Iron, Cobalt, Or Nickel Containing Patents (Class 420/547)
  • Patent number: 11421305
    Abstract: A cast alloy including iron 0.8-3.0 wt. %, magnesium 0.01-9.0 wt. %, manganese 0-2.5 wt. %, beryllium 0-500 ppm, titanium 0-0.5 wt. %, silicon 0-0.8 wt. %, strontium 0-0.8 wt. %, phosphorus 0-500 ppm, copper 0-4 wt. %, zinc 0-10 wt. %, 0-0.5 wt. % of an element or a group of elements selected from the group consisting of chromium, nickel, molybdenum, zirconium, vanadium, hafnium, calcium, gallium and boron, and the remainder being aluminium and unavoidable impurities.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: August 23, 2022
    Inventor: Stuart Wiesner
  • Publication number: 20150101382
    Abstract: The present disclosure provides improved processes and compositions for continuously casting aluminum alloys. The resulting aluminum alloy sheet is useful for container body stock.
    Type: Application
    Filed: November 4, 2013
    Publication date: April 16, 2015
    Applicant: Golden Aluminum, Inc.
    Inventor: Mark Selepack
  • Publication number: 20140308155
    Abstract: An efficient polishing method for polishing an alloy material to have an excellent mirror surface is provided. The alloy material contains a main component and 0.1% by mass or more of an element that has a Vickers hardness (HV) different from the Vickers hardness of the main component by 5 or more. A polishing composition used in the polishing method contains abrasive grains and an oxidant. The alloy material is preferably an aluminum alloy, a titanium alloy, a stainless steel, a nickel alloy, or a copper alloy. It is also preferable that the alloy material is subjected to preliminary polishing before being subjected to polishing in which the polishing composition is used.
    Type: Application
    Filed: November 19, 2012
    Publication date: October 16, 2014
    Inventors: Hitoshi Morinaga, Hiroshi Asano, Maiko Asai, Shogo Tsubota, Kazusei Tamai
  • Patent number: 8574774
    Abstract: There is provided a negative electrode comprising an aluminum alloy, wherein the alloy has a magnesium content of 0.0001% by weight or higher and 8% by weight or lower, the alloy satisfies at least one condition selected from the group consisting of the following (A) and (B): (A) an iron content is 0.0001% by weight or higher and 0.03% by weight or lower, and (B) a silicon content is 0.0001% by weight or higher and 0.02% by weight or lower, and a content of each element other than aluminum, magnesium, silicon and iron in the alloy is 0.005% by weight or lower.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 5, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Takitaro Yamaguchi, Hitoshi Yasuda
  • Patent number: 8420011
    Abstract: The present invention provides an Al—Mg series alloy sheet of high-Mg with improved press formability and homogeneity which can be applied to automobile outer panels and inner panels. This is an Al—Mg series aluminum alloy sheet having 0.5 to 3 mm in thickness cast by twin-roll continuous casting and cold rolled, comprising over 8% but not more than 14% Mg, 1.0% or less Fe, and 0.5% or less Si with the remainder being Al and unavoidable impurities wherein the mean conductivity of the aluminum alloy sheet is in the range of at least 20 IACS % but less than 26 IACS %, the strength-ductility balance (tensile strength×total elongation) as a material property of the aluminum alloy sheet is 11000 (MPa %) or more, and the homogeneity and press formability of the sheet have been improved.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: April 16, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Makoto Morishita, Katsushi Matsumoto, Shigenobu Yasunaga, Takashi Inaba
  • Publication number: 20120328963
    Abstract: There is provided a negative electrode comprising an aluminum alloy, wherein the alloy has a magnesium content of 0.0001% by weight or higher and 8% by weight or lower, the alloy satisfies at least one condition selected from the group consisting of the following (A) and (B): (A) an iron content is 0.0001% by weight or higher and 0.03% by weight or lower, and (B) a silicon content is 0.0001% by weight or higher and 0.02% by weight or lower, and a content of each element other than aluminum, magnesium, silicon and iron in the alloy is 0.005% by weight or lower.
    Type: Application
    Filed: February 18, 2011
    Publication date: December 27, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Takitaro Yamaguchi, Hitoshi Yasuda
  • Publication number: 20120275949
    Abstract: The present invention relates to an aluminum base alloy with high thermal conductivity, and more particularly, to an alloy for die casting that does not become brittle and has high thermal conductivity, so as to be easily used for LED lighting parts, and contains 0.2 to 2.0 wt % of Mg, 0.1 to 0.3 wt % of Fe, 0.1 to 1.0 wt % of Co, with the remainder being Al.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 1, 2012
    Inventors: Ho Sung Seo, Gi Dong Kang
  • Publication number: 20120171427
    Abstract: The present invention relates to an aluminum die base material for a stamper having a component composition that contains 0.5% by weight to 3.0% by weight of Mg, the total amount of elements other than Mg, including unavoidable impurities, is 500 ppm or less, and the remainder is composed of Al, and a forged structure in which the average crystal grain size is 1000 ?m or less and the surface area ratio of second phase particles is 0.10% or less. According to the present application, a stamper can be provided in which, together with the crystal grain size of the aluminum being refined, the formation of second phase particles is inhibited, surface irregularities attributable to mirrored surface polishing are reduced, and a uniform relief pattern is formed by anodic oxidation treatment.
    Type: Application
    Filed: September 10, 2010
    Publication date: July 5, 2012
    Inventors: Hiroaki Kita, Kota Shirai, Hisakazu Ito
  • Patent number: 8118951
    Abstract: An aluminum alloy sheet for a lithographic printing plate includes 0.03 to 0.15% (mass %, hereinafter the same) of Si, 0.2 to 0.7% of Fe, 0.05 to 0.5% of Mg, 0.003 to 0.05% of Ti, and 30 to 300 ppm of Ga, with the balance being aluminum and inevitable impurities, a surface area of the aluminum alloy sheet having an average recrystallized grain size of 50 ?m or less in a direction perpendicular to a rolling direction, an Mg concentration that is higher than the average Mg concentration by a factor of 5 to 50, and a Ga concentration that is higher than the average Ga concentration by a factor of 2 to 20, the surface area being an area up to a depth of 0.2 ?m from the surface of the aluminum alloy sheet.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 21, 2012
    Assignees: Fujifilm Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Akio Uesugi, Atsushi Matsuura, Hiroshi Ougi, Atsushi Hibino
  • Patent number: 8016958
    Abstract: High strength aluminum alloy sheet having superior surface roughening and formability suitable for home electrical appliances and automobile outer panels and other structural materials and a method of production of the same are provided. High strength aluminum alloy sheet having a chemical composition containing Mg: 2.0 to 3.3 mass %, Mn: 0.1 to 0.5 mass %, and Fe: 0.2 to 1.0 mass %, having a balance of unavoidable impurities and Al, and having an Si among the unavoidable impurities of less than 0.20 mass % and having an average circle equivalent diameter of intermetallic compounds of 1 ?m or less, having an area ratio of intermetallic compounds of 1.2% or more, having an average diameter of recrystallized grains of 10 ?m or less, and having a tensile strength of 220 MPa or more.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: September 13, 2011
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Pizhi Zhao, Toshiya Anami, Takayuki Kobayashi, Kiyomi Tsuchiya
  • Patent number: 7998402
    Abstract: An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt. %: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each <0.5 wt. %, and impurities or incidental elements each <0.05, total <0.15, and the balance being aluminium.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: August 16, 2011
    Assignee: Aleris Aluminum Koblenz, GmbH
    Inventors: Nadia Telioui, Steven Dirk Meijers, Andrew Norman, Achim Buerger, Sabine Maria Spangel
  • Publication number: 20110123390
    Abstract: Provided are an aluminium alloy and a manufacturing method thereof. In the method, aluminium and a master alloy containing a calcium (Ca)-based compound are provided. A melt is prepared, in which the master alloy and the Al are melted. The aluminum alloy may be manufactured by casting the melt.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 26, 2011
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Shae-Kwang KIM, Jin-Kyu LEE, Min-Ho CHOI, Jeong-Ho SEO
  • Publication number: 20110123391
    Abstract: Provided are an aluminium alloy and a manufacturing method thereof. In the method, aluminium and a magnesium (Mg) master alloy containing a calcium (Ca)-based compound are provided. A melt is prepared, in which the Mg master alloy and the Al are melted. The aluminum alloy may be manufactured by casting the melt.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 26, 2011
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Shae-Kwang KIM, Jin-Kyu LEE, Min-Ho CHOI, Young-Ok YOON
  • Publication number: 20100170996
    Abstract: An aluminum alloy comprises aluminum, magnesium, scandium, and an enhancing system. The magnesium is from about 0.5 percent to about 10.0 percent by weight based on the aluminum alloy. The scandium is from about 0.05 percent to about 10.0 percent by weight based on the aluminum alloy. The enhancing system is from about 0.05 percent to about 1.5 percent by weight based on the aluminum alloy.
    Type: Application
    Filed: January 7, 2009
    Publication date: July 8, 2010
    Inventors: Krishnan K. Sankaran, Kevin T. Slattery
  • Patent number: 7610669
    Abstract: A method for producing an integrated monolithic aluminum structure, including the steps of: (a) providing an aluminum alloy plate from an aluminum alloy with a predetermined thickness (y), (b) shaping or forming the alloy plate to obtain a predetermined shaped structure, (c) heat-treating the shaped structure, (d) machining, e.g. high velocity machining, the shaped structure to obtain an integrated monolithic aluminum structure.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: November 3, 2009
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Christian Joachim Keidel, Alfred Ludwig Heinz
  • Publication number: 20090263277
    Abstract: An improved L12 aluminum alloy having magnesium or nickel; at least one of scandium, erbium, thulium, ytterbium, and lutetium; at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium; and at least one ceramic reinforcement. Aluminum oxide, silicon carbide, aluminum nitride, titanium boride, titanium diboride and titanium carbide are suitable ceramic reinforcement particles. These alloys derive strengthening from mechanisms based on dislocation-particle interaction and load transfer to stiffen reinforcements.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 22, 2009
    Applicant: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 6955785
    Abstract: The present invention relates to an aluminum alloy for rapidly cooled welding. The alloy comprises, by weight, Mg: 0.4 to 7.0%, Cu: 0.05 to 1%, at least one kind of Mn: 0.8 to 2.5%, Cr: 0.35 to 2.0% and Fe: 0.7 to 1.5% and the balance of Al and inevitable impurities.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: October 18, 2005
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Makoto Saga, Yasutomo Ichiyama, Toshiyasu Ukena, Hirobumi Sonoda, Junichi Ibukuro, Takanori Yahaba, Masato Takikawa
  • Patent number: 6923935
    Abstract: A hypoeutectic aluminum silicon casting alloy having a refined primary silicon particle size and a modified iron morphology. The alloy includes 10 to 11.5% by weight silicon, 0.10 to 0.70% by weight magnesium and also contains 0.05 to 0.07% by weight strontium. On cooling from the solution temperature, the strontium serves to modify the silicon eutectic structure as well as create an iron phase morphology change. Such changes facilitate feeding through the aluminum interdendritic matrix. This, in turn, creates a finished die cast product with extremely low levels of microporosity defects. The alloy may be used to cast engine blocks for marine outboard and stern drive motors. Furthermore, when the magnesium levels are adjusted to approximately 0.10 to 0.20% by weight magnesium, propellers having a highly advantageous ductility may be obtained.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: August 2, 2005
    Assignee: Brunswick Corporation
    Inventors: Raymond J. Donahue, Terrance M. Cleary, Kevin R. Anderson
  • Publication number: 20040213695
    Abstract: Recycle friendly aluminum alloys are described which are variants of AA 3000 and AA 5000 series alloys containing higher than usual amounts of silicon and iron. The alloys contain in percentages by weight, more than 0.6-2.0% silicon, 0.9-2.4% iron, wherein the ratio of the amount of iron to the amount of silicon is in the range of 1.2-1.8:1. Other components of the alloys may include 0-0.4% copper, 0-1.5% manganese, 0-5.0% magnesium, 0-0.5% zinc, 0-3.5% chromium, 0-0.1% titanium and the balance aluminum and incidental impurities.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 28, 2004
    Inventors: Adriano M.P. Ferreira, Sadashiv K. Nadkarni
  • Patent number: 6808864
    Abstract: Disclosed is a support for a lithographic printing plate obtained by subjecting an aluminum plate to a graining treatment and an anodizing treatment, the support comprising at least any one of Mn in a range from 0.1 to 1.5 wt % and Mg in a range from 0.1 to 1.5 wt %; Fe of 0 to 1 wt %; Si of 0 to 0.5 wt %; Cu of 0 to 0.2 wt %; at least one kind of element out of the elements listed in items (a) to (d) below in a range of content affixed thereto, (a) 1 to 100 ppm each of one or more kinds of elements selected from a group consisting of Li, Be, Sc, Mo, Ag, Ge, Ce, Nd, Dy and Au, (b) 0.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: October 26, 2004
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Akio Uesugi
  • Patent number: 6783869
    Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: August 31, 2004
    Assignee: MIBA Gleitlager Aktiengesellschaft
    Inventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
  • Publication number: 20040047759
    Abstract: The invention discloses an Al alloy suitable for processing into a lithographic sheet, the alloy having a composition in wt %: Mg 0.05 to 0.30, Mn 0.05 to 0.25, Fe 0.11 to 0.40, Si up to 0.25, Ti up to 0.03, B up to 0.01, Cu up to 0.01, Cr up to 0.03, Zn up to 0.15, unavoidable impurities up to 0.05 each, 0.15 total Al balance. Also disclosed is a method of processing the Al alloy.
    Type: Application
    Filed: October 8, 2003
    Publication date: March 11, 2004
    Inventors: Theodor Rottwinkel, David Skingley Wright, Richard Gary Hamerton, Jeremy Mark Brown, John Andrew Ward
  • Patent number: 6676775
    Abstract: A recrystallization-hardenable aluminum cast alloy includes in addition to aluminum the following elements as functional elements: (1) 5 to 10 weight % silicon, (2) 0.2 to 0.35 weight % magnesium, (3) 0.3 to 3 weight % nickel and/or 0.6 to 3 weight % cobalt, and impurities due to manufacturing.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: January 13, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Andreas Barth, Mohamed Douaoui
  • Patent number: 6656421
    Abstract: An aluminum-beryllium-silicon based alloy is disclosed, which comprises 5.0 to 30.0 mass % of Be, 0.1 to 15.0 mass % of Si and 0.1 to 3.0 mass %, the balance being Al and inevitable impurities. The alloy is useful for producing automobile engine parts, etc.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: December 2, 2003
    Assignees: NGK Insulators, Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toshimasa Ochiai, Hiroshi Yamada, Masami Hoshi
  • Patent number: 6649126
    Abstract: An aluminum alloy for high pressure die-casting capable of providing a sufficient castability and a tensile strength of not less than 320 MPa and elongation of not less than 20%, The aluminum alloy contains from 3.6 to 5.5 mass % of Mg, from 0.6 to 1.2 mass % of Mn, from 0.2 to less than 0.5 mass % of Ni, from 0.001 to 0.010 mass % of Be, from 0.01 to 0.3 mass % of Ti, from 0.001 to 0.05 mass % of B, and the balance aluminum and inevitable impurities. The aluminum alloy is particularly available as a material of a vehicle frame and a vehicle body.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: November 18, 2003
    Assignee: Ryobi Ltd.
    Inventors: Toru Komazaki, Naomi Nishi, Izumi Murashima, Hideto Sasaki
  • Patent number: 6623570
    Abstract: A casting alloy of the AlMgSi type comprises Magnesium 3.0 to 7.0 wt. % Silicon 1.7 to 3.0 wt. % Manganese 0.2 to 0.48 wt. % Iron 0.15 to 0.35 wt. % Titanium as desired max. 0.2 wt. % Ni 0.1 to 0.4 wt % and aluminum as the rest along with production related impurities, individually at most 0.02 wt. %, in total at most 0.2 wt. %, with the further provision that the magnesium and silicon are present in the alloy in a Mg:Si weight ratio of 1.7:1, corresponding to the composition of the quasi binary eutectic made up of the solid state phases Al and Mg2Si, whereby the deviation from the exact composition of the quasi-binary eutectic amounts to at most −0.5 to +0.3 wt. % for magnesium and −0.3 to +0.5 wt. % for silicon the finely dispersed precipitates of the intermetallic phase Mg2Si results in high ductility.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: September 23, 2003
    Assignee: Alcan Technology & Management Ltd.
    Inventors: Reinhard Winkler, Gunter Höllrigl, Jürgen Wuest, Klaus Währisch
  • Patent number: 6596412
    Abstract: The invention relates to an aluminum alloy, to a plain bearing and to a method of manufacturing a layer, particularly for a plain bearing, to which there is added as a main alloy component tin (14) and a hard material (15) from at least one first element group containing iron, manganese, nickel, chromium, cobalt, copper or platinum, magnesium, or antimony. Added to the aluminum alloy from the first elementary group is a quantity of elements for forming inter-metallic phases, e.g. aluminide formation, in the boundary areas of the matrix, and further at least one further element from a second element group containing manganese, antimony, chromium, tungsten, niobium, vanadium, cobalt, silver, molybdenum of zirconium, for substituting a portion at least of a hard material of the first element group in order to form approximately spherical or cuboid aluminides (7).
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: July 22, 2003
    Assignee: Miba Gleitlager Aktiengesellschaft
    Inventor: Robert Mergen
  • Patent number: 6544358
    Abstract: An aluminium alloy in the AA5XXX series has the composition: Si 0.10-0.25 %; Fe 0.18-0.30 %; Cu up to 0.5 %; Mn 0.4-0.7 %; Mg 3.0-3.5%; Cr up to 0.2%; and Ti up to 0.1%. Rolled and annealed sheet of the alloy is readily formed into shaped components for use in vehicles which components have good strength and resistance to stress corrosion cracking.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: April 8, 2003
    Assignee: Alcan International Limited
    Inventors: Alan Robert Carr, Kevin Michael Gatenby, Michael Bull
  • Publication number: 20020155023
    Abstract: An aluminium-based alloy having 6.5-7.5 wt. % silicon and 0.35-0.50 wt. % magnesium as the major alloying elements and a method of manufacturing an article from the alloy are disclosed. The alloy is characterised by a microstructure in which &bgr; phase (Al5SiFe) that forms during heat treatment as a transformation product of &pgr; phase (Al8Si6Mg3Fe) is the sole or predominant iron-containing phase in the alloy.
    Type: Application
    Filed: November 18, 1999
    Publication date: October 24, 2002
    Inventors: JOSEPH GIOVANNI BARRESI, MALCOLM JAMES COUPER, DAVID HENRY ST. JOHN, GEOFFREY ALAN EDWARDS, HAO WANG
  • Publication number: 20020141896
    Abstract: An aluminum alloy for high pressure die-casting capable of providing a sufficient castability and a tensile strength of not less than 320 MPa and elongation of not less than 20%, The aluminum alloy contains from 3.6 to 5.5 mass % of Mg, from 0.6 to 1.2 mass % of Mn, from 0.2 to less than 0.5 mass % of Ni, from 0.001 to 0.010 mass % of Be, from 0.01 to 0.3 mass % of Ti, from 0.001 to 0.05 mass % of B, and the balance aluminum and inevitable impurities. The aluminum alloy is particularly available as a material of a vehicle frame and a vehicle body.
    Type: Application
    Filed: January 31, 2002
    Publication date: October 3, 2002
    Applicant: RYOBI LTD.
    Inventors: Toru Komazaki, Naomi Nishi, Izumi Murashima, Hideto Sasaki
  • Patent number: 6447982
    Abstract: A litho strip for use as an offset printing plate is described which has a composition of 0.05-0.25% Si, 0.30-0.40% Fe, 0.10-0.30% Mg, max. 0.05% Mn, and max. 0.04% Cu. The strip is produced from a continuous cast ingot of the above composition which is hot rolled to a thickness of up to 2-7 mm. The residual resistance ratio of the hot rolled strip is RR=10-20. The cold rolling is carried out with or without intermediate annealing, wherein the degree of rolling reduction after intermediate annealing is >60%. The further processing up to the EC roughening takes place with the microstructure adjusted in the rolling process at <100° C. The litho strip is characterized by a high thermal stability, a good roughening behavior in the EC processes, and a high reverse bending fatigue strength perpendicular to the rolling direction.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 10, 2002
    Assignee: VAW Aluminium AG
    Inventors: Wolfgang von Asten, Bernhard Kernig, Barbara Grzemba
  • Patent number: 6440359
    Abstract: An alloy of composition in wt. % (see table (I)) and incidental impurities up to 0.05 each 0.15 total, balance A1. The alloy can be extruded at high speed to provide extruded sections which meet T5 or T6 strength requirements.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: August 27, 2002
    Assignee: Alcan International Limited
    Inventors: Nicholas Charles Parson, Jeffrey David Hankin, Kevin Paul Hicklin
  • Patent number: 6440583
    Abstract: Disclosed is an Al alloy for a welded construction having excellent welding characteristics, which Al alloy comprises 1.5 to 5 wt % of Si (hereinafter, wt % is referred to as %), 0.2 to 1.5% of Mg, 0.2 to 1.5% of Zn, 0.2 to 2% of Cu, 0.1 to 1.5% of Fe, and at least one member selected from the group consisting of 0.01 to 1.0% of Mn, 0.01 to 0.2% of Cr, 0.01 to 0.2% of Ti, 0.01 to 0.2% of Zr, and 0.01 to 0.2% of V, with the balance being Al and inevitable impurities. Also disclosed is a welded joint having this Al alloy base metal welded with an Al—Mg- or Al—Si-series filler metal.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: August 27, 2002
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seizo Ueno, Yoichiro Bekki, Noboru Hayashi
  • Publication number: 20020088509
    Abstract: A recrystallization-hardenable aluminum cast alloy includes in addition to aluminum the following elements as functional elements: (1) 5 to 10 weight % silicon, (2) 0.2 to 0.35 weight % magnesium, (3) 0.3 to 3 weight % nickel and/or 0.6 to 3 weight % cobalt, and impurities due to manufacturing.
    Type: Application
    Filed: December 17, 2001
    Publication date: July 11, 2002
    Inventors: Andreas Barth, Mohamed Douaoui
  • Patent number: 6375767
    Abstract: A population of extrusion billets has a specification such that every billet is of an alloy of composition (in wt. %) : Fe<0.35; Si 0.20-0.6; Mn<0.10; Mg 0.25-0.9; Cu<0.015; Ti<0.10; Cr<0.10; Zn<0.03; balance Al of commercial purity. After ageing to T5 or T6 temper, extruded sections can be etched and anodized to give extruded matte anodized sections having improved properties.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: April 23, 2002
    Assignee: Alcan International Limited
    Inventors: Nicholas Charles Parson, Barry Roy Ellard, Graeme John Marshall
  • Patent number: 6352671
    Abstract: A corrosion-resistant aluminum alloy includes 91%-95.7% by weight aluminum, 0.5%-1% by weight scandium, 3%-5% by weight magnesium, 0.5%-2% by weight nickel, and 0.3%-1% by weight chromium.
    Type: Grant
    Filed: November 20, 1999
    Date of Patent: March 5, 2002
    Assignees: University of New Orleans Foundation, The Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Alfred F. Daech, Nikhil K. Sarkar
  • Patent number: 6342112
    Abstract: An Al—Mg based alloy sheet product in which the crystallographic texture exhibits a ratio of the volume fraction of grains in the S orientation {123}<634> to the volume fraction of grains in the CUBE orientation {100}<001> (S/Cube) being 1 or more, and is comprised of grains with a volume fraction of about 10% or less in the GOSS orientation {110}<001>, wherein the grain size is in a range of about 20 to 100 &mgr;m demonstrates good formability.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: January 29, 2002
    Assignees: Alcoa Inc., Kobe Steel Ltd.
    Inventors: Frederic Barlat, John C. Brem, Shigeo Hattori, Yasuhiro Havashida, Daniel J. Lege, Kwansoo Chung, Yasushi Maeda, Kuniaki Matsui, Shawn J. Murtha, Masahiro Yanagawa, Narikazu Hashimoto
  • Patent number: 6306342
    Abstract: An aluminum casting alloy contains 0.5 to 2.0 w. % magnesium max. 0.15 w. % silicon 0.5 to 2.0 w. % manganese max. 0.7 w. % iron max. 0.1 w. % copper max. 0.1 w. % zinc max. 0.2 w. % titanium 0.1 to 0.6 w. % cobalt max. 0.8 w. % cerium 0.5 to 0.5 w. % zirconium max. 1.1 w. % chromium max. 1.1 w. % nickel 0.005 to 0.15 w. % vanadium max. 0.5 w. % hafnium and aluminum as the remainder with further contaminants individually at 0.05 w. %, total max. 0.02 w. %. The aluminum casting alloy is particularly suitable for diecasting and thixocasting or thixoforging. One particular application is diecasting for components with high requirements for mechanical properties as these are already present in the casting state and thus no further heat treatment is required.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: October 23, 2001
    Assignee: Aluminium Rheinfelden GmbH
    Inventors: Hubert Koch, Horst Schramm, Peter Krug
  • Patent number: 6277217
    Abstract: An aluminum alloy comprises magnesium in a range of 3.0% by weight≦Mg≦5.5% by weight, manganese in a range of 1.5% by weight≦Mn≦2.0% by weight, nickel in a range of 0.5% by weight≦Ni≦0.9% by weight, and the balance of aluminum including inevitable impurities. Particularly, the Ni content is set in the above range in order to achieve an increase in toughness of a die-cast product. Thus, it is possible to suppress the amount of an intermetallic compound AlMnNi produced and to finely divide the intermetallic compound AlMnNi.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: August 21, 2001
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Sadafumi Yoshino, Seiichi Koike, Eitarou Koya, Masahiko Nakagawa
  • Patent number: 5891273
    Abstract: The invention relates to a cylinder liner, cast into a reciprocating piston engine, of a highly hypereutectic aluminum/silicon alloy which is free of hard material particles independent of the melt and has such a composition that fine primary silicon crystals and intermetallic phases automatically form from the melt as hard particles. By spray-compacting, a blank of finely sprayed melt droplets is caused to grow, a fine distribution of the hard particles being produced by controlled introduction of small melt droplets. The blank can be transformed by an extrusion step into a form approximating the cylinder liner. After subsequent premachining with chip removal, the running surface is precision-machined and subsequently honed in at least one stage, after which the hard particles located in the running surface are exposed, plateau faces of the particles being formed, which faces protrude from the remaining surface of the matrix structure of the alloy.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: April 6, 1999
    Assignee: Mercedes-Benz AG
    Inventors: Franz Ruckert, Peter Stocker, Roland Rieger
  • Patent number: 5779824
    Abstract: An aluminum alloy support for a planographic printing plate is disclosed, which is an aluminum alloy plate comprising 0<Fe.ltoreq.0.20 wt %, 0.ltoreq.Si.ltoreq.0.13 wt %, Al.gtoreq.99.7 wt % and the balance of inevitable impurity elements, wherein the number of intermetallic compounds present in the arbitrary thickness direction with in 10 .mu.m from the plate surface is from 100 to 3,000 per mm.sup.2 and the intermetallic compound has an average particle size of from 0.5 to 8 .mu.m, with the intermetallic compounds having a particle size of 10 .mu.m or more being in a proportion by number of 2% or less. Also disclosed is a method for producing the above-described aluminum alloy support.
    Type: Grant
    Filed: July 20, 1995
    Date of Patent: July 14, 1998
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Hirokazu Sakaki, Tsutomu Kakei, Akio Uesugi, Masaya Matsuki
  • Patent number: 5772802
    Abstract: Can or lid stock and a method for its manufacture in which a low alloy content aluminum alloy is strip cast to form a hot strip cast feedstock, the hot feedstock is rapidly quenched to prevent substantial precipitation, annealed and quenched rapidly to prevent substantial precipitation of alloying elements and then cold rolled. The can end and tab stock of the invention has strength and formability equal to higher alloy content aluminum alloy.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: June 30, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: T. C. Sun, William Betts
  • Patent number: 5769972
    Abstract: Can or lid stock and a method for its manufacture in which a low alloy content aluminum alloy is strip cast to form a hot strip cast feedstock, the hot feedstock is rapidly annealed and quenched rapidly to prevent substantial precipitation of alloying elements and then cold rolled. The can end and tab stock of the invention has strength and formability equal to higher alloy content aluminum alloy.
    Type: Grant
    Filed: November 1, 1995
    Date of Patent: June 23, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Tyzh-Chiang Sun, William Betts
  • Patent number: 5746847
    Abstract: An aluminum alloy containing magnesium (Mg) between 3.0 and 4.0 wt. %, manganese (Mn) between 0.5 and 1.0 wt. %, copper (Cu) between 0.2 and 0.6 wt. %, iron (Fe) between 0.05 and 0.4 wt. % and remaining obligatory trace elements, has an electrical conductivity after baking of 30 to 32% IACS, a yield strength of 320 MPa or more and a ratio of decrease in buckling strength after retort-treatment to that immediately after manufacturing the can end of less than 10%. This an aluminum alloy sheet for can ends has an excellent corrosion resistance, complete lack of stress corrosion cracking, or age softening resistance, maintains the a high buckling strength obtained subsequent to the manufacture of a can, even after retort treatment and storage at room temperature. The aluminum alloy sheet of this invention is particularly suitable for use as a can end for non-carbonated beverages and has the potential for even thinner aluminum alloy sheet formation.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: May 5, 1998
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Hiroki Tanaka, Hiroyuki Mizutani, Midori Narita, Koichi Takada
  • Patent number: 5647919
    Abstract: A high strength, rapidly solidified alloy consisting of aluminum and, added thereto, additive elements. The mean crystal grain size of the aluminum is 40 to 1000 nm, the mean size of particles of a stable phase or a metastable phase of various intermetallic compounds formed from the aluminum and the additive element and/or various intermetallic compounds formed from the additive elements themselves is 10 to 800 nm, and the intermetallic compound particles are distributed in a volume fraction of 20 to 50% in a matrix consisting of aluminum. The rapidly solidified alloy has an improved strength at room temperature and a high toughness and can maintain the properties inherent in a material produced by the rapid solidification process even when it undergoes a thermal influence during working.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: July 15, 1997
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Hidenobu Nagahama
  • Patent number: 5595615
    Abstract: A high toughness and high strength casting of an aluminum alloy, has comparatively thick portions with a thickness of 20 mm or more, 4-6% Si, 0.2-0.6% Mg, less than 0.15% Fe, not more than 0.4% Mn, by weight, residual aluminum and unavoidable impurities; Si(%).times.Mg(%) having a value of 1.2-2.8. In forming the casting, the aluminum alloy is under an atmosphere of more than atmospheric pressure during solidification and subsequently a T6 heat treatment is applied to casting.
    Type: Grant
    Filed: August 25, 1994
    Date of Patent: January 21, 1997
    Assignee: Hitachi Metals, Ltd.
    Inventors: Ryoichi Shibata, Rikizou Watanabe
  • Patent number: 5582660
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising about 0.8 to about 1.3 wt. % silicon, about 0.2 to about 0.6 wt. % magnesium, about 0.5 to about 1.8 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.01 to about 0.2 wt. % iron, the balance being substantially aluminum and incidental elements and impurities: (b) working the body to produce a sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is performed at a temperature greater than 840.degree. F. and the sheet is rapidly quenched. The resulting sheet has an improved combination of excellent formability and good strength.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: December 10, 1996
    Assignee: Aluminum Company of America
    Inventors: Rolf B. Erickson, Shawn J. Murtha
  • Patent number: 5573606
    Abstract: The present invention relates to an aluminum base die casting alloy having substantially improved mechanical properties, and a method for making die cast products from the alloy. More particularly the improved aluminum based alloy comprises 2.5-4.0% by weight magnesium, 0.2-0.6% by weight manganese, 0.25-0.6% by weight iron, 0.2-0.45% by weight silicon, less than 0.003% by weight beryllium with the remainder being aluminum.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: November 12, 1996
    Assignee: Gibbs Die Casting Aluminum Corporation
    Inventors: James M. Evans, Richard J. Hagan, William C. Routh, Roland N. Gibbs
  • Patent number: 5540791
    Abstract: An aluminum-alloy rolled sheet is cold preformed and then superplastically formed by: providing a composition which consists of from 2.0 to 8.0% of Mg, from 0.0001 to 0.01% of Be, and at least one element selected from the group consisting of from 0.3 to 2.5% of Mn, from 0.1 to 0.5% of Cr, from 0.1 to 0.5% of Zr, and from 0.1 to 0.5% of V, less than 0.2% of Fe as impurities, as well as aluminum and unavoidable impurities in balance; providing an unrecrystallized structure formed by annealing at a temperature of from 150.degree. to 240.degree. C. for 0.5 to 12 hours or at a temperature of from 250.degree. to 340.degree. C. for 0 to 5 minutes; providing draft of final cold-rolling amounting to 50% or more; and, providing 7% or more of elongation at normal temperature.
    Type: Grant
    Filed: October 24, 1994
    Date of Patent: July 30, 1996
    Assignee: Sky Aluminum Co., Ltd.
    Inventors: Mamoru Matsuo, Tsutomu Tagata
  • Patent number: RE40788
    Abstract: A litho strip for use as an offset printing plate is described which has a composition of 0.05-0.25% Si, 0.30-0.40% Fe, 0.10-0.30% Mg, max. 0.05% Mn, and max. 0.04% Cu. The strip is produced from a continuous cast ingot of the above composition which is hot rolled to a thickness of up to 2-7 mm. The residual resistance ratio of the hot rolled strip is RR=10-20. The cold rolling is carried out with or without intermediate annealing, wherein the degree of rolling reduction after intermediate annealing is >60%. The further processing up to the EC roughening takes place with the microstructure adjusted in the rolling process at <100° C. The litho strip is characterized by a high thermal stability, a good roughening behavior in the EC processes, and a high reverse bending fatigue strength perpendicular to the rolling direction.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: June 23, 2009
    Assignee: Hydro Aluminium Deutschland GmbH
    Inventors: Wolfgang Von Asten, Bernhard Kernig, Barbara Grzemba