Iron, Cobalt, Or Nickel Containing Patents (Class 420/547)
  • Patent number: 5527404
    Abstract: An improved elongate aluminum alloy product, and a method of producing such a product, ideally suited for use as a component in a vehicle frame or subassembly, i.e., body-in-white. The alloy consists of essentially 0.45 to 0.7% magnesium, and about 0.35 to 0.6%, silicon, and about 0.1 to 0.35%, vanadium, and, 0.1-0.4% iron, preferably 0.15 to 0.3%, the balance substantially aluminum and incidental elements and impurities.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: June 18, 1996
    Assignee: Aluminum Company of America
    Inventor: Allison S. Warren
  • Patent number: 5525169
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising: about 0.8 to about 1.5 wt. % silicon, about 0.2 to about 0.65 wt. % magnesium, about 0.02 to about 0.1 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.05 to about 0.2 wt. % iron; and the balance being substantially aluminum and incidental elements and impurities; (b) working the body to produce a the sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is preformed at a temperature greater than 860.degree. F. and the sheet is quenched by a water spray. The resulting sheet has an improved combination of formability, strength and corrosion resistance.
    Type: Grant
    Filed: May 11, 1994
    Date of Patent: June 11, 1996
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 5523050
    Abstract: A method is described for preparing a refined or reinforced eutectic or hyper-eutectic metal alloy, comprising: melting the eutectic or hyper-eutectic metal alloy, adding particles of non-metallic refractory material to the molten metal matrix, mixing together the molten metal alloy and the particles of refractory material, and casting the resulting mixture under conditions causing precipitation of at least one intermetallic phase from the molten metal matrix during solidification thereof such that the intermetallics formed during solidification wet and engulf said refractory particles. The added particles may be very small and serve only to refine the precipitating intermetallics in the alloy or they may be larger and serve as reinforcing particles in a composite with the alloy. The products obtained are also novel.
    Type: Grant
    Filed: March 15, 1993
    Date of Patent: June 4, 1996
    Assignee: Alcan International Limited
    Inventors: David J. Lloyd, Iljoon Jin
  • Patent number: 5516382
    Abstract: An aluminum alloy useful for drawing and/or ironing, particularly of drink cans. The alloy consists essentially of, in weight percent, Fe<0.25; Si<0.25; Mn from 1.05 to 1.6; Mg from 0.7 to 2.5; Cu from 0.20 to 0.6; Cr from 0 to 0.35; Ti from 0 to 0.1; V from 0 to 0.1; other elements: each <0.05; total<0.15; and remainder Al.
    Type: Grant
    Filed: October 20, 1994
    Date of Patent: May 14, 1996
    Assignee: Pechiney Rhenalu
    Inventor: Guy-Michel Raynaud
  • Patent number: 5494540
    Abstract: An abrasion-resistant aluminum alloy consists of 13.0 to 16.0 percent by weight of Si, 4.0 to 5.0 percent by weight of Cu, at least 0.8 and less than 1.4 percent by weight of Mg, not more than 0.8 percent by weight of Fe, not more than 0.1 percent by weight of either P or at least one of Na, Sb and Sr and a remainder of Al and unavoidable impurities. The alloy's microstructure contains coarse Si particles of 15 to 40 .mu.m mean particle diameter, fine Si particles of not more than 5 .mu.m mean particle diameter and other fine particles, with a homogeneous dispersion of all of these particles. This abrasion-resistant aluminum alloy has specific abrasion loss of not more than 10.times.10.sup.-7 mm.sup.2 /kg.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: February 27, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shigeki Ochi, Tosio Fujiwara
  • Patent number: 5489347
    Abstract: An aluminum alloy fin material for heat-exchanger with excellent thermal conductance and strength after brazing comprising 0.005 to 0.8 wt. % of Si, 0.5 to 1.5 wt. % of Fe, 0.1 to 2.0 wt. % of Ni, and a balance of Al and inevitable impurities is disclosed. The aluminum alloy fin material can additionally contain 0.01 to 0.2 wt. % of Zr and/or at least one element of the group consisting of not more than 2.0 wt. % of Zn, not more than 0.3 wt. % of In, and not more than 0.3 wt. % of Sn.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: February 6, 1996
    Assignees: Furukawa Electric Co., Ltd., Nippondenso Co., Ltd.
    Inventors: Fujio Himuro, Takeyoshi Doko
  • Patent number: 5478418
    Abstract: An aluminum alloy powder for sliding members includes Fe in an amount of from 0.5 to 5.0% by weight, Cu in an amount of from 0.6 to 5.0% by weight, B in an amount of from 0.1 to 2.0% by weight and the balance of Al. An aluminum alloy includes a matrix made from the aluminum alloy powder and at least one member dispersed, with respect to whole of the matrix taken 100% by weight, in the matrix, and selected from the group consisting of B in an amount of from 0.1 to 5.0% by weight, boride in an amount of from 1.0 to 15% by weight and iron compound in an amount of from 1.0 to 15% by weight, and thereby it exhibits the tensile strength of 400 MPa or more. The aluminum alloy powder and the aluminum alloy are suitable for making sliding members like valve lifters for automobiles.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: December 26, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminum Kabushiki Kaisha
    Inventors: Hirohisa Miura, Yasuhiro Yamada, Hirohumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5453244
    Abstract: There is disclosed a novel aluminum alloy bearing which exhibits a more excellent fatigue resistance than conventional bearings even under such conditions of use as at a high temperature and under a high load. The aluminum alloy bearing has an aluminum bearing alloy layer containing, by weight, 1 to 10% Zn, 0.1 to 5% Cu, 0.05 to 3% Mg, 0.1 to 2% Mn, 0.1 to 5% Pb, 0.1 to 2% V, and 0.03 to 0.5% in total of Ti--B, and further may optionally contain not more than 8% Si, 0.05 to 0.5% Sr, and Ni, Co and Cr. The alloy may be bonded to a steel metal back sheet, and a surface layer may be formed on the surface of the bearing. By use of the composition of the alloy of the invention, the fatigue resistance of the aluminum alloy bearings has been improved, and such an improved bearing can fully achieve a bearing performance even under severe conditions of use as at high temperature and under a high load.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: September 26, 1995
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Tohru Kato, Yoshiaki Sato
  • Patent number: 5437746
    Abstract: An aluminium alloy sheet for various discs having good platability is described. The alloy consists essentially of 2 to 6 wt % of Mg, 0.1 to 0.5 wt % of Zn, 0.03 to 0.40 wt % of Cu, 0.01 to 0.30 wt % of Fe and the balance of Al.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Eiki Usui, Masahiro Kawaguchi
  • Patent number: 5336341
    Abstract: An infrared radiation element and a process for producing the same. An aluminum alloy material consists essentially of 0.3 to 4.3 weight % of Mn, balance Al, and impurities. The alluminum alloy material is heated for dispersing a precipitate of an Al--Mn intermetallic compound at a density of at a minimum 1.times.10.sup.5 /mm.sup.3 for a size of 0.1 .mu.m to 3 .mu.m. The heated aluminum alloy material is anodized to form an anodic oxide layer thereon.
    Type: Grant
    Filed: August 30, 1991
    Date of Patent: August 9, 1994
    Assignees: Fujikura Ltd., Sky Aluminium Co., Ltd.
    Inventors: Masatsugu Maejima, Koichi Saruwatari, Akihito Kurosaka, Mamoru Matsuo, Hiroyoshi Gunji, Toshiki Muramatsu
  • Patent number: 5302342
    Abstract: An aluminum alloy for heat exchangers, the alloy, comprising a base compostion selected from a group consisting of Al-Mg-Si composition containing 0.1 to 0.8 wt % of Mg, 0.2 to 1.0 wt % of Si and 0.3 to 1.5 wt % of Mn; pure-Al composition; Al-Mg composition containing 0.05 to 1.0 wt % of Mg; and a Al-Zn composition containing 0.05 to 2.0 wt % of Zn. The alloy further comprises 0.01 to 0.3 wt % of Fe and/or 0.01 to 0.3 wt % of Ni, wherein the balance are aluminum of purity of 99.9% or higher and unavoidable impurities contained therein, and content of Cu as one of the impurities is controlled to be 0.05 wt % or less.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: April 12, 1994
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Showa Aluminum Kabushiki Kaisha
    Inventors: Tsuyoshi Kawabe, Nobuaki Yamamoto, Tadayoshi Hayashi, Makoto Tanio, Ichiro Iwai, Ichizo Tsukuda, Ryotatsu Otsuka
  • Patent number: 4992242
    Abstract: The invention relates to an aluminum alloy component retaining a good fatigue strength when used hot. The alloy contains by weight 11 to 26% silicon, 2 to 5% iron, 0.5 to 5% copper, 0.1 to 2% magnesium, 0.1 to 0.4% zirconium and 0.5 to 1.5% manganese, the alloy in the molten state is subjected to a fast solidification means, bringing it into the form of parts of components and optionally subjecting the latter to a heat treatment at between 490.degree. and 520.degree. C., followed by water hardening and annealing at between 170.degree. and 210.degree. C. Components formed of the alloy are used more particularly as rods, piston rods and pistons.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: February 12, 1991
    Assignee: Pechiney Recherche Groupement d'Interet Economique
    Inventor: Jean-Francois Faure
  • Patent number: 4976918
    Abstract: An aluminum alloy composition represented by the following general formula (I):Al.sub.a Mg.sub.b Ni.sub.c Mn.sub.d Si.sub.e Cu.sub.f Fe.sub.g Ti.sub.h Zn.sub.i B.sub.k Zr.sub.l (I)whereinb=about 2-8 wt %c=0-about 7 wt %d=0-about 3.0 wt %e=0-about 1.0 wt %f=0-about 1.0 wt %g=0-about 0.5 wt %h=0-about 0.3 wt %i=0-about 0.3 wt %j=0-about 0.1 wt %k=0-about 0.1 wt % andl=0-about 0.3 wt %; provided thatc+d.gtoreq.about 0.5 wt %, anda is balance.
    Type: Grant
    Filed: May 15, 1989
    Date of Patent: December 11, 1990
    Assignee: Ryobi Limited
    Inventors: Naomi Nishi, Shigetake Kami, Takashi Yamaguchi
  • Patent number: 4876185
    Abstract: A photoconductive member has a support comprising aluminum as the main component and a photoconductive layer. The photoconductive layer is provided on the support and contains an amorphous material comprising silicon atoms as a matrix. The support comprises an aluminum alloy with a Fe content of 2000 ppm by weight or less.
    Type: Grant
    Filed: July 9, 1987
    Date of Patent: October 24, 1989
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasuyuki Matsumoto, Keiichi Murai, Tadaji Fukuda, Kyosuke Ogawa
  • Patent number: 4847048
    Abstract: An alluminum alloy composition represented by the following general formula (I):Al.sub.a Mg.sub.b Ni.sub.c Mn.sub.d Si.sub.e Cu.sub.f Fe.sub.g Ti.sub.h Zn.sub.i B.sub.k Zr.sub.l (I)whereinb=about 2-8 wt %c=0--about 7 wt %d=0--about 3.0 wt %e=0--about 1.0 wt %f=0--about 1.0 wt %g=0--about 0.5 wt %h=0--about 0.3 wt %i=0--about 0.3 wt %j=0--about 0.1 wt %k=0--about 0.1 wt % andl=0--about 0.3 wt %; provided thatc+d.gtoreq.about 0.5 wt %, anda is balance.
    Type: Grant
    Filed: July 21, 1987
    Date of Patent: July 11, 1989
    Assignee: Ryobi Limited
    Inventors: Naomi Nishi, Shigetake Kami, Takashi Yamaguchi
  • Patent number: 4729939
    Abstract: An aluminum alloy support for lithographic printing plates produced by cold rolling an aluminum alloy composed substantially of Mg 0.05 to 3 wt %, Si 0.05 to 0.7 wt %, Zr 0.01 to 0.25 wt %, and Fe 0.05 to 0.4 wt %, with the balance being Al and impurities, and imparting a grained surface to the plate surface has high mechanical strength, good heat softening resistance, excellent water retentive property, and long press life.
    Type: Grant
    Filed: July 23, 1986
    Date of Patent: March 8, 1988
    Assignees: Nippon Light Metal Company Limited, Fuji Photo Film Co. Ltd.
    Inventors: Yasuhisa Nishikawa, Tadayuki Katoh, Misako Kawasaki, Kazushige Takizawa
  • Patent number: 4615735
    Abstract: Powder metallurgy products of high tensile strength are formed in a pore-free state by a novel process which entirely avoids the use of canisters. An open-pore specimen is purged with depurative gas, backfilled with a reactive gas and, while still immersed in the reactive gas, compressed isostatically to an extent necessary to close the pores. The specimen may then be compressed to full density without the need for either high vacuum or a depurative or reactive gas atmosphere.
    Type: Grant
    Filed: September 18, 1984
    Date of Patent: October 7, 1986
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventor: Steven W. Ping
  • Patent number: 4571368
    Abstract: An improved aluminum base alloy which provides corrosion protection in fin stock applications includes 0.6-3.0% silicon; 0.2-1.0% by weight iron; up to 0.2% by weight copper; 0.8-2.0% by weight manganese; up to 0.2% by weight magnesium; from about 0.5% by weight zinc to 2.5% by weight zinc; up to 0.2% by weight other constituents; and the balance aluminum. The alloy is especially useful as a sacrificial alloy having improved mechanical strength.
    Type: Grant
    Filed: July 3, 1984
    Date of Patent: February 18, 1986
    Assignee: Atlantic Richfield Company
    Inventors: John C. Fenoglio, David L. Wilbur, William H. Anthony
  • Patent number: 4554131
    Abstract: Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.
    Type: Grant
    Filed: September 28, 1984
    Date of Patent: November 19, 1985
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: David S. Thompson, Darwin H. Scott
  • Patent number: 4532106
    Abstract: A dispersion-strengthened aluminum-base alloy system is provided which is prepared by mechanical alloying and is characterized by high strength, high elastic modulus, low density and high corrosion resistance. The alloy system is comprised, by weight, of at least above 1.5% up to about 3% Li, about 0.4% up to about 1.5% O, about 0.25% up to about 1.2% C, and the balance essentially Al.
    Type: Grant
    Filed: July 31, 1980
    Date of Patent: July 30, 1985
    Assignee: Inco Alloys International, Inc.
    Inventor: Joseph R. Pickens
  • Patent number: 4502900
    Abstract: This invention relates to a wrought aluminum alloy, to its use for making semifinished and finished products and to processes of improving the properties, particularly the strength properties, of semifinished and finished products made of that alloy.A wrought aluminum alloy is proposed which contains 1.15 to 2.0% manganese, more than 1.0 and up to 2.0% silicon, 0.25 to 0.65% magnesium, 0.2 to 1.0% iron, not in excess of 0.3% copper, not in excess of 0.2% zinc, not in excess of 0.1% zirconium, not in excess of 0.1% titanium, balance aluminum and other impurities in a total not in excess of 0.2%.In FIG. 1, the ultimate tensile stresses which can be obtained with three different combinations of cooling rate and subsequent final cold reduction are plotted as a function of the magnesium content, the prior art being represented by magnesium contents of 0.2% and less.
    Type: Grant
    Filed: October 3, 1983
    Date of Patent: March 5, 1985
    Assignee: Vereinigte Deutsche Metallwerke AG
    Inventor: Heinz J. Althoff
  • Patent number: 4501627
    Abstract: This invention relates to a wrought aluminum alloy, to its use for making semifinished and finished products and to processes of improving the properties, particularly the strength properties, of semifinished and finished products made of that alloy.The efforts to improve the properties of aluminum alloys are often successful but restrict the field of application of the material; this is undesirable in view of the need to save raw materials and energy. For this reason a wrought aluminum alloy is desired which has a very wide field of application and which can be made to have properties in a wide range, possibly as a result of a processing under different conditions. The manufacture and recycling of such alloy should not involve special difficulties and the alloy should require only unproblematic alloying elements which are conventionally used with aluminum.
    Type: Grant
    Filed: December 1, 1983
    Date of Patent: February 26, 1985
    Assignee: Vereinigte Deutsche Metallwerke AG
    Inventor: Heinz J. Althoff
  • Patent number: 4435230
    Abstract: An aluminum alloy plate for printing is composed of 0.05-0.30% Mg, 0.05-0.30% Si, 0.15-0.30% Fe and the remainder Al and ordinary impurities. This printing plate is manufactured through the steps of subjecting an aluminum alloy ingot of this composition to a thermal soaking treatment; carrying out a hot rolling process; then carrying out a cold rolling process on the hot rolled alloy at least at a reduction of 70%; and carrying out low temperature annealing at a temperature of 150.degree.-250.degree. C. for at least one hour.
    Type: Grant
    Filed: August 20, 1982
    Date of Patent: March 6, 1984
    Assignee: Furukawa Aluminum Co., Ltd.
    Inventor: Chozo Fujikura