?50° C.; then at a core speed Vr<115×ep?1.7 between T and 100° C., (ep=plate thickness in mm); cooling down to room temperature. The invention also concerns the resulting plate.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: April 29, 2014
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Publication number: 20140099228
    Abstract: Disclosed is a steel having high manufacturability and better rolling-contact fatigue properties. The steel contains C of 0.65% to 1.30%, Si of 0.05% to 1.00%, Mn of 0.1% to 2.00%, P of greater than 0% to 0.050%, S of greater than 0% to 0.050%, Cr of 0.15% to 2.00%, Al of 0.010% to 0.100%, N of greater than 0% to 0.025%, Ti of greater than 0% to 0.015%, and O of greater than 0% to 0.0025% and further contains iron and unavoidable impurities. Al-containing nitrogen compound particles dispersed in the steel have an average equivalent circle diameter of 25 to 200 nm, and Al-containing nitrogen compound particles each having an equivalent circle diameter of 25 to 200 nm are present in a number density of 1.1 to 6.0 per square micrometer.
    Type: Application
    Filed: May 25, 2011
    Publication date: April 10, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Masaki Kaizuka
  • Patent number: 8691030
    Abstract: The present application describes a steel composition that provides enhanced corrosion resistance. This steel composition includes one of vanadium in an amount of 1 wt % to 9 wt %, titanium in an amount of about 1 wt % to 9 wt %, and a combination of vanadium and titanium in an amount of 1 wt % to about 9 wt %. In addition, the steel composition includes carbon in an amount of 0.03 wt % to about 0.45 wt %, manganese in an amount up to 2 wt % and silicon in an amount up to 0.45 wt %. In one embodiment, the steel composition includes a microstructure of one of the following: ferrite, martensite, tempered martensite, dual phase ferrite and martensite, and dual phase ferrite and tempered martensite. Further, the present application describes a method for processing the steel composition and use of equipment such as oil country tubular goods, fabricated with the steel composition.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: April 8, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Dylan V. Pugh, Joseph C. Bondos, Shiun Ling, Raghavan Ayer, Shalawn K. Jackson, Jayoung Koo, Swarupa S. Bangaru
  • Publication number: 20140065007
    Abstract: There is provided a hot press-formed product, including a thin steel sheet formed by a hot press-forming method, and having a metallic structure that contains martensite at 80% to 97% by area and retained austenite at 3% to 20% by area, the remainder structure of which is at 5% by area or lower, whereby balance between strength and elongation can be controlled in a proper range and high ductility can be achieved.
    Type: Application
    Filed: June 8, 2012
    Publication date: March 6, 2014
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Junya Naitou, Toshio Murakami, Shushi Ikeda, Keisuke Okita
  • Publication number: 20140056754
    Abstract: There is provided a hot press-formed product, including a thin steel sheet formed by a hot press-forming method, and having a metallic structure that contains bainitic ferrite at 70% to 97% by area, martensite at 27% by area or lower, and retained austenite at 3% to 20% by area, the remainder structure of which is at 5% by area or lower, whereby balance between strength and elongation can be controlled in a proper range and high ductility can be achieved.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 27, 2014
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Junya Naitou, Toshio Murakami, Shushi Ikeda, Keisuke Okita
  • Publication number: 20140056753
    Abstract: There is provided a hot press-formed product, including a steel sheet formed by a hot press-forming method, and having a metallic structure that contains ferrite at 30% to 80% by area, bainitic ferrite at lower than 30% by area (not including 0% by area), martensite at 30% by area or lower (not including 0% by area), and retained austenite at 3% to 20% by area, whereby balance between strength and elongation can be controlled in a proper range and high ductility can be achieved.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 27, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Junya Naitou, Toshio Murakami, Shushi Ikeda, Keisuke Okita
  • Publication number: 20140044987
    Abstract: A steel sheet for a hot stamping member contains, as a chemical composition, 0.10 mass % to 0.35 mass % of C; 0.01 mass % to 1.0 mass % of Si; 0.3 mass % to 2.3 mass % of Mn; 0.01 mass % to 0.5 mass % of Al; limited to 0.03 mass % or less of P; limited to 0.02 mass % or less of S; limited to 0.1 mass % or less of N; and a balance consisting of Fe and unavoidable impurities, in which a standard deviation of diameters of iron carbides which are contained in a region from a surface to a ¼ thickness position of the steel sheet is less than or equal to 0.8 ?m.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 13, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Publication number: 20140037980
    Abstract: A hot stamped article has a component composition containing, in terms of % by mass, 0.002% to 0.1% of C, 0.01% to 0.5% of Si, 0.5% to 2.5% of Mn+Cr, 0.1% or less of P, 0.01% or less of S, 0.05% or less of t-Al, 0.005% or less of N, and 0.0005% to 0.004% of B which is optionally contained in a case where the Mn+Cr is 1.0% or more, the remainder being Fe and unavoidable impurities. The hot stamped article has a microstructure composed of, in terms of an area ratio, 0% or more and less than 90% of martensite, 10% to 100% of bainite, and less than 0.5% of unavoidable inclusion structures, or a microstructure composed of, in terms of an area ratio, 99.5% to 100% of bainitic ferrite, and less than 0.5% of unavoidable inclusion structures.
    Type: Application
    Filed: May 11, 2012
    Publication date: February 6, 2014
    Inventor: Kaoru Kawasaki
  • Patent number: 8641835
    Abstract: An iron alloy according to the present invention comprises: Al in an amount of from 3 to 5.5%; Mn in an amount from 0.2 to 6%; and the balance being iron (Fe), and inevitable impurities and/or a modifying element; when the entirety is taken as 100%. Since a high damping factor is obtainable at a low-strain amplitude, this iron alloy demonstrates a stable damping property even in a high-temperature region. Moreover, since the alloying elements are Al and Mn alone, and since their contents are less, the iron alloy according to the present invention is low in cost.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: February 4, 2014
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Keita Yamana, Motoharu Tanizawa, Masanori Harata, Kyoichi Kinoshita
  • Publication number: 20140030137
    Abstract: A steel for carburizing or carbonitriding use consisting of, by mass %, C: 0.1 to 0.3%, Si: 0.01 to 0.15%, Mn: 0.6 to 1.5%, S: 0.012 to 0.05%, Cr: 0.5 to 2.0%, Al: 0.030 to 0.050%, Ti: 0.0006 to 0.0025%, N: 0.010 to 0.025%, and 0: 0.0006 to 0.0012%, and, optionally, at least one selected from Mo?0.5%, Ni?1.5% and Cu?0.4%, and the balance of Fe and impurities. P and Nb are P?0.025% and Nb?0.003% respectively. Formulas of [?5.0?log(Ti×N)??4.4] and [?12.5?log(Al2×O3??11.7] are satisfied. Austenite grain coarsening is prevented even when the steel is heated in the process of carburizing or carbonitriding, and even under various hot forging temperatures. The steel has excellent bending fatigue strength after carburizing or carbonitriding.
    Type: Application
    Filed: January 23, 2012
    Publication date: January 30, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventor: Yoshihiro Daitoh
  • Patent number: 8636852
    Abstract: The high strength galvanized steel sheet contains C: more than 0.015% and lower than 0.100%, Si: 0.3% or lower, Mn: lower than 1.90%, P: 0.015% or more and 0.05% or lower, S: 0.03% or lower, sol.Al: 0.01% or more and 0.5% or lower, N: 0.005% or lower, Cr: lower than 0.30%, B: 0.0003% or more and 0.005% or lower, and Ti: lower than 0.014% in terms of mass %, and satisfies 2.2?[Mneq]?3.1 and 0.42?8[% P]+150B*?0.73. The steel microstructure contains ferrite and a second phase, in which the second phase area ratio is 3 to 15%, the ratio of the area ratio of martensite and retained ? to the second phase area ratio is more than 70%, and 50% or more of the area ratio of the second phase exists in the grain boundary triple point.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: January 28, 2014
    Assignee: JFE Steel Corporation
    Inventors: Yoshihiko Ono, Kenji Takahashi, Kaneharu Okuda, Shoichiro Taira
  • Publication number: 20130340899
    Abstract: The present invention has as its object the provision of steel sheet for hot stamping use which is excellent in part strength after hot stamping and delayed fracture resistance comprised of large C content high strength steel sheet in which effective hydrogen traps are formed in the steel material. The steel sheet of the present invention solves this problem by forming Fe—Mn-based composite oxides in the steel sheet and trapping hydrogen at the interfaces of the composite oxides and matrix steel and in the voids around the composite oxides. Specifically, it provides steel sheet for hot stamping use which is comprised of chemical ingredients which contain, by mass %, C: 0.05 to 0.40%, Si: 0.02% or less, Mn: 0.1 to 3%, S: 0.02% or less, P: 0.03% or less, Al: 0.005% or less, Ti: 0.01% or less, N: 0.01% or less, one or both of Cr and Mo in a total of 0.005 to 1%, and O: 0.003 to 0.03% and which have a balance of Fe and unavoidable impurities and which contains average diameter 0.
    Type: Application
    Filed: March 9, 2011
    Publication date: December 26, 2013
    Inventors: Kazuhisa Kusumi, Yuji Ogawa, Masayuki Abe, Hidekuni Murakami, Kengo Takeda, Jun Maki
  • Publication number: 20130323112
    Abstract: In a hot-rolled sheet, an average value of pole densities of an orientation group {100}<011> to {223}<110>, which is represented by an arithmetic mean of pole densities of orientations {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> in a thickness center portion of a thickness range of ? to ? from a surface of the steel sheet, is 1.0 to 6.5 and a pole density of a crystal orientation {332}<113> is 1.0 to 5.0; and a Lankford value rC in a direction perpendicular to a rolling direction is 0.70 to 1.10 and a Lankford value r30 in a direction that forms 30° with respect to the rolling direction is 0.70 to 1.10.
    Type: Application
    Filed: March 5, 2012
    Publication date: December 5, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Riki Okamoto, Nobuhiro Fujita, Manabu Takahashi, Kunio Hayashi, Tetsuo Kishimoto, Kazuaki Nakano, Takeshi Yamamoto
  • Patent number: 8562759
    Abstract: Disclosed herein are iron-based alloys having a structure comprising fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the step determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: October 22, 2013
    Assignee: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok
  • Publication number: 20130273391
    Abstract: A steel sheet according to the present invention has tensile strength of 980 MPa or more, exerts a high-yield ratio, and has excellent workability (in detail, strength-ductility balance). The steel sheet contains: C: 0.06-0.12% (excluding 0.12%); Si: 0.2% or less; Mn: 2.0-3.5%; at least one element selected from the group consisting of Ti, Nb, and V of 0.01-0.15% in total; B: 0.0003-0.005%; P: 0.05% or less; S: 0.05% or less; Al: 0.005-0.1%; N: 0.015% or less; and the balance is iron and unavoidable impurities, in which the content of ferrite is more than 5% to 15% or less, that of martensite is 25-55%, and the total content of bainite and tempered martensite is 30% or more to less than 70%, based on the whole microstructure, and in which the average crystal grain size of the ferrite is 3.0 ?m or less.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 17, 2013
    Inventors: Kazuyuki HAMADA, Tatsuya Asai
  • Publication number: 20130272913
    Abstract: This steel wire material contains 0.05%-1.2% C (“%” means “% by mass,” same hereinafter for chemical components.), 0.01%-0.7% Si, 0.1%-1.5% Mn, 0.02% max. P (not including 0%), 0.02% max. S (not including 0%), and 0.005% max. N (not including 0%), with the remainder being iron and unavoidable impurities. The steel wire material has a scale 6.0-20 ?m thick and holes of an equivalent circle diameter of 1 ?m max. in said scale that occupy 10% by area max. Said scale does not detach in the cooling process after hot rolling or during storage or transportation but can readily detach during mechanical descaling.
    Type: Application
    Filed: December 9, 2011
    Publication date: October 17, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Mikako Takeda, Shohei Nakakubo, Kazuhiko Kirihara, Masayuki Endo
  • Patent number: 8557061
    Abstract: Disclosed is a spring steel, containing: C: 0.35-0.65% (the term “%” herein means “mass %”, the same is true hereinbelow), Si: 1.5-2.5%, Mn: 0.05-1%, Cr: 0.05-1.9%, P: 0.015% or less (exclusive of 0%), S: 0.015% or less (exclusive of 0%), Ti: 0.025-0.1%, Al: 0.05% or less (exclusive of 0%), and N: 0.01% or less (exclusive of 0%), wherein an amount of Ti nitride, an amount of Ti sulfide, and an amount of Ti carbide satisfy the following formulas (1), (2), and (3); [Tiwith N]?3.42×[N]?0.354×[Al]?0.103×[Nb]??(1) [Tiwith S]?1.49×[S]??(2) [Tiwith C]?0.015 ??(3), in which [Tiwith N] represents the amount of Ti (mass %) forming Ti nitride, [Tiwith S] represents the amount of Ti (mass %) forming Ti sulfide, [Tiwith C] represents the amount of Ti (mass %) forming Ti carbide, and [N], [Al], [Nb], and [S] represent an amount (mass %) of each element in the steel. The spring steel of the present invention shows excellent resistance to hydrogen embrittlement.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: October 15, 2013
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventor: Nao Yoshihara
  • Publication number: 20130243641
    Abstract: A rolled steel bar or a wire rod for hot forging capable of coping with both bending/surface fatigue strength of components and machinability at a high level includes: a composition containing, in mass %, C: 0.1 to 0.25%, Si: 0.01 to 0.10%, Mn: 0.4 to 1.0%, S: 0.003 to 0.05%, Cr: 1.60 to 2.00%, Mo: 0.10% or less (including 0%), Al: 0.025 to 0.05%, and N: 0.010 to 0.025%, where a value of fn1 represented in a following formula (1) satisfies 1.82?fn1?2.10: fn1=Cr+2×Mo (1); impurities containing P: 0.025% or less, Ti: 0.003% or less, and O (oxygen): 0.002% or less; and a cross section in which a maximum value/a minimum value of an average ferrite grain diameter is 2.0 or less when measurement by observation is randomly carried out in 15 visual fields with an area per visual field set to be 62500 ?m2.
    Type: Application
    Filed: November 28, 2011
    Publication date: September 19, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Daitoh, Hideki Imataka, Masayuki Horimoto, Akira Shiga
  • Publication number: 20130213534
    Abstract: A steel material which is suitable for hot press working or hot three-dimensional bending and direct quench and which can be used to manufacture a high-strength formed article with sufficient quench hardening even by short time heating at a low temperature has a chemical composition comprising, in mass percent, C: 0.05-0.35%, Si: at most 0.5%, Mn: 0.5-2.5%, P: at most 0.03%, S: at most 0.01%, sol. Al: at most 0.1%, N: at most 0.01%, and optionally at least one element selected from the group consisting of B: 0.0001-0.005%, Ti: 0.01-0.1%, Cr: 0.18-0.5%, Nb: 0.03-0.1%, Ni: 0.18-1.0%, and Mo: 0.03-0.5% and has a steel structure in which the spheroidization ratio of carbides is 0.60-0.90.
    Type: Application
    Filed: August 22, 2012
    Publication date: August 22, 2013
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Kazuo HIKITA, Nobusato KOJIMA
  • Publication number: 20130216423
    Abstract: This high carbon steel wire rod, which has excellent drawability in addition to high strength required for a wire rod, contains 0.6-1.5% of C, 0.1-1.5% of Si, 0.1-1.5% of Mn, 0.02% or less of P (excluding 0%), 0.02% or less of S (excluding 0%), 0.03-0.12% of Ti, 0.001-0.01% of B and 0.001-0.005% of N, with solid-solved B being 0.0002% or more, solid-solved N being 0.0010% or less, and the balance being made up of iron and inevitable impurities. In addition, the content of Ti solid-solved in the steel is 0.002% by mass or more, and the content of Ti that formed carbides is 0.020% by mass or more.
    Type: Application
    Filed: October 24, 2011
    Publication date: August 22, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hiroshi Oura, Nao Yoshihara
  • Publication number: 20130216422
    Abstract: Provided is an abrasion-resistant steel plate or sheet which exhibits excellent weld toughness and excellent delayed fracture resistance and is thus suitable for construction machines, industrial machines, and so on. Specifically provided is a steel plate or sheet which contains, in mass %, 0.20 to 0.30% of C, 0.05 to 1.0% of Si, 0.40 to 1.2% of Mn, 0.010% or less of P, 0.005% or less of S, 0.40 to 1.5% of Cr, 0.005 to 0.025% of Nb, 0.005 to 0.03% of Ti, 0.1% or less of Al, 0.01% or less of N, and, as necessary, one or more of Mo, W, B, Cu, Ni, V, REM, Ca and Mg, and has a DI* of 45 to 180 while satisfying the relationship: C+Mn/4?Cr/3+10P?0.47, and which has a microstructure that comprises martensite as the matrix phase. DI*=33.85×(0.1×C)0.5×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.
    Type: Application
    Filed: June 29, 2011
    Publication date: August 22, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Keiji Ueda, Shinichi Suzuki
  • Publication number: 20130189536
    Abstract: A steel for electron-beam welding according to the present invention includes at least C: 0.02% to 0.10%, Si: 0.03% to 0.30%, Mn: 1.5% to 2.5%, Ti: 0.005% to 0.015%, N: 0.0020% to 0.0060%, and O: 0.0010% to 0.0035%, further includes S: limited to 0.010% or less, P: limited to 0.015% or less, and Al: limited to 0.004% or less, with a balance including iron and inevitable impurities. An index value CeEBB obtained by substituting composition of the steel into following Formula 1 falls in the range of 0.42 to 0.65%, the number of oxide having an equivalent circle diameter of 1.0 ?m or more is 20 pieces/mm2 or less at a thickness center portion in cross section along the thickness direction of the steel, and the number of oxide containing Ti of 10% or more and having an equivalent circle diameter of not less than 0.05 ?m or more and less than 0.5 ?m falls in the range of 1×103 to 1×105 pieces/mm2 at the thickness center portion.
    Type: Application
    Filed: October 27, 2011
    Publication date: July 25, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Ryuichi Honma, Ryuji Uemori, Tadashi Ishikawa, Akihiko Kojima, Manabu Hoshino
  • Publication number: 20130189146
    Abstract: A low-alloyed steel, comprising about 0.3 to about 0.50 wt. % carbon, about 2.0 to about 5.0 wt. % silicon, and a remainder of iron, optionally containing low amounts of molybdenum, titanium and/or boron, with up to about 0.5 wt. % impurities. The low-alloyed steel is useful for making structural components having a tensile strength of greater than about 1000 to about 2000 MPa, a yield strength of greater than about 700 to approximately 950 MPa; a break elongation of greater than about 17% and a scaling resistance of greater than about 650° C.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 25, 2013
    Applicant: Gesenkschmiede Schneider GmbH
    Inventor: Gesenkschmiede Schneider GmbH
  • Publication number: 20130183191
    Abstract: Provided is a bearing steel capable of exhibiting excellent cold workability in cold working that follows spheroidizing annealing and also capable of ensuring excellent abrasion resistance and rolling fatigue characteristics as a bearing member or the like. The bearing steel contains C: 0.9 to 1.10%, Si: 0.05 to 0.49%, Mn: 0.1 to 1.0%, P: not more than 0.05% (excluding 0%), S: not more than 0.05% (excluding 0%), Cr: 0.03 to 0.40%, Al: not more than 0.05% (excluding 0%), N: 0.002 to 0.025%, Ti: not more than 0.0030% (excluding 0%), and 0: not more than 0.0025% (excluding 0%), with the remainder being iron and unavoidable impurities. The average aspect ratio of cementite is not more than 2.00, the average circle-equivalent diameter of cementite is 0.35 to 0.6 ?m, and the number density of cementite having a circle-equivalent diameter of not less than 0.13 ?m is not less than 0.45/?m2.
    Type: Application
    Filed: July 25, 2011
    Publication date: July 18, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Masaki Kaizuka, Mutsuhisa Nagahama
  • Publication number: 20130176098
    Abstract: A magnetic material constituted by a grain compact 1 obtained by shaping metal grains 11 and then heat-treating them in an oxidizing ambience, wherein the metal grains 11 are made of a Fe—Cr—Si alloy and their FeMetal/(FeMetal+FeOxide) ratio as measured before shaping by XPS, with respect to the sum of integral values at the peaks of 709.6 eV, 710.7 eV and 710.9 eV, or FeOxide, and peak integral value at 706.9 eV, or FeMetal, is 0.2 or more.
    Type: Application
    Filed: July 11, 2012
    Publication date: July 11, 2013
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Hitoshi MATSUURA, Hideki OGAWA, Atsushi TANADA, Kiyoshi TANAKA, Kenji OTAKE
  • Patent number: 8475605
    Abstract: In the steel for a surface layer hardening which is treated with carburizing in a temperature range of 800° C. to 900° C., chemical composition thereof contains, by mass %, C: 0.10% to 0.60%, Si: 0.01% to 2.50%, Mn: 0.20% to 2.00%, S: 0.0001% to 0.10%, Cr: 2.00% to 5.00%, Al: 0.001% to 0.50%, N: 0.0020% to 0.020%, P: 0.001% to 0.050%, and O: 0.0001% to 0.0030%; the remaining portion thereof includes Fe and unavoidable impurities; and the total amount of Cr, Si, and Mn satisfies, by mass %, 2.0?Cr+Si+Mn?8.0.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: July 2, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Manabu Kubota, Tatsuro Ochi
  • Publication number: 20130156630
    Abstract: There is provided a steel for induction hardening in which cracks are less liable to occur and high hardness and seizure resistance are attained even if a tempering process after induction hardening is omitted. The steel for induction hardening according to the present invention contains, by mass percent, C: 0.20 to 0.34%, Si: at most 0.20%, Mn: 0.75 to 2.0%, P: at most 0.03%, S: at most 0.20%, Cr: 0.05 to 1.2%, Ti: at least 0.002% and less than 0.030%, Al: 0.005 to 0.04%, and N: 0.0040 to 0.020%, the balance being Fe and impurities, and satisfies Formula (1): 1.20?Mn+Cr?2.10 ??(1) where the content (mass %) of each element is substituted for each of the symbols of elements in Formula (1).
    Type: Application
    Filed: June 27, 2011
    Publication date: June 20, 2013
    Applicant: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yuta Mizobe, Hiroaki Tahira, Kan Yoshino
  • Publication number: 20130153091
    Abstract: A hot-rolled steel sheet has an average value of the X-ray random intensity ratio of a {100} <011> to {223} <110> orientation group at least in a sheet thickness central portion that is in a sheet thickness range of ? to ? from a steel sheet surface of 1.0 to 6.0, an X-ray random intensity ratio of a {332} <113> crystal orientation of 1.0 to 5.0, rC which is an r value in a direction perpendicular to a rolling direction of 0.70 to 1.10, and r30 which is an r value in a direction that forms an angle of 30° with respect to the rolling direction of 0.70 to 1.10.
    Type: Application
    Filed: July 27, 2011
    Publication date: June 20, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Nobuhiro Fujita, Kunio Hayashi, Riki Okamoto, Manabu Takahashi, Tetsuo Kishimoto, Hiroshi Yoshida
  • Publication number: 20130146181
    Abstract: A steel for a carburizing and a carburized steel component having a steel portion and a carburized layer with a thickness of more than 0.4 mm to less than 2 mm which is formed on an outside of the steel portion. A chemical composition of the steel for the carburizing and the steel portion of the carburized steel component satisfies simultaneously equations of a hardness parameter, a hardenability parameter, and an AlN precipitation parameter.
    Type: Application
    Filed: February 8, 2012
    Publication date: June 13, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventor: Manabu Kubota
  • Publication number: 20130127100
    Abstract: Provided are: a steel wire rod material for a high-strength spring, which does not undergo the increase in deformation resistance arising from the increase in hardness and can exhibit good wire-drawing processability and the like even when a heat treatment, which deteriorates productivity, is eliminated or a simplified and rapid heat treatment is employed instead; a useful method for producing the steel wire rod material for a high-strength spring; a high-strength spring produced using the steel wire rod material for a high-strength spring as a material; and others. This steel wire rod material for a high-strength spring is a steel wire rod material that has been hot-rolled already, and has a texture having a specified chemical composition and mainly composed of pearlite, wherein the average value (Pave) of the pearlite nodule size numbers and the standard deviation (P?) of the pearlite nodule size numbers fulfill the following formulae (1) and (2), respectively: 9.5?Pave?12.0;??(1) and 0.2?P??0.
    Type: Application
    Filed: August 30, 2011
    Publication date: May 23, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomonobu Ishida, Nao Yoshihara, Shuhei Kitamura
  • Publication number: 20130076477
    Abstract: The present invention provides a Fe-group-based soft magnetic powder that is used for the pressed powder magnetic cores for a choke coil, reactor coil, etc., and that has a higher magnetic permeability. At least one selected from Fe, Co, or Ni that is generally used is used as the main component of the Fe-group-based alloy (iron-based alloy) soft magnetic powder. The soft magnetic powder is produced by adding a small amount of Nb (0.05-4 wt %) or V, Ta, Ti, Mo, or W, to the molten metal and by means of an inexpensive method such as the water-atomizing method.
    Type: Application
    Filed: June 7, 2011
    Publication date: March 28, 2013
    Inventor: Yasushi Kino
  • Patent number: 8404178
    Abstract: The invention provides a high-strength pearlitic steel rail, which is inexpensive, and has a tensile strength of 1200 MPa or more, and is excellent in delayed fracture properties. Specifically, the rail contains, in mass percent, C of 0.6 to 1.0%, Si of 0.1 to 1.5%, Mn of 0.4 to 2.0%, P of 0.035% or less, S of 0.0005 to 0.010%, and the remainder is Fe and inevitable impurities, wherein tensile strength is 1200 MPa or more, and size of a long side of an A type inclusion is 250 mm or less in at least a cross-section in a longitudinal direction of a rail head, and the number of A type inclusions, each having a size of a long side of 1 mm to 250 mm, is less than 25 per observed area of 1 mm2 in the cross-section in the longitudinal direction of the rail head.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: March 26, 2013
    Assignee: JFE Steel Corporation
    Inventors: Minoru Honjo, Tatsumi Kimura, Shinichi Suzuki, Nobuo Shikanai
  • Publication number: 20130068449
    Abstract: A hardfacing composition composed of an Fe—Cr alloy. The alloy is comprised of 80 wt % iron, about 2 wt % to about 20 wt % Cr, less than 1 wt % Si and less than 1 wt % C. The alloy's microstructure is at least 80 vol % martensite; and less than 20 vol % austenite.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: NATIONAL OILWELL VARCO,LP.
    Inventors: Raju PILLAI, Jiinjen A. SUE, Parul W. DHALL
  • Patent number: 8394209
    Abstract: A high-strength steel sheet according to the present invention not only is suitably adjusted in its chemical elements composition, but also has a DE value defined by the following Equation (1) of 0.0340% or more, and a carbon equivalent Ceq defined by the following Equation (2) of 0.45% or less: DE value=[Ti]+[Nb]+0.3[V]+0.0075[Cr]??(1) where, [Ti], [Nb], [V], and [Cr] represent contents (mass %) of Ti, Nb, V, and Cr, respectively; Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 ??(2) where, [C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] represent contents (mass %) of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. A high-strength steel sheet resistant to strength reduction and good in low-temperature toughness of HAZ even when subjected for a long time to a stress-relief annealing process after being processed by welding, is provided.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: March 12, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Manabu Izumi, Makoto Kariyazaki
  • Publication number: 20130040165
    Abstract: Disclosed is a high-strength steel sheet having a tensile strength of 1180 MPa or more and having satisfactory seam weldability. The steel sheet has a chemical composition of C: 0.12% to 0.40%, Si: 0.003% to 0.5%, Mn 0.01% to 1.5%, Al: 0.032% to 0.15%, N: 0.01% or less, P: 0.02% or less, S: 0.01% or less, Ti: 0.01% to 0.2% or less, and B: 0.0001% to 0.01%, with the remainder including iron and inevitable impurities, has a Ceq1 (=C+Mn/5+Si/13) of 0.50% or less, and has a steel structure of a martensite single-phase structure.
    Type: Application
    Filed: July 12, 2012
    Publication date: February 14, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Atsuhiro SHIRAKI, Yukihiro Utsumi
  • Publication number: 20130039804
    Abstract: An electrical steel comprises a mixture of elements comprising at least the following elements by weight percent. 0% < Chromium <1.0% 0% < Copper <0.10%? 0% < Nickel ?<6.0%. The electrical steel has a partial recrystallization with smaller grain size than would be the grain size given a complete recrystallization. The electrical steel has a yield strength above 550 N/mm2 and an electrical loss below 2.0 watts/pound at 1.5 Tesla at 60 Hz which corresponds to 3.5 watts/kg at 1.5 Tesla at 50 Hz.
    Type: Application
    Filed: October 15, 2012
    Publication date: February 14, 2013
    Inventor: Gwynne Johnston
  • Publication number: 20130025747
    Abstract: A steel for an induction hardening including, by mass %, C: more than 0.75% to 1.20%, Si: 0.002 to 3.00%, Mn: 0.20 to 2.00%, S: 0.002 to 0.100%, Al: more than 0.050% to 3.00%, P: limited to 0.050% or less, N: limited to 0.0200% or less, O: limited to: 0.0030% or less, and the balance composing of iron and unavoidable impurities, wherein an Al content and a N content satisfy, by mass %, Al?(27/14)×N>0.050%.
    Type: Application
    Filed: February 15, 2011
    Publication date: January 31, 2013
    Inventors: Manabu Kubota, Toshiharu Aiso, Kei Miyanishi
  • Patent number: 8361382
    Abstract: A steel rail including a composition of, in mass percent, C of 0.6% to 1.0%, Si of 0.1% to 1.5%, Mn of 0.4% to 2.0%, P of 0.035% or less, S of 0.010% or less, Ca of 0.0010% to 0.010%, and the remainder being Fe and inevitable impurities, wherein the tensile strength is 1200 MPa or more, and the size of a long side of a C type inclusion is 50 ?m or less in at least a cross-section in a longitudinal direction of a rail head, and the number of Ca type inclusions, each having a size of a long side of 1 ?m to 50 ?m, is 0.2 to 10 per observed area of 1 mm2 in the cross-section in the longitudinal direction of the rail head.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: January 29, 2013
    Assignee: JFE Steel Corporation
    Inventors: Minoru Honjo, Tatsumi Kimura, Shinichi Suzuki, Nobuo Shikanai
  • Publication number: 20130022491
    Abstract: Provided is a high-carbon steel wire which gives steel wires having high strength and has excellent suitability for wiredrawing and which after being wiredrawn, has excellent fatigue properties. The high-carbon steel wire has an adequately regulated chemical composition and has a pearlite structure in an areal proportion of 90% or more. In 2,000 ?m2 of the pearlite structure, the number of BN compound grains having an equivalent-circle diameter of 100 nm or more but less than 1,000 nm is 100 or less (including 0) and the number of BN compound grains having an equivalent-circle diameter of 1,000 nm or more is 10 or less (including 0).
    Type: Application
    Filed: March 17, 2011
    Publication date: January 24, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hiroshi Oura, Nao Yoshihara
  • Patent number: RE44153
    Abstract: Hot-rolled steel sheet which then can be cold-rolled, coated, the steel in the sheet having the following composition by weight: 0.15%<carbon<0.5% 0.5%<manganese<3% 0.1%<silicon<0.5% 0.01%<chromium<1% titanium<0.2% aluminum<0.1% phosphorus<0.1% sulfur<0.05% 0.0005%<boron<0.08%, the remainder being iron and impurities inherent in processing, the sheet ensuring a very high mechanical resistance after thermal treatment and the aluminum-based coating ensuring a high resistance to corrosion.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: April 16, 2013
    Assignee: ArcelorMittal Atlantique et Lorraine
    Inventors: Jean-Pierre Laurent, Jean-Paul Hennechart, Dominique Spehner, Jacques Devroc
  • Patent number: RE44940
    Abstract: Hot-rolled steel sheet which then can be cold-rolled, coated, the steel in the sheet having the following composition by weight: 0.15%<carbon<0.5% 0.5%<manganese<3% 0.1%<silicon<0.5% 0.01%<chromium<1% titanium<0.2% aluminum<0.1% phosphorus<0.1% sulfur<0.05% 0.0005%<boron<0.08%, the remainder being iron and impurities inherent in processing, the shoot ensuring a very high mechanical resistance after thermal treatment and the aluminum-based coating ensuring a high resistance to corrosion.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: June 10, 2014
    Assignees: ArcelorMittal France, ArcelorMittal Atlantique et Lorraine
    Inventors: Jean-Pierre Laurent, Jean-Paul Hennechart, Dominique Spehner, Jacques Devroc