Zinc Containing Patents (Class 420/408)
  • Patent number: 9222161
    Abstract: The magnesium alloy sheet disclosed herein has dispersed therein particles of an intermetallic compound containing an additive element (e.g., Al) and Mg (a typical example of which is Mg17Al12), and the ratio obtained by dividing the diffraction intensity of the main diffraction plane (4,1,1) of the intermetallic compound by the diffraction intensity of the c plane (0,0,2) of the Mg alloy phase in an XRD analysis of the surface of the sheet is 0.040 or more. The method includes: a casting step of producing a cast material composed of a magnesium alloy containing an additive element by continuous casting; a heat treatment step of holding the cast material at 400° C. or higher and then cooling the cast material at a cooling rate of 30° C/min or less to produce a heat-treated material; and a rolling step of subjecting the heat-treated material to warm rolling to produce a rolled sheet.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: December 29, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryuichi Inoue, Kohji Inokuchi, Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20150017057
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Application
    Filed: August 4, 2014
    Publication date: January 15, 2015
    Inventors: Ryuichi INOUE, Nozomu KAWABE, Nobuyuki MORI, Masatada NUMANO, Junichi MATSUMOTO, Motonori NAKAMURA, Masayuki NISHIZAWA, Atsushi KIMURA, Yukihiro OISHI
  • Publication number: 20140332121
    Abstract: A magnesium alloy having high ductility and high toughness, and a preparation method thereof are provided, in which the magnesium alloy includes 1.0-3.5 wt % of tin, 0.05-3.0 wt % of zinc, and the balance of magnesium and inevitable impurities, and a preparation method thereof. Magnesium alloy with a relatively small tin content is added with zinc, and optionally, with one or more alloy elements selected from aluminum, manganese and rare earth metal, at a predetermined content ratio. As a result, the alloy exhibits superior ductility and moderate strength due to the suppression of excessive formation of precipitates and some precipitates hardening effect, respectively. Accordingly, compared to extruded material prepared from conventional commercial magnesium alloys, higher ductility and toughness are provided, so that the alloy can be widely applied over the entire industries including automotive and aerospace industries.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Applicant: KOREA INSTITUTE OF MACHINERY AND MATERIALS
    Inventors: Sung Hyuk Park, Young Min Kim, Ha-Sik Kim, Bong Sun You, Chang Dong Yim
  • Patent number: 8828158
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Ryuichi Inoue, Nozomu Kawabe, Nobuyuki Mori, Masatada Numano, Junichi Matsumoto, Motonori Nakamura, Masayuki Nishizawa, Atsushi Kimura, Yukihiro Oishi
  • Publication number: 20140200652
    Abstract: The production of microstructured surfaces in magnesium alloys, containing zinc as the major alloying element, in particular in absorbable implants such as stents, wherein microstructures in sizes of up to 5 ?m (micrometers) are generated on a magnesium alloy base body of the absorbable implant, for example of the absorbable stent, by way of optionally combined, pickling and electrochemical micropolishing processes, and allow better adhesion of a polymer coating (including higher break resistance) and higher corrosion resistance. The microstructured surface is produced out of the bulk material and exhibits no delamination from the base material during the mechanical deformation of the implant.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 17, 2014
    Applicant: BIOTRONIK AG
    Inventors: Ullrich Bayer, Monika Badendieck, Susanne Peters, Thomas Drobek, Okechukwu Anopuo
  • Publication number: 20140065009
    Abstract: An alloy and an implant having a three-dimensional structure based on such alloy. The alloy comprises a monophasic MgZn alloy containing from 2.0 wt. % Zn to 6 wt. % Zn, having less than 0.001 wt. % of one or more other elements with the remainder being Mg. In some embodiments, the alloy is substantially free of microgalvanic elements. In some embodiments, the alloy includes a MgZnCa alloy containing nanosized precipitates being less noble than the Mg matrix alloy and having a Zn content ranging from 3.0 wt. % Zn to 6 wt. % Zn and a calcium content ranging from 0.0005 wt. % to 1.0 wt. %, having less than 0.001 wt. % of one or more other elements with the remainder being Mg. In other embodiments, the alloy includes a MgZnCa alloy containing nanosized precipitates being less noble than the Mg matrix alloy, a plurality of nanosized precipitates being more noble than the Mg matrix and having a Zn content ranging from 3.0 wt. % Zn to 6 wt. % Zn, a calcium content ranging from 0.0005 wt. % to 1.0 wt.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 6, 2014
    Inventors: Thomas Imwinkelried, Stefan Beck, Peter Uggowitzer
  • Patent number: 8657973
    Abstract: Magnesium-based alloy wire excelling in strength and toughness, its method of manufacture, and springs in which the magnesium-based alloy wire is utilized are made available. The magnesium-based alloy wire contains, in mass %, 0.1 to 12.0% Al, and 0.1 to 1.0% Mn, and is provided with the following constitution. Diameter d that is 0.1 mm or more and 10.0 mm or less; length L that is 1000d or more; tensile strength that is 250 MPa or more; necking-down rate that is 15% or more; and elongation that is 6% or more. Such wire is produced by draw-forming it at a working temperature of 50° C. or more, and by heating it to a temperature of 100° C. or more and 300° C. or less after the drawing process has been performed.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: February 25, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo (SEI) Steel Wire Corp.
    Inventors: Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20140044586
    Abstract: The present invention provides magnesium alloy which has sufficiently high strength at room temperature and high temperature. Disclosed is a magnesium alloy comprising: aluminum (Al): 14.0 to 23.0% by mass, calcium (Ca): 11.0% by mass or less (not including 0% by mass), strontium (Sr): 12.0% by mass or less (not including 0% by mass), and zinc (Zn): 0.2 to 1.0% by mass.
    Type: Application
    Filed: March 28, 2012
    Publication date: February 13, 2014
    Inventors: Kinji Hirai, Kenji Higashi, Yorinobu Takigawa, Tokuteru Uesugi
  • Patent number: 8637163
    Abstract: An alloy with a high glass forming ability characterized by containing a group of elements A with atomic radii of less than 0.145 nm of a total of 20 to 85 atm %, a group of elements B with atomic radii of 0.145 nm to less than 0.17 nm of a total of 10 to 79.7 atm %, and a group of elements C with atomic radii of 0.17 nm or more of a total of 0.3 to 15 atm %; when the elements with the greatest contents in the group of elements A, group of elements B, and group of elements C are respectively designated as the “element a”, “element b”, and “element c”, by the ratio of the content of the element a in the group of elements A (for example, Zn and/or Al), the ratio of the content of the element b in the group of elements B (for example, Mg), and the ratio of the content of the element c in the group of elements C (for example, Ca) all being 70 atm % or more; and by the liquid forming enthalpy between any two elements selected from the element a, element b, and element c being negative.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: January 28, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kohei Tokuda, Koichi Nose, Yuichi Sato, Makoto Nakazawa
  • Patent number: 8591674
    Abstract: A method of enhancing the ductility of magnesium alloy sheets containing 85% or more by weight of magnesium is described. An annealed, substantially strain free, sheet of generally uniform grain size is locally deformed in local regions to develop strained ‘islands’ of a predetermined strain embedded in a substantially strain-free matrix and then annealed. The deformed regions undergo recrystallization and grain growth while the remainder of the sheet suffers only minor change in grain size, leading to sheet with grains having a bimodal size distribution. The ductility of alloys processed in this way is significantly greater than the ductility of the unprocessed, uniform grain size alloy without compromise to the tensile strength of the alloy.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: November 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Sushil Kumar Mishra, Shashank Tiwari, Asim Tewari, Jon T. Carter, Deepika Sachdeva
  • Publication number: 20130183193
    Abstract: A magnesium alloy that has excellent ignition resistance and is excellent in both strength and ductility. The magnesium alloy includes, by weight, 1.0% or greater but less than 7.0% of Al, 0.05% to 2.0% of Ca, 0.05% to 2.0% of Y, greater than 0% but not greater than 6.0% of Zn, and the balance of Mg, and the other unavoidable impurities. The total content of the Ca and the Y is equal to or greater than 0.1% but less than 2.5% of the total weight of the magnesium alloy. The Mg alloy forms a dense composite oxide layer that acts as a protective film. Thus the Mg alloy has very excellent oxidation resistance and ignition resistance, can be melted, cast and machined in the air or a common inert atmosphere (Ar or N2), and can reduce the spontaneous ignition of chips that are accumulated during the process of machining.
    Type: Application
    Filed: October 4, 2011
    Publication date: July 18, 2013
    Applicant: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Young Min Kim, Ha Sik Kim, Bong Sun You, Chang Dong Yim
  • Patent number: 8475608
    Abstract: Magnesium-based hydrogen storage alloys having metallic magnesium (Mg) and a magnesium-containing intermetallic compound (MgxMy wherein y is 1?x) and containing not less than 60 mass-% of magnesium in total, and having a phase of a primarily crystallized magnesium-containing intermetallic compound in its solidification structure.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: July 2, 2013
    Assignee: Japan Metals and Chemicals Co., Ltd.
    Inventors: Masahito Osawa, Hidenori Tomioka, Naoyoshi Terashita, Noboru Hayami, Shigeru Tsunokake
  • Publication number: 20130039805
    Abstract: A magnesium alloy which contains magnesium as a main component and other elements added has a microstructure in which grains surrounded by high angle grain boundaries consist of subgrains and fine particles are dispersed into the subgrains.
    Type: Application
    Filed: March 7, 2011
    Publication date: February 14, 2013
    Inventors: Hidetoshi Somekawa, Toshiji Mukai
  • Patent number: 8313692
    Abstract: An Mg-base alloy shows that an Mg-base alloy, which is added Zn and Al to magnesium, has a composition represented by (100-a-b) wt % Mg-a wt % Al-b wt % Zn, and satisfying 0.5?b/a. The alloy can reduce yield anisotropy, which is a serious problem for the wrought magnesium alloy, while maintaining a high strength property. The alloy is produced by additive elements, such as Zn and Al, which are easily obtained in place of rare earth elements.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 20, 2012
    Assignee: National Institute for Materials Science
    Inventors: Hidetoshi Somekawa, Alok Singh, Yoshiaki Osawa, Toshiji Mukai
  • Patent number: 8308878
    Abstract: Magnesium-based alloy wire excelling in strength and toughness, its method of manufacture, and springs in which the magnesium-based alloy wire is utilized are made available. The magnesium-based alloy wire contains, in mass %, 0.1 to 12.0% Al, and 0.1 to 1.0% Mn, and is provided with the following constitution. Diameter d that is 0.1 mm or more and 10.0 mm or less; length L that is 1000 d or more; tensile strength that is 250 MPa or more; necking-down rate that is 15% or more; and elongation that is 6% or more. Such wire is produced by draw-forming it at a working temperature of 50° C. or more, and by heating it to a temperature of 100° C. or more and 300° C. or less after the drawing process has been performed.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: November 13, 2012
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo (SEI) Steel Wire Corp.
    Inventors: Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 8089029
    Abstract: A method and apparatus is provided for processing a medical device formed from a bioabsorbable metallic material. The method begins by generating a beam of radiation onto the bioabsorbable metallic material. The radiation beam is transmitted through a fluid medium and onto a heat affected zone (HAZ) of the bioabsorbable metallic material to thereby cool the HAZ and reduce a concentration of oxygen surrounding the HAZ.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: January 3, 2012
    Assignee: Boston Scientific SciMed, Inc.
    Inventor: Aiden Flanagan
  • Patent number: 8062439
    Abstract: A magnesium alloy sheet having an adequate strength and an excellent bendability is provided along with a method of manufacturing such an alloy sheet. The method comprises, rolling a magnesium alloy sheet through a reduction roll, the alloy thereof containing about 0.1-10.0 mass % of Al and about 0.1-4.0 mass % of Zn, wherein the magnesium alloy sheet has a surface temperature of about 100° C. or below at the time just before it is fed in the reduction roll, and the reduction roll has a surface temperature in the range of about 100° C. to 300° C. Particularly, when executing multipass rolling, at least the last pass is accomplished in non-preheat rolling wherein the magnesium alloy sheet and the reduction roll have specified surface temperatures, respectively.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: November 22, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Shimizu, Nozomu Kawabe, Akira Kishimoto
  • Patent number: 7942986
    Abstract: A magnesium-based alloy consists of 1.5-4.0% by weight rare earth element(s), 0.3-0.8% by weight zinc, 0.02-0.1% by weight aluminium, and 4-25 ppm beryllium. The alloy optionally contains up to 0.2% by weight zirconium, 0.3% by weight manganese, 0.5% by weight yttrium and 0.1% by weight calcium. The remainder of the alloy is magnesium except for incidental impurities.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: May 17, 2011
    Assignee: Cast Centre Pty Ltd
    Inventors: Colleen Joyce Bettles, Mark Antony Gibson
  • Publication number: 20110091349
    Abstract: The present invention provides a method for producing a magnesium alloy sheet capable of producing a magnesium alloy sheet having excellent plastic workability such as press workability. The method of the present invention includes rolling a magnesium alloy blank with a reduction roll. The rolling includes controlled rolling performed under the following conditions (1) and (2) wherein M (% by mass) is the Al content in a magnesium alloy constituting the blank: (1) the surface temperature Tb (° C.) of the magnesium alloy blank immediately before insertion into the reduction roll satisfies the following expression: 8.33×M+135?Tb?8.33×M+165 wherein 1.0?M?10.0; and (2) the surface temperature Tr of the reduction roll is 150° C. to 180° C.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Nobuyuki Mori, Nozomu Kawabe
  • Publication number: 20110076178
    Abstract: An Mg-base alloy shows that an Mg-base alloy, which is added Zn and Al to magnesium, has a composition represented by (100-a-b) wt % Mg-a wt % Al-b wt % Zn, and satisfying 0.5?b/a. The alloy can reduce yield anisotropy, which is a serious problem for the wrought magnesium alloy, while maintaining a high strength property. The alloy is produced by additive elements, such as Zn and Al, which are easily obtained in place of rare earth elements.
    Type: Application
    Filed: June 3, 2009
    Publication date: March 31, 2011
    Inventors: Hidetoshi Somekawa, Alok Singh, Yoshiaki Osawa, Toshiji Mukai
  • Patent number: 7879165
    Abstract: The present invention provides a method for producing a magnesium alloy sheet capable of producing a magnesium alloy sheet having excellent plastic workability such as press workability. The method of the present invention includes rolling a magnesium alloy blank with a reduction roll. The rolling includes controlled rolling performed under the following conditions (1) and (2) wherein M (% by mass) is the Al content in a magnesium alloy constituting the blank: (1) the surface temperature Tb (° C.) of the magnesium alloy blank immediately before insertion into the reduction roll satisfies the following expression: 8.33×M+135?Tb?8.33×M+165 wherein 1.0?M?10.0; and (2) the surface temperature Tr of the reduction roll is 150° C. to 180° C.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: February 1, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nobuyuki Mori, Nozomu Kawabe
  • Patent number: 7879460
    Abstract: Disclosed is a welding wire for joining cast iron and stainless steel, having a composition of 0.03 wt % or less of C, 2.0˜3.0 wt % of Si, 12.0˜14.0 wt % of Mn, 7.0˜9.0 wt % of Cr, 45.0˜47.0 wt % of Ni, 0.5˜0.8 wt % of Nb, and 2.0˜3.0 wt % of Mo, with a balance of Fe. Using the welding wire, a weld zone which has no hot cracks and is sound and good can be obtained.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: February 1, 2011
    Assignee: Hyundai Motor Company
    Inventor: Jae Gyu Jung
  • Publication number: 20100273023
    Abstract: A method of forming a coated article is disclosed. The method involves heating a magnesium alloy component, positioning the component in a mold such that a gap exists between component outer surfaces and mold inner surfaces, and heating a magnesium-containing alloy material above its melting temperature, which is lower than that of the component. The material is formed from magnesium alloyed with i) the component element, but at a higher concentration, ii) at least one element that is different than the component element, or iii) the component element and at least one other element. The method further includes introducing the material into the gap, thereby covering at least the outer surfaces of the component, and cooling the material to form a substantially evenly distributed solidified coating on the outer surfaces of the component. The coating has a higher wear and/or corrosion resistance than that of the magnesium alloy component.
    Type: Application
    Filed: April 28, 2009
    Publication date: October 28, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Guangling Song, Bob R. Powell, JR.
  • Publication number: 20100254848
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Application
    Filed: June 9, 2008
    Publication date: October 7, 2010
    Inventors: Ryuichi Inoue, Nozomu Kawabe, Nobuyuki Mori, Masatada Numano, Junichi Matsumoto, Motonori Nakamura, Masayuki Nishizawa, Atsushi Kimura, Yukihiro Oishi
  • Patent number: 7682470
    Abstract: A magnesium-based alloy consists of 1.5-4.0% by weight rare earth element(s), 0.3-0.8% by weight zinc, 0.02-0.1% by weight aluminum, and 4-25 ppm beryllium. The alloy optionally contains up to 0.2% by weight zirconium, 0.3% by weight manganese, 0.5% by weight yttrium and 0.1% by weight calcium. The remainder of the alloy is magnesium except for incidental impurities.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: March 23, 2010
    Assignee: Cast Centre Pty Ltd
    Inventors: Colleen Joyce Bettles, Mark Antony Gibson
  • Publication number: 20100054985
    Abstract: The present invention relates to a magnesium aluminum alloy with enhanced creep resistance. The alloy contains barium and calcium in low proportions, and possesses a higher creep resistance in comparison to alloys containing rare earth elements. The alloy may additionally include zinc, tin, lithium, manganese, yttrium, neodymium, cerium and/or praseodymium in proportions of up to 7% by weight, respectively.
    Type: Application
    Filed: August 13, 2009
    Publication date: March 4, 2010
    Applicant: Gkss-Forschungszentrum Geesthacht GmbH
    Inventors: HAJO DIERINGA, Norbert Hort, Karl U. Kainer
  • Publication number: 20100047109
    Abstract: The invention offers (a) a method of producing a magnesium-alloy material, the method being capable of obtaining a magnesium-alloy material having high strength, (b) a magnesium-alloy material having excellent strength, and (c) a magnesium-alloy wire having high strength. A molten magnesium alloy is supplied to a continuous casting apparatus provided with a movable casting mold to produce a cast material. The cast material is supplied to between at least one pair of rolls to perform an area-reducing operation (a rolling operation). The rolling operation is performed such that pressure is applied to the cast material using the rolls from at least three directions in the cross section of the cast material. A magnesium-alloy material obtained through the above-described production method has a fine crystal structure and is excellent in plastic processibility.
    Type: Application
    Filed: November 2, 2009
    Publication date: February 25, 2010
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Taichiro NISHIKAWA, Yoshihiro Nakai
  • Patent number: 7469738
    Abstract: A injection-molding process injects a semi-solid slurry with a solids content ranging from approximately 60% to 85% into a mold at a velocity sufficient to completely fill the mold. The slurry is injected under laminar or turbulent flow conditions and produces a molded article that has a low internal porosity.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: December 30, 2008
    Assignee: Husky Injection Molding Systems, Ltd.
    Inventors: Frank Czerwinski, Damir Kadak
  • Publication number: 20080311423
    Abstract: The invention is to provide a magnesium alloy material such as a magnesium alloy cast material or a magnesium alloy rolled material, excellent in mechanical characteristics and surface precision, a producing method capable of stably producing such material, a magnesium alloy formed article utilizing the rolled material, and a producing method therefor. The invention provides a producing method for a magnesium alloy material, including a melting step of melting a magnesium alloy in a melting furnace to obtain a molten metal, a transfer step of transferring the molten metal from the melting furnace to a molten metal reservoir, and a casting step of supplying a movable mold with the molten metal from the molten metal reservoir, through a pouring gate, and solidifying the molten metal to continuously produce a cast material. In a process from the melting step to the casting step, parts contacted by the molten metal are formed by a low-oxygen material having an oxygen content of 20 mass % or less.
    Type: Application
    Filed: June 28, 2005
    Publication date: December 18, 2008
    Inventors: Masatada Numano, Yoshihiro Nakai, Toshiya Ikeda, Taichiro Nishikawa
  • Publication number: 20080304997
    Abstract: Disclosed is a wrought magnesium alloy having excellent strength and extrusion or rolling formability, and a method of producing the same. The wrought magnesium alloy comprises 0.1-1.5 at % group IIIa, 1.0-4.0 at % group IIIb, 0.35 at % or less of one selected from the group consisting of groups IIa, IVa, VIIa, IVb, and a mixture thereof, 1.0 at % or less of group IIb, and a balance of Mg and unavoidable impurities and thus has a second phase composite microstructure. The wrought magnesium alloy of the present invention has high strength, toughness, and formability in addition to the electromagnetic wave shield ability of magnesium. Accordingly, the wrought magnesium alloy is a material useful to portable electronic goods, such as notebook personal computers, mobile phones, digital cameras, camcorders, CD players, PDA, or MP3 players, automotive parts, such as engine room hoods, oil pans, or inner panel of door, or structural parts for airplane.
    Type: Application
    Filed: March 11, 2005
    Publication date: December 11, 2008
    Applicant: PRIMOMETAL CO., LTD.
    Inventor: Kang-Hyung Kim
  • Publication number: 20080279715
    Abstract: The present invention provides a method for producing a magnesium alloy sheet capable of producing a magnesium alloy sheet having excellent plastic workability such as press workability. The method of the present invention includes rolling a magnesium alloy blank with a reduction roll. The rolling includes controlled rolling performed under the following conditions (1) and (2) wherein M (% by mass) is the Al content in a magnesium alloy constituting the blank: (1) the surface temperature Tb (° C.) of the magnesium alloy blank immediately before insertion into the reduction roll satisfies the following expression: 8.33×M+135?Tb?8.33×M+165 wherein 1.0?M?10.0; and (2) the surface temperature Tr of the reduction roll is 150° C. to 180° C.
    Type: Application
    Filed: March 24, 2006
    Publication date: November 13, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Nobuyuki Mori, Nozomu Kawabe
  • Patent number: 7445751
    Abstract: A die castable magnesium based alloy comprising, by weight, between about 3 and 10% aluminum, between about 0.5 and 2.5% calcium, up to about 1.5% silicon, up to about 0.7% zinc, and the remainder being magnesium. The alloy has been found to exhibit more favorable castability and creep resistance than comparative magnesium based alloys.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: November 4, 2008
    Assignee: Chrysler LLC
    Inventor: Randy S. Beals
  • Publication number: 20080175744
    Abstract: A casting heat-resistance Mg alloy improved in heat resistance without relying upon expensive RE contains Cu. More specifically, it contains Al (8.0 weight %), Cu (1.0-5.0 weight %), Zn (2.0 weight %), Be (0.01 weight %) and Mg (the rest). The alloy can be prevented from deteriorating in corrosion resistance by adjusting the added amount of Cu to 1.0-1.5 weight %. The corrosion resistance of the alloy can be improved more by adding 0.5 to 1.0 weight % Mn as well.
    Type: Application
    Filed: April 16, 2007
    Publication date: July 24, 2008
    Inventors: Tetsuichi Motegi, Yosuke Tamura, Yukio Sanpei
  • Publication number: 20080033530
    Abstract: A marker alloy foreign implant made of a biodegradable metallic material and having the composition MgxYbyMz wherein x is equal to 10-60 atomic percent; y is equal to 40-90 atomic percent; z is equal to 0-10 atomic percent; M is one or more element selected from the group consisting of Ag, Zn, Au, Ga, Pd, Pt, Al, Sn, Ca, Nd, Ba, Si, and Ge; and wherein x, y, and z, together, and including contaminants caused by production, result in 100 atomic percent.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 7, 2008
    Applicant: BIOTRONIK VI PATENT AG
    Inventors: Bruno Zberg, Joerg Loeffler, Bodo Gerold
  • Patent number: 7261856
    Abstract: This invention takes advantage of the characteristics that the effective charge numbers of different metals have different values and even with different signs, and alloys are prepared with the metals of different signs of effective charge numbers. The effective charge numbers of the alloys are the summation of the mole fraction of each constituent metal times its respective effective charge number. Based on the knowledge of the calculated effective charge number, alloys are prepared with proper selection of constituent metals and proper ratios. When the alloy is under the influence of an electric field, the atoms, with the tendency to move in the same direction of the electron flow, interact with the atoms, with the tendency to move in the opposite. The alloys are thus electromigration effect-free or electromigration effect-insignificant.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: August 28, 2007
    Assignee: National Tsing Hua University
    Inventor: Sinn-Wen Chen
  • Patent number: 7041179
    Abstract: A magnesium based alloy containing at least 85.4 wt % Mg, 4.7 to 7.3 wt % aluminum, 0.17 to 0.60 wt % manganese, 0.0 to 0.8 wt % zinc, 1.8 to 3.2 wt % calcium, 0.3 to 2.2 wt % tin, and 0.0 to 0.5 wt % strontium. The alloy may comprising up to 0.004 wt % iron, up to 0.001 wt % nickel, up to 0.003 wt % copper, or up to 0.03 wt % silicon. In addition, the alloy may comprise up to 0.001 wt % beryllium.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: May 9, 2006
    Assignees: Dead Sea Magnesium Ltd., Volkswagen AG
    Inventors: Boris Bronfin, Eliyahu Aghion, Frank Von Buch, Soenke Schumann, Mark Katzir
  • Patent number: 7029626
    Abstract: A die castable magnesium based alloy comprising, by weight, between about 3 and 10% aluminum, between about 0.5 and 2.5% calcium, up to about 1.5% silicon, up to about 0.7% zinc, and the remainder being magnesium. The alloy has been found to exhibit more favorable castability and creep resistance than comparative magnesium based alloys.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: April 18, 2006
    Assignee: DaimlerChrysler Corporation
    Inventor: Randy S. Beals
  • Patent number: 6846451
    Abstract: There is provided a magnesium alloy containing mass percent Al: 5% to 7%, Ca: 2% to 4%, Mn: 0.1% to 0.8%, Sr: 0.001% to 0.05% and rare earth elements: 0.1% to 0.6%. If necessary, an allowable content is set in each of Si, Zn, Cu, Ni, Fe and Cl of the unavoidable impurities, with Si not higher than mass percent 0.01%, Zn not higher than mass percent 0.01%, Cu not higher than mass percent 0.008%, Ni not higher than mass percent 0.001%, Fe not higher than mass percent 0.004%, and Cl not higher than mass percent 0.003%. There is also provided a magnesium alloy member injected in the die by using such an alloy.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: January 25, 2005
    Assignee: The Japan Steel Works, Ltd.
    Inventors: Ryouhei Uchida, Kenzi Yamada, Makoto Matsuyama, Tadayoshi Tsukeda
  • Patent number: 6808679
    Abstract: A magnesium-based casting alloy having good salt-spray corrosion resistance and improved creep resistance, tensile yield strength and bolt-load retention, particularly at elevated temperatures of at least 150° C., is provided. The inventive alloy comprises, in weight percent, 2 to 9% aluminum and 0.5 to 7% strontium, with the balance being magnesium except for impurities commonly found in magnesium alloys. A method of making an oxidation-resistant alloy melt, and the alloy melt prepared by such a method, are also provided. The alloy melt comprises magnesium as a primary alloying metal, and aluminum and strontium as secondary alloying metals, while the inventive method comprises: melting the alloying metals under an atmosphere of an inert gas selected from a mixture of carbon dioxide and sulfur fluoride gas, a mixture of nitrogen and sulfur dioxide gas, and combinations thereof.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: October 26, 2004
    Assignee: Noranda, Inc.
    Inventors: Mihriban Ozden Pekguleryuz, Pierre Labelle, Pierre Vermette
  • Patent number: 6793877
    Abstract: Magnesium alloy with improved corrosion resistance comprising magnesium, 1.5-5 weight % Al, 0.6-1.4 weight % Si, 0.01-0.6 weight % Mn and 0.01-0.4 weight % RE. Method of improving the corrosion resistance of magnesium, aluminium, silicon alloys where Mn is added in order to reduce FE impurities, by keeping both Mn and Fe at a low level by adding small amounts of RE.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: September 21, 2004
    Assignee: Norsk Hydro ASA
    Inventors: Ketil Pettersen, Marianne Videm, Jan Ivar Skar
  • Publication number: 20040163744
    Abstract: Magnesium-based alloy wire excelling in strength and toughness, its method of manufacture, and springs in which the magnesium-based alloy wire is utilized are made available. The magnesium-based alloy wire contains, in mass %, 0.1 to 12.0% Al, and 0.1 to 1.0% Mn, and is provided with the following constitution. Diameter d that is 0.1 mm or more and 10.0 mm or less; length L that is 1000 d or more; tensile strength that is 250 MPa or more; necking-down rate that is 15% or more; and elongation that is 6% or more. Such wire is produced by draw-forming it at a working temperature of 50° C. or more, and by heating it to a temperature of 100° C. or more and 300° C. or less after the drawing process has been performed.
    Type: Application
    Filed: November 29, 2003
    Publication date: August 26, 2004
    Inventors: Yukihiro Oishi, Nozomu Kawabe
  • Publication number: 20040159188
    Abstract: A method for suppressing oxidation and burning in a molten magnesium alloy which my contain beryllium, comprising covering the exposed surface of the molten alloy in a protective atmosphere and dissolving strontium into the molten alloy is disclosed. This has the benefit of reducing magnesium losses due to oxidation thereby improving efficiency of the process. There is also disclosed a magnesium casting alloy comprising from about 1% to 10% by weight of aluminum, from about 1% to 30% by weight of zinc, from about 0.004% to 0.05 % by weight of strontium and unavoidable impurities, the balance being magnesium. Finally, there is disclosed a beryllium free magnesium die casting which is essentially free of flux inclusions.
    Type: Application
    Filed: April 10, 2003
    Publication date: August 19, 2004
    Inventors: Mihriban O. Pekguleryuz, Pierre Vermette
  • Patent number: 6719857
    Abstract: The present invention provides a die casting magnesium alloy having excellent heat resistance and castability, and the alloy of the present invention is a die casting magnesium alloy having excellent heat resistance and castability, comprising 2 to 6% by weight of Al, 0.3 to 2% by weight of Ca, 0.01 to 1% by weight of Sr, 0.1 to 1% by weight of Mn, the balance magnesium and unavoidable impurities. According to the present invention, more excellent effects can be obtained in the composition wherein rare earth elements are added to the composition described above.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: April 13, 2004
    Assignee: Mitsubishi Aluminum Co., Ltd.
    Inventors: Koichi Ohori, Yusuke Nakaura, Takeshi Sakagami
  • Patent number: 6582533
    Abstract: Magnesium alloys containing, by mass percent, Al: 10.0 to 13.0%, Si: 0.3 to 1.5%, Mn: 0.1 to 1.0%, and, if desired, Zn: less than 0.8%, the rest being Mg and unavoidable impurities. Neither cracking by the casting is invited nor the mechanical property is spoiled, and the fluidity can be notably improved, and it is possible to make products small in thickness and light in weight.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: June 24, 2003
    Assignee: The Japan Steel Works, Ltd.
    Inventors: Tadayoshi Tukeda, Akihiro Maehara, Katsuhiko Nuibe, Ryouhei Uchida
  • Patent number: 6514309
    Abstract: An alloy feedstock for semi-solid metal injection molding. The alloy feedstock is an alloy material in particulate form and has a heterogeneous structure, a temperature range at 20% of the height of the peak of the main melting reaction greater than 40° C., and having a ratio of the height of the peak of the eutectic reaction to the height of the main melting reaction of less than 0.5.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: February 4, 2003
    Assignee: Thixomat, Inc.
    Inventors: Stephen E. LeBeau, D. Matthew Walukas, Raymond F. Decker
  • Patent number: 6342180
    Abstract: A magnesium-based casting alloy having improved elevated temperature properties and good salt-spray corrosion resistance. The inventive alloy comprises: 1 to 12% by wt. aluminum; 0.1 to 0.6% by wt. strontium; and 0.1 to 0.5% by wt. calcium, with the balance being magnesium except for impurities commonly found in magnesium alloys.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: January 29, 2002
    Assignee: Noranda, Inc.
    Inventors: Michel Lefebvre, Mihriban Ozden Pekguleryuz, Pierre Labelle
  • Patent number: 6322644
    Abstract: A magnesium-based casting alloy having good salt-spray corrosion resistance and improved creep resistance, tensile yield strength and bolt-load retention, particularly at elevated temperatures of at least 150° C., is provided. The inventive alloy comprises, in weight percent, 2 to 9% aluminum and 0.5 to 7% strontium, with the balance being magnesium except for impurities commonly found in magnesium alloys.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: November 27, 2001
    Assignee: Norands, Inc.
    Inventors: Mihriban Ozden Pekguleryuz, Pierre Labelle
  • Patent number: 5855697
    Abstract: A magnesium based alloy exhibiting superior elevated-temperature properties such as creep resistance and tensile strength and die castability such as reduced hot-cracking and die-sticking, contains about 2 to 9 wt. % aluminum, 6 to 12 wt. % zinc, 0.1 to 2.0 wt. % calcium, optionally 0.2 to 0.5 wt. % manganese, and the balance comprising magnesium. The alloy includes the intermetallic compound Mg--Al--Zn--Ca at the grain boundaries of the magnesium crystals. The alloy according to this invention may have a creep extension of less than about 0.6% at the tensile stress of about 35 MPa and the temperature of about 150.degree. C., and a tensile yield strength of at least 110 MPa at the temperature of about 150.degree. C. The alloy is particularly useful in die casting applications.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: January 5, 1999
    Assignee: Imra America, Inc.
    Inventors: Aihua A. Luo, Toru Shinoda
  • Patent number: 5681403
    Abstract: A magnesium Mg--Al--RE magnesium alloy wherein an amount of a rare earth component may be reduced while optimial tensile strength and durability are obtained. The Alloy further includes a small calcium component. A high degree of creep resistance is obtained. Further, additional copper and/or zinc components may be introduced together, or singly for providing favorable tensile characteristics to the alloy material.
    Type: Grant
    Filed: December 27, 1994
    Date of Patent: October 28, 1997
    Assignees: Nissan Motor Co., Ltd., Ube Industries, Ltd.
    Inventors: Kunihiko Makino, Toshiro Kawata, Kyosuke Kanemitsu, Koji Watanabe, Masaji Matsunaga, Mamoru Sayashi
  • Patent number: 5669990
    Abstract: A--Si containing magnesium alloy for casting with a melt thereof with a cast structure having eutectic compounds of Mg.sub.2 Si produced to improve creep strength of a cast product, preferably a Si-containing magnesium alloy of a Mg--Al--Zn system having either 0.01% to 2.0% or 6 to 12% of Zn and 6 to 12% of Al, is disclosed with the improvement in that the alloy contains 0.3 to 1.5% by weight of Si in combination with 0.005 to 0.2% of Sr added to effect refinement of the eutectic compounds to thereby reduce hot cracking and improve mechanical properties of the cast product, while the improved creep strength is preserved.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: September 23, 1997
    Assignee: Ube Industries, Ltd.
    Inventors: Mitsuru Adachi, Satoru Sato, Hiroto Sasaki