Rare Earth Metal Containing Patents (Class 420/83)
  • Publication number: 20100097171
    Abstract: A soft magnetic alloy contains P, B, and Cu as essential components. As a preferred example, an Fe-based alloy contains Fe of 70 atomic % or more, B of 5 atomic % to 25 atomic %, Cu of 1.5 atomic % or less (excluding zero), and P of 10 atomic or less (excluding zero).
    Type: Application
    Filed: March 19, 2008
    Publication date: April 22, 2010
    Inventors: Akiri Urata, Hiroyuki Matsumoto, Akihiro Makino
  • Publication number: 20100086431
    Abstract: The present invention provides a non-aging enameling steel sheet having excellent fishscale resistance characteristics that is suitable for one-coat enameling and a method of producing the same. The enameling steel sheet comprises, in mass %, C: 0.010% or less, Mn: 0.03% to 1.30%, Si: 0.100% or less, Al: 0.010% or less, N: 0.0055% or less, P: 0.035% or less, S: 0.08% or less, O: 0.005% to 0.085%, Nb: 0.055% to 0.250%, and the balance of Fe and unavoidable impurities, in which steel sheet preferably an Fe—Nb—Mn system composite oxide is present, a distribution of Nb mass % concentrations is present in the composite oxide, and the ratio of Nb mass % concentration of a high-concentration portion (Nb max %) to Nb mass % concentration of a low-concentration portion (Nb min %) is Nb max %/Nb min % ?1.2.
    Type: Application
    Filed: August 13, 2007
    Publication date: April 8, 2010
    Inventors: Hidekuni Murakami, Satoshi Nishimura
  • Publication number: 20100086432
    Abstract: An object of this invention is to provide a steel for high-cleanliness spring which is useful for the production of a spring excellent in fatigue characteristics in high Si steels. The steel for high-cleanliness spring with excellent fatigue characteristics according to the invention contains: in terms of mass %, C: 1.2% or less (excluding 0%); Si: 1.8% to 4%; Mn: 0.1% to 2.0%; and total Al: 0.01% or less (excluding 0%), with the remainder being iron and inevitable impurities, in which the Si amount and a solute (SIMS) Ca amount in the steel satisfy a relationship of the following expression (1): Si×10?7?solute (SIMS) Ca?Si×5×10?7 ??(1) (in which each of the solute (SIMS) Ca and Si represents the amount thereof (mass %) in the steel).
    Type: Application
    Filed: March 27, 2008
    Publication date: April 8, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomoko Sugimura, Koichi Sakamoto, Yoshio Fukuzaki, Atsuhiko Yoshida, Takeshi Inoue
  • Publication number: 20100086430
    Abstract: There is provided a heat resistant ferritic steel, excellent in the weld crack resistance of the HAZ and creep strength. A high-Cr heat resistant ferritic steel is characterized by consisting of, by mass %, Si: more than 0.1% and not more than 1.0%, Mn: 2.0% or less, Co: 1 to 8%, Cr: 7 to 13%, V: 0.05 to 0.4%, Nb: 0.01 to 0.09%, either one or both of Mo and W: 0.5 to 4% as a total, B: 0.005 to 0.025%, Al: 0.03% or less, and N: 0.003 to 0.06%, and containing C in an amount satisfying Expression (1), the balance being Fe and impurities, and O, P and S as impurities being such that O: 0.02% or less, P: 0.03% or less, and S: 0.02% or less, respectively, 0.005?C?(?5/3)×B+0.085??(1) in which C and B represent the content of each element (mass %). Furthermore, the high-Cr heat resistant ferritic steel may contain one or more kinds selected from the group consisting of Nd, Ta, Ca and Mg.
    Type: Application
    Filed: December 4, 2009
    Publication date: April 8, 2010
    Inventors: Hiroyuki Hirata, Mitsuru Yoshizawa, Kazuhiro Ogawa, Masaaki Igarashi
  • Publication number: 20100078097
    Abstract: A steel material superior in high temperature characteristics and toughness is provided, that is, a steel material containing, by mass %, C: 0.005% to 0.03%, Si: 0.05% to 0.40%, Mn: 0.40% to 1.70%, Nb: 0.02% to 0.25%, Ti: 0.005% to 0.025%, N: 0.0008% to 0.0045%, B: 0.0003% to 0.0030%, restricting P: 0.030% or less, S: 0.020% or less, Al: 0.03% or less, and having a balance of Fe and unavoidable impurities, where the contents of C and Nb satisfy C?Nb/7.74?0.02 and Ti-based oxides of a grain size of 0.05 to 10 ?m are present in a density of 30 to 300/mm2.
    Type: Application
    Filed: April 4, 2008
    Publication date: April 1, 2010
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Publication number: 20100047617
    Abstract: Steel sheet having a composition of ingredients containing substantially, by mass %, C: 0.005 to 0.200%, Si: 2.50% or less, Mn: 0.10 to 3.00%, N: 0.0100% or less, Nb: 0.005 to 0.100%, and Ti: 0.002 to 0.150% and satisfying the relationship of Ti-48/14×N?0.0005, having a sum of the X-ray random intensity ratios of the {100}<001> orientation and the {110}<001> orientation of a ? sheet thickness part of 5 or less, having a sum of the maximum value of the X-ray random intensity ratios of the {110}<111> to {110}<112> orientation group and the X-ray random intensity ratios of the {211}<111> orientation of 5 or more, and having a high rolling direction Young's modulus measured by the static tension method and a method of production of the same are provided.
    Type: Application
    Filed: November 7, 2007
    Publication date: February 25, 2010
    Inventors: Natsuko Sugiura, Naoki Maruyama, Manabu Takahashi, Yohji Nakamura, Koji Hanya
  • Publication number: 20100047107
    Abstract: A steel material superior in high temperature characteristics and toughness is provided, the fire resistant steel material containing by mass %, C: 0.001% to 0.030%, Si: 0.05% to 0.50%, Mn: 0.40% to 2.00%, Nb: 0.03% to 0.50%, Ti: 0.005% to less than 0.040%, and N: 0.0008% to less than 0.0050%, restricting P: 0.030% or less and S: 0.020% or less, and having a balance of Fe and unavoidable impurities, where the contents of C and Nb satisfy C—Nb/7.74?0.004, and Ti-based oxides of a grain size of 0.05 to 10 ?m are present in a density of 30 to 300/mm2.
    Type: Application
    Filed: April 11, 2008
    Publication date: February 25, 2010
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Publication number: 20100047106
    Abstract: This invention provides a forging steel excellent in forgeability, which forging steel comprises, in mass %, C: 0.001 to less than 0.07%, Si: 3.0% or less, Mn: 0.01 to 4.0%, Cr: 5.0% or less, P: 0.2% or less, S: 0.35% or less, Al: 0.0001 to 2.0%, N: 0.03% or less, one or both of Mo: 1.5% or less (including 0%) and Ni: 4.5% or less (including 0%), and a balance of iron and unavoidable impurities; wherein Di given by the following Equation (1) is 60 or greater: Di=5.
    Type: Application
    Filed: April 10, 2008
    Publication date: February 25, 2010
    Inventors: Hajime Saitoh, Tatsuro Ochi, Masayuki Hashimura
  • Publication number: 20100040503
    Abstract: A soft magnetic alloy that in an FeCo nanocrystal soft magnetic material, exhibits a high saturation magnetic flux density of 1.85 T or more, and that ensures prolonged nozzle life and easy ribbon production; an amorphous alloy ribbon for use in production thereof; and magnetic parts utilizing the soft magnetic alloy. The soft magnetic alloy has the composition of the formula Fe100-x-y-aCoaCuxBy (in the formula, x, y and a each represent atomic % and satisfy the relationships 1<x?3, 10?y?20 and 10<a<25). At least part of the structure thereof consists of a crystal phase of 60 nm or less (not including 0) crystal grain diameter. The soft magnetic alloy has a saturation magnetic flux density of 1.85 T or more and a coercive force of 200 A/m or less.
    Type: Application
    Filed: March 5, 2008
    Publication date: February 18, 2010
    Applicant: HITACHI METALS, LTD.
    Inventors: Yoshihito Yoshizawa, Motoki Ohta
  • Publication number: 20100008814
    Abstract: An R-T-B based sintered magnet according to the present invention comprises: 12 at % to 15 at % of a rare-earth element R; at % to 8.0 at % of boron B; 0.02 at % to 0.2 at % of Mn; and a transition metal T as the balance. The rare-earth element R is at least one element selected from the rare-earth elements, including Y (yttrium), and includes 0.2 at % to 8 at % of Pr. And the transition element T includes Fe as its main element.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 14, 2010
    Applicant: HITACHI METALS, LTD.
    Inventor: Hiroyuki TOMIZAWA
  • Publication number: 20100003156
    Abstract: The present invention provides a rare earth magnet, which is formed through at least hot molding, the rare earth magnet containing grains including an R2X14B phase as a main phase, and a grain boundary phase surrounding peripheries of the grains, in which R is at least one element selected from the group consisting of Nd, Pr, Dy, Tb and Ho, and X is Fe or Fe with a part being substituted by Co; in which an element RH is more concentrated in the grain boundary phase than in the grains, in which the element RH is at least one element selected from the group consisting of Dy, Tb and Ho; and the element RH is present with a substantially constant concentration distribution from the surface part of the magnet to the central part of the magnet.
    Type: Application
    Filed: June 30, 2009
    Publication date: January 7, 2010
    Applicant: DAIDO TOKUSHUKO KABUSHIKI KAISHA
    Inventors: Shunji SUZUKI, Hayato HASHINO, Masahiro HIRAOKA, Takao YABUMI
  • Publication number: 20100003161
    Abstract: The present invention provides: a steel for a welded structure to be used for a crude oil tank that exhibits excellent general and local corrosion resistance in crude oil corrosion caused in a steel oil tank and is capable of suppressing the formation of corrosion products (sludge) containing solid sulfur; a method for producing said steel; a crude oil tank; and a method for preventing a crude oil tank against corrosion. The present invention makes it possible to obtain general and local corrosion resistance in a crude oil tank environment and suppress the formation of corrosion products (sludge) containing solid sulfur by using a steel: containing, in mass, 0.001 to 0.2% C, 0.01 to 2.5% Si, 0.1 to 2% Mn, 0.03% or less P, 0.007% or less S, 0.01 to 1.5% Cu, 0.001 to 0.3% Al, 0.001 to 0.01% N as basic components and, further, 0.01 to 0.2% Mo and/or 0.01 to 0.5% W; and preferably satisfying the following expression; Solute Mo+Solute W?0.005%.
    Type: Application
    Filed: September 3, 2009
    Publication date: January 7, 2010
    Applicant: Nippon Steel Corporation
    Inventors: Akira Usami, Kenji Katoh, Toshiei Hasegawa, Akira Shishibori
  • Publication number: 20100003160
    Abstract: An R-T-B based sintered magnet according to the present invention has a composition comprising: 12 at % to 15 at % of a rare-earth element R; 5.0 at % to 8.0 at % of boron B; 0.1 at % to at % of Al; 0.02 at % to less than 0.2 at % of Mn; and a transition metal T as the balance. The rare-earth element R is at least one element selected from the rare-earth elements, including Y (yttrium), and includes at least one of Nd and Pr. The transition element T includes Fe as its main element.
    Type: Application
    Filed: September 16, 2009
    Publication date: January 7, 2010
    Applicant: HITACHI METALS, LTD.
    Inventor: Hiroyuki TOMIZAWA
  • Publication number: 20090317285
    Abstract: The present invention provides high strength hot rolled steel plate superior in stretch flange formability and fatigue characteristics comprising steel plate containing C: 0.03 to 0.20%, Si: 0.08 to 1.5%, Mn: 1.0 to 3.0%, P: 0.05% or less, S: 0.0005% or more, N: 0.0005 to 0.01%, acid soluble Al: 0.01% or less, acid soluble Ti: less than 0.008%, and a total of one or both of Ce or La: 0.0005 to 0.04%, having a balance of iron and unavoidable impurities and having a number ratio of stretched inclusions present in the steel plate having a circle equivalent diameter of 1 ?m or more and a long axis/short axis of 5 or more of 20% or less.
    Type: Application
    Filed: March 2, 2007
    Publication date: December 24, 2009
    Inventors: Katsuhiro Sasai, Wataru Ohashi, Kenichi Yamamoto, Kaoru Kawasaki, Hiroshi Harada
  • Publication number: 20090311125
    Abstract: Provided is a hot-working steel excellent in machinability and impact value comprising, in mass %, C: 0.06 to 0.85%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.0%, P: 0.005 to 0.2%, S: 0.001 to 0.35%, and Al: 0.06 to 1.0% and N: 0.016% or less, in contents satisfying Al×N×105?96, and a balance of Fe and unavoidable impurities, total volume of AlN precipitates of a circle-equivalent diameter exceeding 200 nm accounting for 20% or less of total volume of all AlN precipitates.
    Type: Application
    Filed: April 17, 2008
    Publication date: December 17, 2009
    Inventors: Kei Miyanishi, Masayuki Hashimura, Atsushi Mizuno
  • Publication number: 20090277547
    Abstract: A high strength steel sheet with both excellent elongation and stretch-flanging performance is provided. The high strength steel sheet of the present invention comprises, in percent by mass, C: 0.05 to 0.3%, Si: 0.01 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to 0.1%, and Fe and inevitable impurities as the remainder, and has a structure mainly composed of tempered martensite and annealed bainite. The space factor of the tempered martensite is 50 to 95%, the space factor of the annealed bainite is 5 to 30%, and the mean grain size of the tempered martensite is 10 ?m or smaller in terms of the equivalent of a circle diameter. The steel sheet has a tensile strength of 590 MPa or higher.
    Type: Application
    Filed: July 13, 2007
    Publication date: November 12, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO
    Inventors: Kenji Saito, Tomokazu Masuda, Masaaki Miura, Yoichi Mukai, Shushi Ikeda
  • Publication number: 20090274571
    Abstract: Permanent magnetic materials comprising an Nd—Fe—B alloy and an additive comprising at least one boride are disclosed. The boride may be a lanthanide boride being about 0.01% to about 5% of the alloy by weight. In some instances, the lanthanide boride may be at least one of DyB6, GdB6, TbB6, SmB6, or mixtures thereof.
    Type: Application
    Filed: April 13, 2009
    Publication date: November 5, 2009
    Applicant: BYD COMPANY LIMITED
    Inventors: Xin DU, XiaoFeng CHENG, FaLiang ZHANG
  • Publication number: 20090266451
    Abstract: An age hardenable martensitic steel alloy is disclosed. The alloy has the following composition in weight percent. C 0.30-0.36 Mn 0.05 max. Si 0.05 max. P 0.01 max. S 0.0010 max. Cr 1.30-3.2? Ni 10.0-13.0 Mo ?1.0-2.70 Co 13.8-17.4 Ti 0.02 max. Al 0.005 max. Ce 0.030 max. La 0.010 max. The balance is iron and the usual impurities. The composition of this alloy is balanced to provide a unique combination of very high strength, together with good toughness, ductility, and resistance to fatigue.
    Type: Application
    Filed: February 5, 2009
    Publication date: October 29, 2009
    Inventor: Paul M. Novotny
  • Publication number: 20090252955
    Abstract: Disclosed is a steel sheet, containing: Si: 0.20-2% (the term “%” herein means “mass %”, the same is true hereinbelow), Mn: 1-2.5%, a total mass of Si and Mn being 1.5% or more, and O: 0.002% or less (exclusive of 0%), C: 0.02-0.25%, P: 0.1% or less (exclusive of 0%), S: 0.05% or less (exclusive of 0%), Al—0.02-0.2%, and N: 0.0015-0.015%. The steel sheet of the invention can be advantageously used for forming wide beads even in high-speed arc welding of 100 cm/min or higher.
    Type: Application
    Filed: June 19, 2009
    Publication date: October 8, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tetsuo Soshiroda, Reiichi Suzuki, Kei Yamazaki
  • Patent number: 7597841
    Abstract: Provided is a weld metal for Cr—Mo steels which is suppressed in the formation of ferrite bands and therefore has heightened toughness and tensile strength and at the same time, good SR cracking resistance. The weld metal according to the present invention contains C: 0.02 to 0.06% (mass %, which will equally apply hereinafter), Si: 0.1 to 1.0%, Mn: 0.3 to 1.5%, Cr: 2.0 to 3.25%, Mo: 0.8 to 1.2%, Ti: 0.010 to 0.05%, B: 0.0005% or less (inclusive of 0%), N: 0.002 to 0.0120%, O: 0.03 to 0.07%, and the balance being Fe and inevitable impurities, wherein a ratio of the Ti content [Ti] to the N content [N] satisfies the following range: 2.00<[Ti]/[N]<6.25.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 6, 2009
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshitomi Okazaki, Koichi Hosoi
  • Publication number: 20090238714
    Abstract: A seamless steel tube for an airbag accumulator which can be manufactured by heat treatment of normalizing without quenching and tempering and which has a tensile strength of at least 850 MPa and resistance to bursting at ?20° C. has a stee; composition comprising, in mass %, C: 0.08-0.20%, Si: 0.1-1.0%, Mn: 0.6-2.0%, P: at most 0.025%, S: at most 0.010%, Cr: 0.05-1.0%, Mo: 0.05-1.0%, Al: 0.002-0.10%, at least one of Ca: 0.0003-0.01%, Mg: 0.0003-0.01%, and REM (rare earth metals): 0.0003-0.01%, at least one of Ti: 0.002-0.1% and Nb: 0.002-0.1%, with Ceq which is defined by the following Equation (1) being in the range of 0.45-0.63, with the metallurgical structure being a mixed structure of ferrite+bainite: Ceq=C+Si/24+Mn/6+(Cr+Mo)/5+(Ni+Cu)/15??(1) wherein the symbol for each element in Equation (1) indicates the number expressing the mass percent of the element.
    Type: Application
    Filed: April 24, 2009
    Publication date: September 24, 2009
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Yuji Arai, Takashi Takano
  • Publication number: 20090238713
    Abstract: The invention relates to an ultrahigh-strength thin steel sheet excellent in the hydrogen embrittlement resistance, the steel sheet including, by weight %, 0.10 to 0.60% of C, 1.0 to 3.0% of Si, 1.0 to 3.5% of Mn, 0.15% or less of P, 0.02% or less of S, 1.5% or less of Al, 0.003 to 2.0% of Cr, and a balance including iron and inevitable impurities; in which grains of residual austenite have an average axis ratio (major axis/minor axis) of 5 or more, the grains of the residual austenite have an average minor axis length of 1 ?m or less, and the grains of the residual austenite have a nearest-neighbor distance between the grains of 1 ?m or less.
    Type: Application
    Filed: December 28, 2006
    Publication date: September 24, 2009
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Shinshu TLO Co., Ltd.
    Inventors: Junichiro Kinugasa, Fumio Yuse, Yoichi Mukai, Shinji Kozuma, Hiroshi Akamizu, Kouji Kasuya, Muneaki Ikeda, Koichi Sugimoto
  • Publication number: 20090202384
    Abstract: A high tensile strength hot-rolled steel sheet having superior strain aging hardenability, which has high formability and stable quality characteristics, and in which satisfactory strength is obtained when the steel sheet is formed into automotive components, thus enabling the reduction in weight of automobile bodies. Specifically, a method for producing a high tensile strength hot-rolled steel sheet having superior strain aging hardenability with a BH of 80 MPa or more, a ?TS of 40 MPa or more, and a tensile strength of 440 MPa or more includes the steps of heating a steel slab to 1,000° C. or more, the steel slab containing, in percent by mass, 0.15% or less of C, 0.45% or less of Si, 3.0% or less of Mn, 0.08% or less of P, 0.02% or less of S, 0.02% or less of Al, 0.0050% to 0.0250% of N, and optionally 0.1% or less in total of at least one of more than 0.02% to 0.1% of Nb and more than 0.02% to 0.1% of V, the ratio N (mass %)/Al (mass %) being 0.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 13, 2009
    Applicant: JFE Steel Corporation, a Corporation of Japan
    Inventors: Akio Tosaka, Sinjiro Kaneko, Yoichi Tominaga, Noriyuki Katayama, Nobutaka Kurosawa, Kei Sakata, Osamu Furukimi
  • Publication number: 20090202383
    Abstract: A main object thereof is to provide a non-oriented electrical steel sheet being excellent in surface characteristics and having both excellent mechanical characteristics and magnetic characteristics necessary for a rotor of rotating machines such as motors and generators which rotate at a high speed, and a method for producing the same. To achieve the object, the present invention provides a non-oriented electrical steel sheet comprising in % by mass: 0.06% or less of C; 3.5% or less of Si; from 0.05% or more to 3.0% or less of Mn; 2.5% or less of Al; 0.30% or less of P; 0.04% or less of S; 0.02% or less of N; at least one element selected from the group consisting of Nb, Ti, Zr and Vin the predetermined range; and a balance consisting of Fe and impurities; and having a recrystallized fraction being less than 90%.
    Type: Application
    Filed: December 6, 2005
    Publication date: August 13, 2009
    Inventors: Ichirou Tanaka, Hiroshi Fujimura, Hirokatsu Nitomi, Hiroyoshi Yashiki, Kouji Nishida, Hiroki Takamaru
  • Publication number: 20090196786
    Abstract: “HARD ALLOYS WITH DRY COMPOSITION”, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 2.0; Chrome between 1.0 and 10.0; Tungsten-equivalent, as given by ratio 2Mo+W, between 7.0 and 14.0; Niobium between 0.5 and 3,5. Niobium can be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.5 and 3.5. Vanadium can be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium; Cobalt lower than 8, the remaining substantially Iron and impurities inevitable to the preparation process. As an option to refine carbides, the steel of the present invention can have content of Nitrogen controlled, below 0.030 and addition of Cerium or other earth elements at content between 0.005 and 0.020. For the same purpose, Silicon and Aluminum can be optionally added, at content between 0.5 and 3.0% for both of them.
    Type: Application
    Filed: July 18, 2007
    Publication date: August 6, 2009
    Inventors: Rafael Agnelli Mesquita, Celso Antonio Barbosa
  • Publication number: 20090184790
    Abstract: A soft magnetic alloy consists essentially of 5 percent by weight?Co?30 percent by weight, 1 percent by weight?Cr?20 percent by weight, 0.1 percent by weight?Al?2 percent by weight, 0 percent by weight?Si?1.5 percent by weight, 0.017 percent by weight?Mn?0.2 percent by weight, 0.01 percent by weight?S?0.05 percent by weight where Mn/S is >1.7, 0 percent by weight?O?0.0015 percent by weight, und 0.0003 percent by weight?Ce?0.05 percent by weight, 0 percent by weight?Ca?0.005 percent by weight and the remainder iron, where 0.117 percent by weight?(Al+Si+Mn+V+Mo+W+Nb+Ti+Ni)?5 percent by weight.
    Type: Application
    Filed: July 24, 2008
    Publication date: July 23, 2009
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold Pieper, Joachim Gerster
  • Publication number: 20090123322
    Abstract: High-speed steel for saw blades, presenting a composition of alloy elements consisting, in mass percentage, of Carbon between 0.5 and 1.5; Chromium between 1.0 and 10.0; equivalent Tungsten, given by 2Mo+W relation, between 3.0 and 10.0; Niobium between 0.5 and 2.0. Niobium may be partially or fully replaced with Vanadium, at a ratio of 2% Niobium to each 1% Vanadium; Vanadium between 0.3 and 2.0. Vanadium may be partially or fully replaced with Niobium, at a ratio of 2% Niobium to each 1% Vanadium, Silicon between 0.3 and 3.5. Silicon may be partially or fully replaced with Aluminum, at a 1:1 ratio; Cobalt lower than 8, the remaining substantially Fe and impurities inevitable to the preparation process.
    Type: Application
    Filed: February 2, 2007
    Publication date: May 14, 2009
    Inventors: Celso Antonio Barbosa, Rafael Agnelli Mesquita
  • Publication number: 20090092514
    Abstract: The present invention provides steel plate for high strength line pipe suppressing the rise in yield strength in the longitudinal direction of expanded steel pipe due to the heating at the time of coating to prevent corrosion and superior in strain aging resistance and steel pipe for the material for the same, that is, high strength steel pipe for line pipe superior in strain aging resistance characterized in that a base material having a composition of chemical elements containing, by mass %, Mo: over 0% to less than 0.15% and Mn: 1.7 to 2.5%, satisfying Mo/Mn: over 0 to 0.08, containing C, Si, P, S, Al, Ti, N, and B, furthermore containing one or more of Ni, Cu, and Cr, having a balance of iron and unavoidable impurities, having a P value of 2.5 to 4.0 in range, and having a metallurgical structure comprised of bainite and martensite: P value=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+2Mo. Furthermore, it may contain one or more of Nb, V, Ca, REM, and Mg.
    Type: Application
    Filed: May 14, 2007
    Publication date: April 9, 2009
    Inventors: Hitoshi Asahi, Takuya Hara, Naoki Doi, Yoshio Terada
  • Publication number: 20090092515
    Abstract: The present invention provides high strength thick steel plate superior in crack arrestability high in strength, free of deterioration of HAZ toughness, and free of anisotropy, that steel plate containing, by mass %, C: 0.03 to 0.15%, Si: 0.1 to 0.5%, Mn: 0.5 to 2.0%, P: ?0.02%, S: ?0.01%, Al: 0.001 to 0.1%, Ti: 0.005 to 0.02%, Ni: 0.15 to 2%, and N: 0.001 to 0.008% and having a balance of iron and unavoidable impurities as chemical components, having a microstructure of a ferrite and/or pearlite structure with bainite as a matrix phase, and having an average circle equivalent diameter of crystal grains with a crystal misorientation angle of 15° or more of 15 ?m or less in the regions of 10% of plate thickness from the front and rear surfaces and of 40 ?m or less in the other region including the center part of plate thickness.
    Type: Application
    Filed: April 13, 2007
    Publication date: April 9, 2009
    Inventors: Kiyotaka Nakashima, Masanori Minagawa, Kouji Ishida, Akira Ito
  • Publication number: 20090087335
    Abstract: The present invention provides first resistant steel superior in fire resistance having less variation in material quality and exhibiting a yield strength of ? or more of that at ordinary temperature even at 600° C. and a method of production of the same, that is, fire resistant steel characterized by containing, by mass %, C: 0.01 to 0.03%, Mn: 0.2 to 1.7%, Si: 0.5% or less, Cu: 0.7 to 2%, Mo: 0.8% or less, Nb: 0.01 to 0.3%, Ti: 0.005 to 0.03%, N: 0.006% or less, B: 0.0003 to 0.003%, V: 0.2% or less, Cr: 1% or less, Al: 0.1% or less, P: 0.03% or less, and S: 0.02% or less, containing Ni by mass ratio of Ni/Cu of 0.6 to 0.9, and comprising a balance of Fe and unavoidable impurities, and having a yield strength at 600° C. of 60% of the yield strength at 21° C.
    Type: Application
    Filed: April 28, 2006
    Publication date: April 2, 2009
    Inventors: Teruhisa Okumura, Kohichi Yamamoto, Suguru Yoshida, Hiroshi Kita, Hirokazu Sugiyama
  • Publication number: 20090081071
    Abstract: A rare earth permanent magnet alloy with a high coercive force is disclosed. The rare earth permanent magnet alloy comprises: a rare earth-iron-boron type magnetic phase (R2Fe14B type magnetic phase) constituting a parent phase; and a defect structure. The parent phase contains the defect structure. Displacement of magnetic domain wall of the R2Fe14B type magnetic phase is prevented by the defect structure, thereby improving coercive force.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 26, 2009
    Inventors: Hiroshi YAMAMOTO, Tetsurou Tayu, Masashi Ohmura, Keizou Otani, Takao Yabumi, Hayato Hashino
  • Patent number: 7507302
    Abstract: A rare-earth alloy powder is obtained by rapidly cooling a melt of an alloy by an atomization process. The alloy has a composition represented by (Fe1-mTm)100-x-y-zQxRyTizMn, where T is at least one of Co and Ni, Q is at least one of B and C, R is at least one of the rare-earth metal elements and yttrium, and M is at least one of Nb, Zr, Mo, Ta and Hf. The mole fractions x, y, z, m and n satisfy 10 at %<x?25 at %, 6 at %?y<10 at %, 0.1 at %?z?12 at %, 0?m?0.5, and 0 at %?n?10 at %, respectively. By adding Ti to the alloy, the nucleation and growth of ?-Fe during the rapid quenching process can be minimized.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: March 24, 2009
    Assignee: Hitachi Metals, Ltd.
    Inventors: Toshio Miyoshi, Hirokazu Kanekiyo, Satoshi Hirosawa
  • Publication number: 20090053097
    Abstract: The present invention provides a fire-resistant steel material superior in HAZ toughness of a welded joint which is high in high temperature yield strength at an envisioned fire temperature of 700 to 800° C. and is free of embrittlement of the welded joint even if exposed at this envisioned fire temperature and a method of production of the same, that is, a fire-resistant steel material of a composition containing, by mass %, C: 0.005% to less than 0.03%, Si: 0.01 to 0.50%, Mn: 0.05 to 0.40%, Cr: 1.50 to 5.00%, V: 0.05 to 0.50%, and N: 0.001 to 0.005% and restricted in contents of Ni, Cu, Mo, B, P, S, and O obtained by heating a steel slab to 1150 to 1300° C., then hot working or hot rolling the slab to an end temperature of 880 degrees or more, acceleratedly cooling the worked or rolled steel material under conditions of a cooling rate at a position of the slowest cooling rate of at least 2° C.
    Type: Application
    Filed: September 20, 2007
    Publication date: February 26, 2009
    Inventors: Yasushi Hasegawa, Suguru Yoshida, Yoshiyuki Watannabe
  • Publication number: 20090047166
    Abstract: A low alloy steel comprising, by mass %, C: 0.10 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.5%, Cr: 1.0 to 2.0%, Mo: 0.05 to 2.0%, Al: 0.10 % or less and Ti: 0.002 to 0.05%, and with a Ceq value obtained by the following formula (1) of 0.65 or more, with the balance being Fe and impurities, wherein in the impurities, P is 0.025% or less, S is 0.010% or less, N is 0.007% or less, and B is less than 0.0003%, and the number per unit area of M23C6 type precipitates (M: a metal element) whose grain diameter is 1 ?m or more is 0.1/mm2 or less. This invention provides a low alloy steel possessing both hardenability and toughness and improves the resistance to sulfide stress corrosion cracking. Ceq=C+(Mn/6)+(Cr+Mo+V)/5 ??formula (1) where C, Mn, Cr, Mo and V in the formula (1) denote the mass % of respective elements.
    Type: Application
    Filed: October 1, 2008
    Publication date: February 19, 2009
    Inventors: Kuniaki Tomomatsu, Tomohiko Omura, Yuji Arai, Toshiharu Abe
  • Publication number: 20090047169
    Abstract: The present invention provides a rolled material having excellent fracture splitting characteristics and suitable for the manufacture of a connecting rod in which a through-hole section for assembly in a crankshaft is fracture split in substantially semicircles. Prescribed components are contained, an average aspect ratio of a sulfide-based inclusion as observed in a D/4 portion (D is the diameter of the rolled material) in a cross-section parallel to a longitudinal direction of the rod-shaped rolled material is not more than 10.0, a Pc indicated in Equation (1) below is between 0.41 and 0.75, and a Veq indicated in Equation (2) below is not less than 0.18 mass % Pc=C(1??/100)??(1) {In Equation (1), C represents the carbon content in steel (mass %) and ? represents the ferrite fraction (area ratio %)} Veq=V+Ti/2+Si/20??(2) {In Equation (2), V, Ti and Si represent the content of each element in steel (mass %)}.
    Type: Application
    Filed: March 13, 2007
    Publication date: February 19, 2009
    Applicant: KAB. KAISHA KOBE SEIKO SHO (kobe Steel, Ltd.)
    Inventors: Goro Anan, Keita Shiihashi
  • Publication number: 20090035170
    Abstract: An object of the present invention is to provide an R-T-B type alloy (wherein R is at least one element selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb, and Lu; T is a transition metal that contains 80% by mass or more of Fe; and B is one that contains 50% by mass or more of boron (B) and also contains at least one element of C and N within a range from 0 to less than 50% by mass) that contains at least Dy, as a raw material for a rare earth-based permanent magnet having excellent magnetic characteristics, and the R-T-B type alloy provided in the present invention includes a main phase such as an R2T14B phase for exhibiting magnetic properties; an R-rich phase that is relatively enriched with R compared to the overall alloy compositional ratio; and a Dy-rich region that is formed close to the R-rich phase and relatively enriched with Dy compared to the compositional ratio.
    Type: Application
    Filed: January 28, 2008
    Publication date: February 5, 2009
    Applicant: Showa Denko K.K.
    Inventors: Kenichiro Nakajima, Hiroshi Hasegawa
  • Patent number: 7485193
    Abstract: A R—Fe—B base rare earth permanent magnet material consists of, in percents by weight, 25 to 45 wt % of R, 0.1 to 4.5 wt % of Co, 0.8 to 1.4 wt % of B, 0.05 to 3.0 wt % of Al, 0.02 to 0.5 wt % of Cu, 0.03 to 0.5 wt % of M, 0.01 to 0.5 wt % of C, 0.05 to 3.0 wt % of O, 0.002 to 0.1 wt % of N, 0.001 to 2.0 wt % of F, with the balance of Fe and incidental impurities, wherein R is at least one element selected from among Nd, Pr, Dy, Tb and Ho, and M is at least one element selected from among Zr, Hf, Ti, Cr, Nb, Mo, Si, Sn, Zn, V, W and Cr.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: February 3, 2009
    Assignee: Shin-Etsu Chemical Co., Ltd
    Inventors: Koichi Hirota, Takehisa Minowa
  • Publication number: 20080274008
    Abstract: A corrosion-resistant steel excellent in toughness of a base metal and a weld portion said steel slab contains, in % by weight, C: 0.2% or less; Si: 0.01 to 2.0%; Mn: 0.1 to 4% or less; P: 0.03% or less; S: 0.01% or less; Cr: 3 to 11%; Al: 0.1 to 2%; and N: 0.02%, and has values of 1150 or above, and 600 or above respectively for Tp and Tc expressed by the equations below using concentrations of Cr, Al, C, Mn, Cu and Ni respectively given as % Cr, % Al, % C, % Mn, % Cu and % Ni. Tp=1601?(34% Cr+287% Al)+(500% C+33% Mn+60% Cu+107% Ni); and Tc=910+80% Al?(300% C+80% Mn+15% Cr+55% Ni).
    Type: Application
    Filed: May 12, 2004
    Publication date: November 6, 2008
    Inventors: Naoki Saitoh, Kenji Katoh
  • Publication number: 20080274009
    Abstract: An R-T-B based sintered magnet according to the present invention comprises: 12 at % to 17 at % of a rare-earth element R; 5.0 at % to 8.0 at % of boron B; 0.02 at % to 0.2 at % of Mn; and a transition metal T as the balance. The rare-earth element R is at least one element selected from the rare-earth elements, including Y (yttrium), and includes 0.2 at % to 8 at % of Pr. And the transition element T includes Fe as its main element.
    Type: Application
    Filed: June 4, 2008
    Publication date: November 6, 2008
    Applicant: HITACHI METALS, LTD.
    Inventor: Hiroyuki TOMIZAWA
  • Publication number: 20080219878
    Abstract: A thick-walled seamless steel pipe for line pipe which has a high strength and improved toughness and corrosion resistance in spite of the thick wall and which is suitable for use as a riser and flow line has a chemical composition comprising, in mass percent, C: 0.02-0.08%, Si: at most 0.5%, Mn: 1.5-3.0%, Al: 0.001-0.10%, Mo: greater than 0.4%-1.2%, N: 0.002-0.015%, at least one of Ca and REM in a total amount of 0.0002-0.007%, and a remainder of Fe and impurities, with the impurities having the content of P: at most 0.05%, S: at most 0.005%, and O: at most 0.005%, the chemical composition satisfying the inequality: 0.8?[Mn]×[Mo]?2.6, wherein [Mn] and [Mo] are the numbers equivalent to the contents of Mn and Mo, respectively, in mass percent.
    Type: Application
    Filed: February 21, 2008
    Publication date: September 11, 2008
    Inventors: Kunio Kondo, Yuji Arai, Nobuyuki Hisamune
  • Publication number: 20080193321
    Abstract: The invention relates to steel which is characterised by the following composition as expressed in percentages by weight:—C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace?50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace?500 ppm, -Rare earths=trace?500 ppm, —Ti=trace?500 ppm, —O=trace?200 ppm if the steel is obtained by means of powder metallurgy or trace?50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace?100 ppm, —S=trace?50 ppm, —Cu=trace?1%, and —P=trace?200 ppm, the remainder comprising iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.
    Type: Application
    Filed: April 20, 2006
    Publication date: August 14, 2008
    Applicant: AUBERT & DUVAL
    Inventors: Jacques Montagnon, Philippe Heritier, Isabelle Peslerbe, Claude Mons
  • Publication number: 20080156403
    Abstract: Disclosed herein is a steel for high-speed cold working which exhibits good cold workability during working and also exhibits high hardness after working. The steel for high-speed cold working contains C: 0.03 to 0.6% (by mass), Si: 0.005 to 0.6%, Mn: 0.05 to 2%, P: no more than 0.05% (excluding 0%), S: no more than 0.05% (excluding 0%), and N: no more than 0.04% (excluding 0%), with the remainder being iron and inevitable impurities and the amount of dissolved nitrogen in the steel being no less than 0.006%.
    Type: Application
    Filed: December 5, 2007
    Publication date: July 3, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Tomokazu MASUDA, Takuya Kochi, Shogo Murakami, Hiroshi Yaguchi
  • Publication number: 20080159901
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45% ; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245 (Mo+3 V+1.5 Nb+0.75 Ta)0.30+125 Cr0.20+15.8 Mn+7.4 Ni+18 Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2 W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Application
    Filed: May 12, 2005
    Publication date: July 3, 2008
    Inventors: Jean Beguinot, Dominique Viale
  • Publication number: 20080156400
    Abstract: According to a low alloy steel of the present invention, compositional elements thereof are limited, and a metal structure thereof comprises bainite or martensite. Further, a proper amounts of Nd inclusions are formed by appropriately selecting timings of deoxidation and Nd addition in melting a steel. Consequently, compatibility between high-temperature creep strength and long-term creep ductility, which is hardly established in conventional steels, can be achieved even in hostile conditions. Accordingly, the low alloy steel of the present invention can be widely applied as the material for the heat-resistant structural member used for a long time under the high-temperature and high-pressure conditions such as power plant boilers, turbines, and nuclear power plants.
    Type: Application
    Filed: March 4, 2008
    Publication date: July 3, 2008
    Inventors: Takashi Nakashima, Kaori Kawano, Masaaki Igarashi
  • Publication number: 20080118389
    Abstract: A nonoriented electrical steel sheet excellent in core loss comprising copper sulfides with a sphere-equivalent radius of 100 nm or less, wherein the number density of the copper sulfides is less than 1×1010 [inclusions/mm3]. Preferably, the percentage of the number of copper sulfides with a (major axis)/(minor axis) ratio of more than 2 per total number of copper sulfides is 30% or less. The steel preferably further comprises Cu of 0.5 mass % or less and REM of 0.0005% or more and 0.03% or less, wherein the following expression (1) or expressions (1) and (2) are met: [REM]×[Cu]3?7.5×10?11, ??(1) ([REM]?0.003)0.1×[Cu]2?1.25×10?4.
    Type: Application
    Filed: September 9, 2005
    Publication date: May 22, 2008
    Inventors: Wataru O-Hashi, Masafumi Miyazaki, Yousuke Kurosaki, Takeshi Kubota
  • Publication number: 20080112838
    Abstract: Non-oriented electrical steel sheet superior in core loss characterized by containing, by mass %, C: 0.01% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.1% to 2.0%, N: 0.005% or less, Ti: 0.02% or less, REM: 0.05% or less, S: 0.005% or less, O: 0.
    Type: Application
    Filed: September 28, 2005
    Publication date: May 15, 2008
    Inventors: Masafumi Miyazaki, Wataru Ohashi, Yousuke Kurosaki, Takeshi Kubota, Hiroshi Harada, Tomohiro Konno, Yutaka Matsumoto, Koichi Kirishiki
  • Patent number: 7347904
    Abstract: The present invention provides a low carbon steel sheet and a low carbon steel slab on which formation of surface defects can be surely prevented by preventing aggregation of inclusions in the molten steel and finely dispersing inclusions in the steel sheet or slab, and a process for producing the steel sheet and slab. The present invention provides a process comprising the steps of decarburizing a molten steel so as to produce a carbon concentration of up to 0.01% by mass, pre-deoxidizing the molten steel by adding Al thereto so as to produce a dissolved oxygen concentration from 0.01 to 0.04% by mass, adding thereto Ti and at least La and/or Ce, and casting the molten steel, and a steel sheet and a steel slab obtained by the process.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: March 25, 2008
    Assignee: Nippon Steel Corporation
    Inventors: Katsuhiro Sasai, Wataru Ohashi, Tooru Matsumiya, Yoshiaki Kimura, Junji Nakashima
  • Patent number: 7316752
    Abstract: The step of preparing a rapidly solidified alloy by rapidly quenching a melt of an R-T-B-C based rare-earth alloy (where R is at least one of the rare-earth elements including Y, T is a transition metal including iron as its main ingredient, B is boron, and C is carbon) and the step of thermally treating and crystallizing the rapidly solidified alloy are included. The step of thermally treating results in producing a first compound phase with an R2Fe14B type crystal structure and a second compound phase having a diffraction peak at a site with an interplanar spacing d of 0.295 nm to 0.300 nm (i.e., where 2?=30 degrees). An intensity ratio of the diffraction peak of the second compound phase to that of R2Fe14B type crystals representing a (410) plane is at least 10%. The present invention provides an R-T-B-C based rare-earth alloy magnetic material, including carbon (C) as an indispensable element but exhibiting excellent magnetic properties, and makes it possible to recycle rare-earth magnets.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: January 8, 2008
    Assignee: Neomax Co., Ltd.
    Inventors: Hiroyuki Tomizawa, Yuji Kaneko
  • Patent number: 7208097
    Abstract: An iron-based rare earth alloy nanocomposite magnet has a composition represented by (Fe1-mTm)100-x-y-zQxRyTiz, where T is Co and/or Ni, Q is B and/or C and R is rare earth element(s) including substantially no La or Ce. x, y, z and m satisfy 10 at %<x?17 at %, 7 at %?y<10 at %, 0.5 at %?z?6 at % and 0?m?0.5, respectively. The magnet includes crystal grains of an R2T14Q type compound having an average grain size of 20 nm to 200 nm and a ferromagnetic iron-based boride that exists in a grain boundary between the crystal grains of the R2T14Q type compound. The boride is dispersed in, or present in the form of a film over, the grain boundary to cover at least partially the surface of the crystal grains of the R2T14Q type compound.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: April 24, 2007
    Assignee: Neomax Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa
  • Patent number: 7175718
    Abstract: A material for a rare earth permanent magnet having a high magnetic coercive force and a high residual magnetic flux density. 28 to 35% by weight of at least one rare earth element selected from the group consisting of neodymium, praseodymium, dysprosium, terbium, and holmium, 0.9 to 1.3% by weight of boron, 0.25 to 3% by weight of phosphorus, iron, and inevitable impurities. It can further comprise 0.1 to 3.6% by weight of cobalt and 0.02 to 0.25% by weight of copper.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: February 13, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hideharu Nobutoki, Suguru Nagae, Satoru Hayasi