Rare Earth Metal Containing Patents (Class 420/83)
  • Patent number: 7138070
    Abstract: A magnetic material manufacturing method, a ribbon-shaped magnetic material manufactured by the method, a powdered magnetic material formed from the ribbon-shaped magnetic material and a bonded magnet manufactured using the powdered magnet material are disclosed. The method and the magnetic materials can provide magnets having excellent magnetic properties and reliability. A melt spinning apparatus 1 is provided with a tube 2 having a nozzle 3 at the bottom thereof, a coil 4 for heating the tube and a cooling roll 5 having a circumferential surface 53 on which dimple correcting means is provided. A melt spun ribbon 8 is formed by injecting the molten alloy 6 from the nozzle 3 so as to be collided with the circumferential surface 53 of the cooling roll 5 in an inert gas atmosphere (ambient gas) such as helium gas, so that the molten alloy 6 is cooled and then solidified.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: November 21, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 7052561
    Abstract: A bulk amorphous alloy has the approximate composition: Fe(100?a?b?c?d?e)YaMnbTcMdXe wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b?25; c is an atomic percentage, and c?25; d is an atomic percentage, and d?25; and e is an atomic percentage, and 5?e?30.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: May 30, 2006
    Assignee: UT-Battelle, LLC
    Inventors: ZhaoPing Lu, Chain T. Liu
  • Patent number: 7025897
    Abstract: A magnetic material manufacturing method, a ribbon-shaped magnetic material manufactured by the method, a powdered magnetic material formed from the ribbon-shaped magnetic material and a bonded magnet manufactured using the powdered magnet material are disclosed. The method and the magnetic materials can provide magnets having excellent magnetic properties and reliability. A melt spinning apparatus 1 is provided with a tube 2 having a nozzle 3 at the bottom thereof, a coil 4 for heating the tube and a cooling roll 5 having a circumferential surface 53 on which dimple correcting means is provided. A melt spun ribbon 8 is formed by injecting the molten alloy 6 from the nozzle 3 so as to be collided with the circumferential surface 53 of the cooling roll 5 in an inert gas atmosphere (ambient gas) such as helium gas, so that the molten alloy 6 is cooled and then solidified.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: April 11, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 7025837
    Abstract: Permanent magnets in which the ferromagnetic phase is matched with the grain boundary phase, and permanent magnets in which magnetocrystalline anisotropy in the vicinity of the outermost shell of the major phase is equivalent in intensity to that in the inside to suppress nucleation of the reverse magnetic domain, more specifically having a magnetocrystalline anisotropy not less than one-half the magnetocrystalline anisotropy of the interiors of the ferromagnetic grains, are disclosed.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: April 11, 2006
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Ken Makita, Osamu Yamashita
  • Patent number: 7022303
    Abstract: Polycrystalline materials of macroscopic size exhibiting Single-Crystal-Like properties are formed from a plurality of Single-Crystal Particles, having Self-Aligning morphologies and optionally ling morphology, bonded together and aligned along at least one, and up to three, crystallographic directions.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: April 4, 2006
    Assignee: Rutgers, The State University
    Inventors: Richard E. Riman, Larry E. McCandlish
  • Patent number: 7022384
    Abstract: A reflective film used as a reflective electrode or a reflector, comprising an Ag-based alloy containing rare earth metals. The reflective film has high reflectivity and high durability.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: April 4, 2006
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hideo Fujii, Junichi Nakai, Takashi Onishi, Katsutoshi Takagi
  • Patent number: 7022252
    Abstract: The permanent magnetic alloy of the present invention comprises an R—Fe—B alloy wherein R is at least one element selected from rare earth elements including Y. The R—Fe—B alloy has a composition mainly comprising Fe, substantially containing no N, and containing 4 at. % or more of B. The permanent magnetic alloy substantially comprises a TbCu7 hard magnetic phase (main phase) and a fine crystal having an average crystal grain size of less than 5 nm and/or an amorphous phase, and has high magnetic properties.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: April 4, 2006
    Assignee: Hitachi Metals, Ltd.
    Inventors: Mitsuaki Mochizuki, Michihisa Shimizu, Tsunehiro Kawata, Masao Murakawa
  • Patent number: 7018487
    Abstract: An exchange-spring magnet is prepared using a magnet alloy containing Ta and C in addition to Nd, Fe and B. This exchange-spring magnet uses the magnet alloy prepared by a liquid quenching method or a mechanical alloying method. Further, by subjecting the magnetic alloy having a part set in an amorphous state to heat treatment, an exchange-spring magnet exhibits good properties regarding magnetic flux density and coercive force.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: March 28, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hideaki Ono, Tetsurou Tayu, Munekatsu Shimada, Makoto Kano
  • Patent number: 7014718
    Abstract: One object of the present invention is to provide a rare earth magnet alloy ingot, which has improved magnetic properties. In order to achieve the object, the present invention provides a rare earth magnet alloy ingot, wherein the rare earth magnet alloy ingot comprises an R-T-B type magnet alloy (R represents at least one element selected from among rare earth elements, including Y; and T represents a substance predominantly comprising Fe, with a portion of Fe atoms being optionally substituted by Co, Ni, Cu, Al, Ga, Cr, and Mn.) containing at least one element selected from among Nd, Pr, and Dy in a total amount of 11.8 to 16.5% by atom and B in an amount of 5.6 to 9.1% by atom; and wherein as determined in an as-cast state of the alloy ingot, R-rich phase that measures 100 ?m or more is substantially absent on a cross section.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: March 21, 2006
    Assignee: Showa Denko K.K.
    Inventors: Hiroshi Hasegawa, Masahide Utsunomiya, Tadanao Ito
  • Patent number: 6979409
    Abstract: The present invention relates to highly quenchable Fe-based rare earth magnetic materials that are made by rapid solidification process and exhibit good magnetic properties and thermal stability. More specifically, the invention relates to isotropic Nd—Fe—B type magnetic materials made from a rapid solidification process with a lower optimal wheel speed and a broader optimal wheel speed window than those used in producing conventional magnetic materials. The materials exhibit remanence (Br) and intrinsic coercivity (Hci) values of between 7.0 to 8.5 kG and 6.5 to 9.9 kOe, respectively, at room temperature. The invention also relates to process of making the materials and to bonded magnets made from the magnetic materials, which are suitable for direct replacement of anisotropic sintered ferrites in many applications.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: December 27, 2005
    Assignee: Magnequench, Inc.
    Inventors: Zhongmin Chen, Benjamin R. Smith, Bao-Min Ma, James W. Herchenroeder
  • Patent number: 6979374
    Abstract: Disclosed herein is a magnetic powder which can provide magnets having excellent magnetic properties and having excellent reliability especially excellent heat stability. The magnetic powder is composed of an alloy composition represented by Rx(Fe1-aCoa)100-x-y-zByMz (where R is at least one kind of rare-earth element excepting Dy, M is at least one kind of element selected from Ti, Cr, Nb, Mo, Hf, W, Mn, Zr and Dy, x is 7.1-9.9 at %, y is 4.6-8.0 at %, z is 0.1-3.0 at %, and a is 0-0.30, and the magnetic powder being constituted from a composite structure having a soft magnetic phase and a hard magnetic phase, wherein when the magnetic powder is mixed with a binding resin and then the mixture is subjected to compaction molding to form a bonded magnet having a density ?[Mg/m3], the maximum magnetic energy product (BH)max[kJ/m3] of the bonded magnet at a room temperature satisfies the relationship represented by the formula (BH)max/?2[×10?9 Jm3/g2] 2.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: December 27, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6966953
    Abstract: Compositionally modified, sintered RE-Fe—B-based rare earth permanent magnets demonstrate the optimum combination of mechanical and magnetic properties, thereby maximizing fracture toughness with corresponding improved machinability, while maintaining the maximum energy product (BH)max.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: November 22, 2005
    Assignees: University of Dayton, Electron Energy Corporation
    Inventors: Shiqiang Liu, Jinfang Liu
  • Patent number: 6955729
    Abstract: An alloy for bonded magnets of the present invention includes at least a main component of iron (Fe), 12-16 atomic % (at %) of rare-earth elements (R) including yttrium (Y), and 10.8-15 at % of boron (B), and is subjected to a hydrogen treatment method as HDDR process or d-HDDR process. Using the magnet powder obtained from carrying out d-HDDR processing, etc. on this magnet alloy, pellets with superior insertion characteristics into bonded magnet molding dies can be obtained, and bonded magnets with superior magnetic properties and showing low cost can be obtained.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: October 18, 2005
    Assignee: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Patent number: 6905651
    Abstract: A ferritic stainless steel alloy useful as a substrate for catalytic converter material consists of, by weight: 15-21% Cr, 8-12% Al, 0.01-0.09% Ce, 0.02-0.1% total of REM, and possible minor amounts of further elements, other than the ones mentioned, the balance being Fe with normally occurring impurities. These alloys have managed to combine a high content of Al with a good hot and cold workability.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: June 14, 2005
    Assignee: Sandvik AB
    Inventors: Simon Johansson, Bo Rogberg
  • Patent number: 6896745
    Abstract: Disclosed herein is a magnetic powder which can provide magnets having excellent magnetic properties and having excellent reliability especially excellent heat stability. The magnetic powder is composed of an alloy composition represented by Rx(Fe1?aCoa)100?x?y?zByMz (where R is at least one kind of rare-earth element excepting Dy, M is at least one kind of element selected from Ti, Cr, Nb, V, Mo, Hf, W, Mn, Zr and Dy, x is 7.1-9.9 at %, y is 4.6-8.0 at %, z is 0.1-3.0 at %, and a is 0-0.30), and the magnetic powder being constituted from a composite structure having a soft magnetic phase and a hard magnetic phase, wherein when the magnetic powder is mixed with a binding resin and then the mixture is subjected to injection molding or extrusion molding to form a bonded magnet having a density ?[Mg/m3], the maximum magnetic energy product (BH)max[kJ/m3] of the bonded magnet at a room temperature satisfies the relationship represented by the formula (BH)max/?2[×10?9J·m3/g2]?2.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: May 24, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6852246
    Abstract: Disclosed herein is magnetic powder which can provide a magnet having a high magnetic flux density and excellent magnetizability and reliability especially excellent heat resistance property (heat stability). The magnetic powder is composed of an alloy composition represented by Rx(Fe1-yCoy)100-x-z-wBzSiw (where R is at least one kind of rare-earth element, x is 8.1-9.4 at %, y is 0-0.30, z is 4.6-6.8 at %, and w is 0.2-3.0 at %), the magnetic powder being constituted from a composite structure having a soft magnetic phase and a hard magnetic phase, wherein the magnetic powder has characteristics in which, when the magnetic powder is formed into an isotropic bonded magnet by mixing with a binding resin and then molding it, the irreversible susceptibility (?irr which is measured by using an intersection of a demagnetization curve in the J-H diagram representing the magnetic characteristics at the room temperature and a straight line which passes the origin in the J-H diagram and has a gradient ×J/H of ?3.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: February 8, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6833036
    Abstract: A rare earth permanent magnet consists of 20-40 wt % of at least one rare earth element R, 0.5-4.5 wt % of boron B, 0.03-0.5 wt % of M (at least one of Al, Cu, Sn and Ga), 0.01-0.2 wt % of Bi, and the balance being at least one transition metal element T.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: December 21, 2004
    Assignee: TDK Corporation
    Inventors: Makoto Nakane, Eiji Kato, Chikara Ishizaka, Akira Fukuno
  • Patent number: 6830635
    Abstract: The present invention relates to spindle-shaped goethite particles having an average major axial diameter of 0.05 to 0.18 &mgr;m, spindle-shaped hematite particles having an average major axial diameter of 0.05 to 0.17 &mgr;m, spindle-shaped magnetic metal particles containing iron as a main component, which exhibit an adequate coercive force, good dispersibility, good oxidation stability and excellent coercive force distribution notwithstanding the average major axial diameter thereof is as small as 0.05 to 0.15 &mgr;m, and processes for producing the respective particles. Especially, the spindle-shaped magnetic metal particles containing iron as a main component, have an average major axial diameter of 0.05 to 0.15 &mgr;m, an aspect ratio of from 5:1 to 9:1, a size distribution (standard deviation/average major axial diameter) of not more than 0.30, a crystallite size D110 of 130 to 160 Å, a Co content of from 0.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: December 14, 2004
    Assignee: Toda Kogyo Corporation
    Inventors: Kenji Okinaka, Masayuki Uegami
  • Patent number: 6822831
    Abstract: An object of the present invention is to provide a recording head having a magnetic pole simultaneously possessing a high saturation magnetic flux density, a high permeability and a high electric resistivity, and the magnetic pole of the recording head is a polycrystalline film comprising Fe whose content is not less than 57.5 atomic % and not more than 94.5 atomic %; one or more kinds of elements selected from the element group of Al, B, Ga, Si, Ge, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W and Rh, whose whole content is not less than 1 atomic % and not more than 15 atomic %; N whose content is not less than 0.5 atomic % and not more than 10 atomic %; and O whose content is not less than 1.5 atomic % and not more than 22.5 atomic %.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: November 23, 2004
    Assignee: Fujitsu Limited
    Inventors: Shoji Ikeda, Yuji Uehara, Ikuya Tagawa, Naoki Takeguchi, Masahiro Kakehi
  • Patent number: 6790296
    Abstract: A method of making a material alloy for an iron-based rare earth magnet includes the step of forming a melt of an alloy with a composition of (Fe1-mTm)100-x-y-z-n(B1-pCp)xRyTizMn. T is Co and/or Ni; R is at least one element selected from Y (yttrium) and the rare earth elements; and M is at least one element selected from Al, Si, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb, wherein the following inequalities are satisfied: 10<x≦25 at %, *6≦y<10 at %, 0.5≦z≦12 at %, 0≦m≦0.5, 0≦n≦10 at % and 0≦p≦0.25. Next, the melt is fed onto a shoot with a guide surface tilted at about 1 degree to about 80 degrees with respect to a horizontal plane, thereby moving the melt onto a melt/roller contact region. The melt is then rapidly cooled using a chill roller to make a rapidly solidified alloy including an R2Fe14B phase.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: September 14, 2004
    Assignee: Neomax Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa
  • Patent number: 6706124
    Abstract: An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %<x≦20 at %; 6 at %≦y<10 at %; 0.1 at %≦z≦12 at %; and 0≦m≦0.5, respectively.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: March 16, 2004
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa, Yasutaka Shigemoto, Yusuke Shioya
  • Patent number: 6676773
    Abstract: A method of making an alloy powder for an R—Fe—B-type rare earth magnet includes the steps of preparing a material alloy that is to be used for forming the R—Fe—B-type rare earth magnet and that has a chilled structure that constitutes about 2 volume percent to about 20 volume percent of the material alloy, coarsely pulverizing the material alloy for the R—Fe—B-type rare earth magnet by utilizing a hydrogen occlusion phenomenon to obtain a coarsely pulverized powder, finely pulverizing the coarsely pulverized powder and removing at least some of fine powder particles having particle sizes of about 1.0 &mgr;m or less from the finely pulverized powder, thereby reducing the volume fraction of the fine powder particles with the particle sizes of about 1.0 &mgr;m or less, and covering the surface of remaining ones of the powder particles with a lubricant after the step of removing has been performed.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: January 13, 2004
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Yuji Kaneko, Junichiro Baba, Katsuya Taniguchi
  • Patent number: 6660178
    Abstract: Disclosed herein is a magnetic powder which can provide a bonded magnet having high mechanical strength and excellent magnetic properties. The magnetic powder has an alloy composition containing a rare-earth element and a transition metal, wherein the magnetic powder includes particles each of which is formed with a number of ridges or recesses on at least a part of a surface thereof. In this magnetic powder, it is preferable that when the mean particle size of the magnetic powder is defined by a&mgr;m, the average length of the ridges or recesses is equal to or greater than a/40 &mgr;m. Further, preferably, the ridges or recesses are arranged in roughly parallel with each other so as to have an average pitch of 0.5-100 &mgr;m.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: December 9, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6652991
    Abstract: The addition of small amounts of CeO2 and Cr to intermetallic compositions of NiAl and FeAl improves ductility, thermal stability, thermal shock resistance, and resistance to oxidation, sulphidization and carburization.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: November 25, 2003
    Assignee: The Governors of the University of Alberta
    Inventors: You Wang, Weixing Chen
  • Patent number: 6627313
    Abstract: Spindle-shaped magnetic metal particles containing iron as a main component of the present invention, have an average major axis diameter (L) of 0.05 to 0.15 &mgr;m; a coercive force of 111.4 to 143.2 kA/m; a Co content of from 0.5 to less than 5 atm % based on whole Fe; a crystallite size of from 150 to less than 170 Å; a ratio of Al to Co from 1.0:1 to less than 2.0:1; a specific surface area (S) represented by the formula: S≦−160×L+65; an oxidation stability (&Dgr;&sgr;s) of saturation magnetization of not more than 5.0%; and an ignition temperature of not less than 140° C. The spindle-shaped magnetic metal particles containing iron as a main component, exhibit an adequate coercive force, and are excellent in dispersibility, oxidation stability and coercive force distribution despite fine particles, especially notwithstanding the particles have an average major axis diameter as small as 0.05 to 0.15 &mgr;m.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: September 30, 2003
    Assignee: Toda Kogyo Corporation
    Inventors: Kenji Okinaka, Masayuki Uegami
  • Patent number: 6589367
    Abstract: Disclosed is a magnetically anisotropic rare earth-based permanent magnet having a nanocomposite structure consisting of fine dispersion of a magnetically hard phase, e.g., Nd2Fe14B, in alignment relative to the easy magnetization axis, a magnetically soft phase and a non-magnetic phase having a melting point lower than those of the magnetically hard and soft phases. The permanent magnet is prepared in a process in which a quenched thin magnet alloy ribbon having a composition capable of forming a magnetically hard phase, magnetically soft phase and non-magnetic phase by a heat treatment is subjected to a heat treatment in a magnetic field of at least 3 T at a temperature not lower than the melting point of the non-magnetic phase so that the liquid phase formed from the non-magnetic phase serves to facilitate rotating orientation of the magnetically hard grains to be aligned in the direction of the magnetic field relative to the easy magnetization axis.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 8, 2003
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Tadao Nomura, Ken Ohashi
  • Patent number: 6582835
    Abstract: Dip-coated ferrite stainless steel sheet usable in the automobile exhaust sector, characterized in that it comprises a steel core with the following composition by weight: 10.5%≦chromium≦20% 0%≦aluminum≦0.6% 0.003%≦carbon≦0.06% 0.003%≦nitrogen≦0.04% 0%≦silicon≦0.6% 0%≦manganese≦0.6% 0%≦sulfur≦0.002% iron and impurities inherent in processing, and a metal coating deposited by dipping the strip in a molten metal bath containing in particular aluminum and at least one rare earth element: cerium, lanthanum, praseodymium, neodymium, mixed metal and/or yttrium.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: June 24, 2003
    Assignee: Usinor
    Inventors: Laurent Antoni, Raphael Craen
  • Patent number: 6521054
    Abstract: Disclosed herein is a magnetic powder which can provide a magnet having excellent magnetic properties and having excellent reliability especially excellent in heat stability. The magnetic powder is composed of an alloy composition represented by Rx(Fe1−yCoy)100−x−z−w−vBzAlwVv (where R is at least one kind of rare-earth element, x is 7.1-9.9 at %, y is 0-0.30, z is 4.6-6.9 at %, w is 0.02-1.5 at % and v is 0.2-3.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: February 18, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6506264
    Abstract: A ferromagnetic powder containing iron as the principal component and containing more than 5 to 50 at. % Co, 0.1 to 30 at. % Al, 0.1 to 10 at. % of a rare earth element inclusive of Y, 0.05% by weight or less of an element belonging to Group 1a of the Periodic Table, and 0.1% by weight or less (inclusive of 0% by weight) of an element belonging to Group 2a of the Periodic Table, the powder comprising flat acicular particles having a mean major axis length of 0.01 to 0.40 &mgr;m and a crystallite diameter as determined by X-ray diffraction (Dx) of 50 to 250 angstrom, provided that the cross section diameter in the minor axis direction cut perpendicular to the major axis has a larger width and a smaller width, and that this cross section ratio in the minor axis direction, which is a larger width to smaller width ratio, uniformly yields a value of greater than 1, preferably 1.5 or higher, and the powder yielding a &sgr;s/Dx ratio of 0.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: January 14, 2003
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Seiichi Hisano, Kazuhisa Saito, Kazushi Sano, Akio Sawabe, Akito Inoue, Kenichi Inoue
  • Patent number: 6500277
    Abstract: Disclosed herein is magnetic powder which can provide a magnet having a high magnetic flux density and excellent magnetizability and reliability especially excellent heat resistance property (heat stability). The magnetic powder is composed of an alloy composition represented by Rx(Fe1-yCoy)100-x-z-wBxSiw (where R is at least one kind of rare-earth element, x is 8.1-9.4 at %, y is 0-0.30, z is 4.6-6.8 at %, and w is 0.2-3.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: December 31, 2002
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6451131
    Abstract: A Terbium-Dysprosium-Iron magnetostrictive material of the type Tb1−xDyxFe2−y wherein x is less than 0.7, and y is less than or equal to 0.1, and devices using these materials.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: September 17, 2002
    Assignee: Energen, Inc.
    Inventors: Chiu-Ying Tai, Chandrashekhar H. Joshi
  • Publication number: 20020104592
    Abstract: This invention provides a high-strength steel material for an oil well, excellent in strength and SSC resistance, and having a yield strength of at least 120 ksi. The steel material contains C: 0.10 to 0.40%, Si≦0.5%, Mn≦0.5%, P≦0.015%, S≦0.0050%, Mo: 0.5 to 2.5%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1% and at least 3.4 times N, Nb: 0.01 to 0.1%, N≦0.01% and B: 0.0005 to 0.0050%, wherein the yield strength expressed by ksi and the Mo content satisfy the following relation (1), the balance of the C, Mn and Mo contents satisfies the following relation (2), and the steel material may contain, whenever necessary, at least one of Cr≦0.2%, W≦0.5%, V: 0.01 to 0.3%, Zr: 0.001 to 0.01%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01% and REM: 0.001 to 0.
    Type: Application
    Filed: November 6, 2001
    Publication date: August 8, 2002
    Inventors: Shunji Sakamoto, Hitoshi Asahi
  • Patent number: 6391450
    Abstract: Spindle-shaped goethite particles are disclosed, which contain not less than 0.5 and less than 8 atom % of Co based on the total Fe and 5 to 10 atom % of Al based on the total Fe, and have an average major axis diameter of 0.18 to 0.30 &mgr;m, a size distribution (standard deviation/major axis diameter) of not more than 0.22, an average minor axis diameter of 0.025 to 0.045 &mgr;m and an average aspect ratio is 5 to 10. Spindle-shaped hematite particles and spindle-shaped magnetic iron-based alloy particles are also disclosed, which are produced from the above goethite particles. The spindle-shaped goethite particles of the present invention provide spindle-shaped magnetic iron-based alloy particles which are excellent in dispersibility (high squareness and high orientation), excellent both in weatherability and in coercive force distribution, and are useful as household DAT, 8 mm, Hi-8 tapes, VTR tapes for business purposes, computer tapes or floppy disks.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: May 21, 2002
    Assignee: Toda Kogyo Corporation
    Inventors: Kenji Okinaka, Masayuki Uegami
  • Publication number: 20020054825
    Abstract: A rare-earth alloy ingot is produced by melting an alloy composed of 20-30 wt % of a rare-earth constituent which is Sm alone or at least 50 wt % Sm in combination with at least one other rare-earth element, 10-45 wt % of Fe, 1-10 wt % of Cu and 0.5-5 wt % of Zr, with the balance being Co, and quenching the molten alloy in a strip casting process. The strip-cast alloy ingot has a content of 1-200 &mgr;m size equiaxed crystal grains of at least 20 vol % and a thickness of 0.05-3 mm. Rare-earth sintered magnets made from such alloys exhibit excellent magnetic properties and can be manufactured under a broad optimal temperature range during sintering and solution treatment.
    Type: Application
    Filed: September 10, 2001
    Publication date: May 9, 2002
    Inventors: Kazuaki Sukaki, Koji Sato, Takahiro Hashimoto, Hajime Nakamura, Takehisa Minowa
  • Patent number: 6383662
    Abstract: A high-strength lightweight steel and its use for car parts and facade linings is a purely ferritic steel having, in mass %, more than 5 to 9% Al, less than 0.2% Si, and 0.03 to 0.2% Mn.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: May 7, 2002
    Inventor: Georg Frommeyer
  • Publication number: 20020017339
    Abstract: An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %<x≦20 at %; 6 at %≦y<10 at %; 0.1 at %≦z≦12 at %; and 0≦m≦0.5, respectively.
    Type: Application
    Filed: May 24, 2001
    Publication date: February 14, 2002
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa, Yasutaka Shigemoto, Yusuke Shioya
  • Publication number: 20020014284
    Abstract: Disclosed herein is a magnetic powder which can provide a magnet having excellent magnetic properties and having excellent reliability especially excellent stability. The magnetic powder is composed of an alloy composition represented by Rx(Fe1−yCoy)100−x−z−wBzAlw (where R is at least one kind of rare-earth element, x is 7.1-9.9 at %, y is 0-0.30, z is 4.6-6.9 at %, and w is 0.02-1.5 at %), the magnetic powder being constituted from a composite structure having a soft magnetic phase and a hard magnetic phase, wherein the magnetic powder has magnetic properties characterized in that, when the magnetic powder is formed into an isotropic bonded magnet having a density &rgr;[Mg/M3] by mixing with a binding resin and then molding it, the remanent magnetic flux density Br[T] at the room temperature satisfies the relationship represented by the formula of Br/&rgr;[x10−6T·m3/g]≧0.
    Type: Application
    Filed: January 5, 2001
    Publication date: February 7, 2002
    Inventors: Akira Arai, Hiroshi Kato
  • Publication number: 20020007875
    Abstract: A R—Fe—B base permanent magnet material is composed of a R—Fe—B magnet alloy which contains 87.5-97.5 vol % of a Fe14R2B1 primary phase and 0.1-3 vol % of a rare earth oxide or a rare earth and transition metal oxide. The alloy contains as a major component in its metal structure a compound selected from among zirconium-boron compounds, niobium-boron compounds and hafnium-boron compounds. The compound has an average grain size of at most 5 &mgr;m and is uniformly distributed within the alloy such that the maximum interval between neighboring grains of the compound is at most 50 &mgr;m. Rare-earth permanent magnet materials of this composition and structure have excellent magnetic properties.
    Type: Application
    Filed: June 13, 2001
    Publication date: January 24, 2002
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kenji Yamamoto, Koro Tatami, Takehisa Minowa
  • Publication number: 20020007874
    Abstract: Disclosed herein is a magnetic powder which can provide a magnet having excellent magnetic properties and having excellent reliability especially excellent in heat stability. The magnetic powder is composed of an alloy composition represented by Rx(Fe1−yCoy)100−x−z−wBzNbw (where R is at least one kind of rare-earth element, x is 7.1-9.9 at %, y is 0-0.30, z is 4.6-6.9 at %, and w is 0.2-3.
    Type: Application
    Filed: January 4, 2001
    Publication date: January 24, 2002
    Inventors: Akira Arai, Hiroshi Kato
  • Publication number: 20020000262
    Abstract: An anisotropic exchange spring magnet powder complexing a hard magnetic material and a soft magnetic material, wherein a rare earth metal element, a transition metal element, boron and carbon and the like are contained, and the hard magnetic material and soft magnetic material have crystal particle diameters of 150 nm or less. A method of producing an anisotropic exchange spring magnet powder comprises treating a crystalline mother material containing a hard magnetic material and soft magnetic material or the crystalline mother material having amorphous parts, in a continuous process composed of an amorphousating process and the following crystallizing process, repeated once or more times. An anisotropic exchange spring magnet is obtained by treatment, in an anisotropy-imparting molding process and a solidification process, of an anisotropic exchange spring magnet powder.
    Type: Application
    Filed: June 29, 2001
    Publication date: January 3, 2002
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hideaki Ono, Norihisa Waki, Munekatsu Shimada
  • Patent number: 6334908
    Abstract: A magnetic powder of an Sm—Fe—N alloy, which has a mean particle diameter of 0.5 to 10 &mgr;m, and either an average acicularity of 75% or above or an average sphericity of 78% or above. The powder exhibits an extremely high residual magnetization and an extremely high coercive force, since particles characterized by the above acicularity or sphericity have particle diameters approximately equal to that of the single domain particle and nearly spherical particle shapes. The powder can be produced by preparing an Sm—Fe oxide by firing a coprecipitate corresponding to the oxide, mixing the obtained oxide with metallic calcium and subjecting the mixture to reduction/diffusion and nitriding successively.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: January 1, 2002
    Assignee: Nichia Chemical Industries, Ltd.
    Inventors: Yohsiyuki Kawano, Michiya Kume, Keiji Ichinomiya
  • Patent number: 6322637
    Abstract: Disclosed is a thin alloy ribbon prepared by the strip casting method as an intermediate for the preparation of a sintered rare earth-based permanent magnet or in particular, a neodymium/iron/boron-type permanent magnet. The thin alloy ribbon is characterized by a specific volume fraction of the four-phase coexisting region consisting of the &agr;-iron phase, R-rich phase, RxT4B4 phase and R2T14B phase each having an average grain diameter in a specified range and a specific volume fraction of the chill crystalline phase. When these requirements are satisfied, the sintered rare earth-based permanent magnet prepared from the thin alloy ribbons can be imparted with improved magnetic properties and high sintering density even without increasing the sintering temperature.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: November 27, 2001
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koichi Hirota, Takahiro Hashimoto, Koji Sato, Kenji Yamamoto, Takehisa Minowa
  • Patent number: 6319335
    Abstract: Disclosed is a novel thin ribbon of a rare earth/iron/boron-based magnet alloy prepared by quenching of an alloy melt by the method of strip casting, from which a sintered permanent magnet is obtained by the powder metallurgical method.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: November 20, 2001
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koichi Hirota, Takehisa Minowa, Takahiro Hashimoto, Koji Sato, Kenji Yamamoto
  • Patent number: 6309441
    Abstract: Rare earth alloy compositions, such as the neodymium iron boron (NdFeB) alloy are made by a Reduction-Melting process. The Reduction-Melting process comprises preparing a primary electrode containing at least one compound or metal to be reduced to form a refined metal or metal alloy ingot; placing the electrode in an electroslag refining furnace; passing a current through the electrode into a molten flux or slag to melt the electrode; reducing the metal or compound in the slag while forming an oxide by-product; collecting melted metal or metal alloy droplets falling through the slag; forming an ingot of the metal or metal alloy from the melted droplets; and collecting the solid oxide byproducts in the slag.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: October 30, 2001
    Assignee: General Electric Company
    Inventors: Mark Gilbert Benz, Robert John Zabala, Vladimir Nikolayevich Radchenko, Anatoly Danilovich Riabtsev, Oleg Vladimirovich Tarlov
  • Patent number: 6309479
    Abstract: Spindle-shaped metal particles and a process for producing magnetic spindle-shaped metal particle containing iron as a main component, which contains cobalt of 8 to 45 atm % calculated as Co, aluminum of 5 to 20 atm %, calculated as Al, and a rare earth element of 1 to 15 atm %, calculated as rare earth element, wherein the particles have an average major axial diameter of 0.05 to 0.15 &mgr;m, an average minor axial diameter of 0.010 to 0.022 &mgr;m, an aspect ratio of 4:1 to 8:1, a particle size distribution of not more than 0.20, and an X-ray crystallite size D110 of 12.0 to 17.0 nm. The spindle-shaped metal particles have a high coercive force, an excellent particle coercive force distribution, a large saturation magnetization and an excellent oxidation stability, and are excellent in a squareness (Br/Bm) of the sheet due to a good dispersibility in a binder resin.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: October 30, 2001
    Assignee: Toda Kogyo Corporation
    Inventors: Kenji Okinaka, Masaaki Maekawa
  • Patent number: 6302972
    Abstract: An inventive material alloy for a nanocomposite magnet is represented by a general formula Fe100−x−yRxBy, Fe100−x−y−zRxByCoz, Fe100−x−y−uRxByMu or Fe100−x−y−z−uRxByCozMu. R is a rare-earth element. 90 atomic percent or more of R is Pr and/or Nd, while equal to or larger than 0 atomic percent and less than 10 atomic percent of R is another lanthanoid and/or Y. M is at least one element selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Ni, Cu, Ga, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Au and Ag. The molar fractions x, y, z and u meet the inequalities of 2≦x≦6, 16≦y≦20, 0.2≦z≦7 and 0.01≦u≦7, respectively. The alloy includes a metastable phase Z represented by at least one of a plurality of Bragg reflection peaks observable by X-ray diffraction analysis. The at least one peak corresponds to a lattice spacing of 0.179 nm±0.005 nm.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: October 16, 2001
    Assignee: Sumitomo Special Metals Co., LTD
    Inventors: Satoshi Hirosawa, Hirokazu Kanekiyo, Yasutaka Shigemoto
  • Patent number: 6296720
    Abstract: Disclosed is a rare earth/iron/boron-based permanent magnet alloy composition capable of giving, by a powder metallurgical process, a permanent magnet having excellent coercive force and residual magnetization as well as good squareness ratio of the hysteresis loop. The magnet alloy composition consists of: (a) from 28 to 35% by weight of a rare earth element selected from the group consisting of neodymium, praseodymium, dysprosium, terbium and holmium; (b) from 0.1 to 3.6% by weight of cobalt; (c) from 0.9 to 1.3% by weight of boron; (d) from 0.05 to 1.0% by weight of aluminum; (e) from 0.02 to 0.25% by weight of copper; (f) from 0.02 to 0.3% by weight of zirconium or chromium; (g) from 0.03 to 0.1% by weight of carbon; (h) from 0.1 to 0.8% by weight of oxygen; (i) from 0.002 to 0.2% by weight of nitrogen; and (j) the balance to 100% by weight of iron and unavoidable impurity elements.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: October 2, 2001
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kenji Yamamoto, Koro Tatami, Takehisa Minowa
  • Patent number: 6280536
    Abstract: The present invention provides a Fe based hard magnetic alloy having a very wide temperature interval in the super-cooled liquid region, having a hard magnetism at room temperature, being able to be produced thicker than amorphous alloy thin films obtained by conventional liquid quenching methods, and having a high material strength, wherein the Fe based hard magnetic alloy comprises Fe as a major component and containing one or a plurality of elements R selected from rare earth elements, one or a plurality of elements M selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W and Cu, and B, the temperature interval &Dgr; Tx in the super-cooled liquid region represented by the formula of &Dgr; Tx=Tx−Tg (wherein Tx and Tg denote a crystallization initiation temperature and glass transition temperature, respectively) being 20° C. or more.
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: August 28, 2001
    Assignees: Alps Electric Co., Ltd., Akihisa Inoue, Toda Kogyo Corp.
    Inventors: Akihisa Inoue, Kouichi Fujita, Katsuhiro Fujita
  • Patent number: RE37666
    Abstract: With the invention of establishing fabrication methods for cheaply produced (Fe,Co)—Cr—B—R-type bonded magnets or (Fe,Co)—Cr—B—R—M-type bonded magnets containing few rare earth elements having a coercive force iHc above 5 kOe and a residual magnetic flux density Br above 5.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: April 23, 2002
    Assignee: Sumitomo Special Metals Co. Ltd.
    Inventors: Hirokazu Kanekiyo, Satoshi Hirosawa
  • Patent number: RE38042
    Abstract: A the magnetically anisotropic magnetic powder having an average particle size of 1-1000 &mgr;m and made from a magnetically anisotropic R-TM-B-Ga or R-TM-B-Ga-M alloy having an average crystal grain size of 0.01-0.5 &mgr;m, wherein R represents one or more rare earth elements including Y, TM represents Fe which may be partially substituted by Co, B boron, Ga gallium, and M one or more elements selected from the group consisting of Nb, W, V, Ta, Mo, Si, Al, Zr, Hf, P, C and Zn. This is useful for anisotropic resin-bonded magnet with high magnetic properties.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: March 25, 2003
    Assignee: Hitachi Metals, Ltd.
    Inventors: Minoru Endoh, Yasuto Nozawa, Katsunori Iwasaki, Shigeho Tanigawa, Masaaki Tokunaga