Including Tip Attachment Or Removal Patents (Class 422/511)
  • Patent number: 11965903
    Abstract: An automated analyzer includes a reagent dispensing probe that dispenses a reagent to a reaction vessel, a sample dispensing probe that dispenses a sample to the reaction vessel, a stirring rod that stirs a sample and a reagent in the reaction vessel, and a storage unit that stores special washing information including information about a condition for performing special washing to prevent sample carryover and a washing method. The automated analyzer further includes: a determination unit that determines whether the special washing is required based on information about the sample dispensed by the sample dispensing probe and the special washing information; and a controller that causes the reagent dispensing probe to dispense a wash liquid to the reaction vessel and causes the stirring rod to stir the wash liquid in the reaction vessel based on the special washing information, when the special washing is performed.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: April 23, 2024
    Assignee: JEOL Ltd.
    Inventors: Kazushige Kojima, Yoshiyuki Nakayama, Masato Nakayama, Arihiro Toyoda, Hiroo Sugimura, Yuta Ikarashi, Yasuhiro Fukumoto, Makoto Asakura
  • Patent number: 11933804
    Abstract: In a case where a dispensing tip is imaged from below, liquid attached to the tip falls downward and contaminates an imaging mechanism. An automatic analyzer includes: a buffer that has a hole for holding a tip for dispensing, the hole passing through the tip; a probe for dispensing having a tip to which the tip is attached; an imaging unit that images the tip; and a controller that controls the tip such that the tip is mounted on the probe by pressing the probe against the tip that passes through the hole to be held by the buffer, in which the imaging unit is disposed to image the tip from an upper side to a lower side in a gravity direction.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 19, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takahiro Kumagai, Kazuhiro Noda, Yukinori Sakashita
  • Patent number: 11852646
    Abstract: A sample analysis support apparatus includes a sample region in which a sample is to be disposed, a tip region in which a tip is to be disposed, a first operation unit capable of an operation on the sample using the tip, the tip being attachable to and detachable from the first operation unit, a second operation unit capable of an operation on the sample using the tip, the tip being attachable to and detachable from the second operation unit, a transport unit configured to support each of the first operation unit and the second operation unit moveably between the tip region and the sample region, and a movement controller capable of controlling the transport unit to move each of the first operation unit and the second operation unit between the tip region and the sample region.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 26, 2023
    Assignee: Yokogawa Electric Corporation
    Inventor: Takayuki Kei
  • Patent number: 11794189
    Abstract: A container includes a base with a top wall, a vessel depending from a top wall aperture in the top wall, a fluid retainer projecting above the top wall and surrounding the top wall aperture, and a skirt surrounding the vessel and including opposed grooves for gripping the container. A lid is disposed on a top end of the base and includes a cover wall with a lid aperture generally aligned with the top wall aperture of the base. A septum is disposed between the top wall of the base and the cover wall with a portion of the septum disposed between the lid aperture and the top wall aperture. Fluid retainer/return structure is configured to prevent fluid deposited on the septum from dripping off the container and to allow at least a portion of the fluid deposited on the septum to run off the septum and into the vessel.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: October 24, 2023
    Assignee: GEN-PROBE INCORPORATED
    Inventors: David Buse, Byron J. Knight
  • Patent number: 11519926
    Abstract: A microplate processing device having at least one carriage with a first receptacle for microplates where the at least one carriage is movable in a first horizontal direction, and having at least one lift that is movable in a vertical direction, where the microplates can be removed from and supplied to the carriage, the carriage has a through-opening, the periphery, in the vertical projection, can at least in part be situated horizontally within the periphery of a microplate held in the carriage, and the lift has a second receptacle for microplates, the periphery, in the vertical projection, is situated within the periphery of the through-opening, where the second receptacle can be moved unhindered through the through-opening in the vertical direction.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: December 6, 2022
    Assignee: TECAN TRADING AG
    Inventors: Johannes Posch, Harald Gebethsroither, Beat Bolli, Gerald Zerza
  • Patent number: 11167282
    Abstract: An auto-pipetting apparatus includes a dispensing head with at least one pipetting tip mandrel having an elongated stud body with an insertion end. The at least one pipetting tip mandrel mates with a pipetting tip. A first adjustable seal, disposed on the elongated stud body, and a second adjustable seal, disposed on the elongated stud body, seal the pipetting tip mated to the at least one pipetting tip mandrel. The first adjustable seal defines a snub surface. The snub surface effects a substantially continuous circumferential contact seal with radially impinging contact between the pipetting tip and the at least one pipetting tip mandrel. The second adjustable seal is adjustable between a disengaged position and an engaged position and effects a releasable grip and another substantially continuous circumferential contact seal between the pipetting tip and the at least one pipetting tip mandrel around the pipetting tip.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: November 9, 2021
    Assignee: HIGHRES BIOSOLUTIONS, INC.
    Inventors: Ulysses Gilchrist, Robert Connors
  • Patent number: 11045801
    Abstract: A pipettor includes a wash chamber between an upper plate, a lower plate, an upper seal, and a lower seal. The upper and lower seal retain each other and are located between the upper and lower plates. The pipettor includes a gasket located below the lower plate, a pipette tip retained by the gasket, and a piston with a tapered tip that passes through the plates, seals, and gasket into the pipette tip. The upper and lower seal isolate the piston from the wash chamber. The pipettor includes a channel defined by the piston, extending into the pipette tip, and an actuator that advances and retracts the piston. When the actuator retracts the piston such that the piston loses sealing contact with the lower seal and the wash chamber is supplied with wash fluid and pressurized, wash fluid passes through the groove in the upper seal and into the channel.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 29, 2021
    Assignee: Douglas Scientific, LLC
    Inventors: Richard J. Schoeneck, Paul H. Wagner
  • Patent number: 10857533
    Abstract: A mechanism that provides an improved method of loading and unloading a row of disposable pipette tips onto a handheld multichannel pipettor. A single button for tip load and unload operations is simpler than the current method of using a separate mechanism for ejecting the tips. The tips are configured in a rigid collar which is held by a clamp on the pipettor. An upward force combined with a sealing gasket that mates with the top of the pipette tips is used to provide the seal between the tips and the pipettor. This eliminates the requirement to “press downward” with excessive force in order to force the pipette tips onto a protruding sealing part. The loading and unloading of tips will be more reliable and repeatable, this providing better pipetting results. The low forces of the loading and unloading operations reduce the chance of repetitive stress injury for the operator.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: December 8, 2020
    Inventor: Felix H. Yiu
  • Patent number: 10809274
    Abstract: There are prepared a first container which stores a liquid containing a cellular aggregate, a second container which receives a cellular aggregate, and a third container which stores a preliminary treatment solution, and a cylinder tip. The cylinder tip is formed with a syringe including a tubular passage having a front end opening which sucks the cellular aggregate, and a plunger which reciprocates in a tubular passage. Before sucking the cellular aggregate from the first container and discharging the same to the third container, the preliminary treatment solution is retained in a space between the tubular passage and the plunger by dipping the front end opening of the cylinder tip into the preliminary treatment solution in the third container and causing the plunger to reciprocate.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: October 20, 2020
    Assignee: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventor: Saburo Ito
  • Patent number: 10137450
    Abstract: A disposable cartridge configured as a digital microfluidics system for manipulating samples in liquid portions having a cartridge accommodation site and a central control unit for controlling selection of individual electrodes of an electrode array located at the site and for providing plural electrodes with individual voltage pulses for manipulating liquid portions by electrowetting. The cartridge has a hydrophobic working surface and a rigid cover with a second hydrophobic surface, the hydrophobic surfaces facing each other and being separated in parallel planes by a gap. The cartridge has plural pipetting guides for safe entering/withdrawing liquids into/from the gap with a pipette tip. At least one of the pipetting guides provides an abutting surface sealingly admittable by a counter surface of a pipette tip, located at a pipetting orifice that reaches through the rigid cover, and configured to prevent a pipette tip from touching the hydrophobic working surface.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: November 27, 2018
    Assignee: TECAN TRADING AG
    Inventors: Tiffany Lay, Daniel Hoffmeyer, Anne R. Kopf-Sill
  • Patent number: 9962705
    Abstract: Methods, systems, and apparatus are provided for automated isolation of selected analytes, to which magnetically-responsive solid supports are bound, from other components of a sample. An apparatus for performing an automated magnetic separation procedure includes a mechanism for effecting linear movement of a magnet between operative and non-operative positions with respect to a receptacle device. A receptacle holding station within which a receptacle device may be temporarily stored prior to moving the receptacle to the apparatus for performing magnetic separation includes magnets for applying a magnetic field to the receptacle device held therein, thereby drawing at least a portion of the magnetically-responsive solid supports out of suspension before the receptacle device is moved to the magnetic separation station. An automated receptacle transport mechanism moves the receptacle devices between the apparatus for performing magnetic separation and the receptacle holding station.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 8, 2018
    Assignee: Gen-Probe Incorporated
    Inventors: Norbert D. Hagen, Byron J. Knight, David Opalsky
  • Patent number: 9891143
    Abstract: A cylinder tip mounting head includes: a shaft member; a first cylindrical rod having a cylindrical space, which is mounted to a lower end of the shaft member, which is configured to move in the up-down direction integrally with the shaft member; a stationary second cylindrical rod, which has a housing space for housing the first cylindrical rod so that the first cylindrical rod is movable in the up-down direction, the stationary second cylindrical rod including a syringe mounting portion; and a discharge rod housed in the cylindrical space in the first cylindrical rod, the discharge rod including a plunger mounting portion. The discharge rod is configured to coordinate with the movement of the shaft member in the up-down direction so that the plunger mounted to the discharge rod reciprocates in the tubular passage in the syringe to suck the object into the tubular passage and discharge the sucked object.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 13, 2018
    Assignee: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventors: Saburo Ito, Yukimasa Osada, Yohei Izume
  • Patent number: 9810605
    Abstract: This disclosure is directed to a device and a system for picking a target analyte of a suspension. A picker introduces at least one force, such as by a magnetic gradient and/or by a pressure gradient, to extract the target analyte from a specimen. The magnetic gradient may be introduced by a magnet, such as a permanent magnet or an electromagnet, and the pressure gradient may be introduced by a pump which moves within a fluid-primed cannula to create the pressure gradient, thereby drawing the target analyte into the cannula. The picker may also expel the target analyte onto or into a substrate, such as a well plate, after the target analyte has been drawn into the picker by reversing the pressure gradient or removing the magnetic gradient.
    Type: Grant
    Filed: September 25, 2016
    Date of Patent: November 7, 2017
    Assignee: RareCyte, Inc.
    Inventors: Joshua Nordberg, Steve Quarre, Ronald Seubert
  • Patent number: 9581608
    Abstract: A sample analyzer transports a first rack and a second rack, the first rack including a first number of supporters for supporting containers that contain biological samples of subjects, and the second rack including a second number of supporters for supporting containers that contain standard samples. The sample analyzer determines whether a transport object is the first rack or the second rack. When it has been determined that the transport object is the second rack, the sample analyzer performs a transporting operation according to the second rack and measure the standard samples in the containers supported by the second rack in a predetermined order, and prepares a calibration curve used for analyzing a measurement result of a biological sample, based on a plurality of measurement results of the standard samples.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: February 28, 2017
    Assignee: Sysmex Corporation
    Inventors: Makoto Ueda, Yuji Wakamiya, Toshikatsu Fukuju, Kazunori Mototsu
  • Patent number: 9459272
    Abstract: Material transfer/interrogation devices (e.g. liquid handling workstations) have been designed in the past for transferring material from a source to a destination location or for interrogating a material at a location, where the locations remain fixed. The invention provides methods and apparatuses for transferring or interrogating materials by one or more carrier devices to one or more receiving devices, where the carrier and receiving devices move independently and simultaneously on multiple axes. In some embodiments, one or more of the carrier and receiving devices can move along an X, Z, Y, and Theta axis, which allows the source and destination locations to rotate and translate relative to each other. Due to this rotation and translation, containers can be positioned to minimize the distance traveled between a pick location from the source and a place location on the destination, greatly increasing the speed at which material transfer can occur.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: October 4, 2016
    Assignee: BioNex Solutions, Inc.
    Inventors: Reed Kelso, Benjamin Shamah, Tony Lima, Eric Rollins, David K. Matsumoto, Mark Sibenac
  • Patent number: 9347963
    Abstract: An apparatus for transporting sample well trays with respect to a heating device is provided. The apparatus includes a sample well tray holder, a rotational actuator, and a biasing mechanism. The sample well tray holder includes a plate in which a sample well tray may be positioned. The sample well tray holder is configured to rotate about a first rotational axis. The rotational actuator is configured to rotate the sample well tray holder about the first rotational axis. The biasing mechanism is configured to urge the sample well tray holder in a generally upward direction along the first rotational axis.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: May 24, 2016
    Assignee: Applied Biosystems, LLC
    Inventors: Jessica E. Barzilai, Donald R. Sandell
  • Patent number: 9304141
    Abstract: In needle-based dispensing systems, the target amount of liquid to be dispensed is in many cases very well controlled. However, the amount of liquid that is actually reaching the receiving well may show a discrepancy, because part of the liquid leaving the inner needle space remains on the outer surface of the dispense needle, and so a small amount of liquid is “lost” in the dispensing act. A sensor arrangement according to the present invention is suitable for detecting the presence of any liquid from the aspiration reservoir that is left behind on the outside of the dispense needle, before the dispense step is actually started. The “lost” volume can also be measured very accurately by inserting the tip of a dispense needle into a hollow metallic cylinder, forming a capacitor, whereby the capacitance value depends on the volume of the “lost” dispense volume.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: April 5, 2016
    Assignee: Becton, Dickinson and Company
    Inventor: Klaus W. Berndt
  • Patent number: 9222953
    Abstract: This disclosure is directed to a device and a system for aspirating and dispensing a target analyte, target material, or fluid. A picker may aspirate and dispense the desired material by introducing a pressure gradient. The picker may include a hydraulic fluid to hydraulically couple at least two components, such as a moveable pump component and a cannula.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: December 29, 2015
    Assignee: RARECYTE, INC.
    Inventors: Steve Quarre, Ronald Seubert
  • Patent number: 9211541
    Abstract: According to a conventional technique, when a calibrated temperature measuring probe is used for correcting the temperature absolute values of individually temperature-controllable thermal control blocks, a temperature difference of a maximum of 0.5° C. remains between the thermal control blocks. According to the present invention, the melting temperature of a temperature calibration sample housed in a reaction vessel corresponding to each of the temperature control blocks is measured as a measured melting temperature. The measured melting temperature corresponding to each of the thermal control blocks and the reference melting temperature of the temperature calibration sample are compared, and the temperature absolute value of each of the thermal control blocks is corrected based on respective difference values.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 15, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Kohshi Maeda, Chie Sugiyama, Yoshiyuki Shoji, Masato Ishizawa, Minoru Sano
  • Patent number: 9084993
    Abstract: A pipetting apparatus includes a pipetting head with a plurality of pipetting channels disposed in an arrangement pattern. Each pipetting channel includes a plunger and a cylinder. The plurality of pipetting channels includes at least two groups of pipetting channels with different diameters including a group of larger pipetting channels and a group of smaller pipetting channels. Each of the at least two groups of pipetting channels is disposed in an arrangement pattern in the pipetting head. Larger pipette tips communicate with the group of larger pipetting channels or smaller pipette tips communicate with the group of smaller pipetting channels.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: July 21, 2015
    Assignee: ANALYTIK JENA AG
    Inventors: Uwe Naumann, Torsten Schoeppe, Heiko Oehme, Thomas Moore
  • Patent number: 9028756
    Abstract: A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Takashi Yamato, Naohiko Matsuo, Satoshi Iguchi
  • Patent number: 9011771
    Abstract: Methods, systems, and apparatus are provided for automated isolation of selected analytes, to which magnetically-responsive solid supports are bound, from other components of a sample. An apparatus for performing an automated magnetic separation procedure includes a mechanism for effecting linear movement of a magnet between operative and non-operative positions with respect to a receptacle device. A receptacle holding station within which a receptacle device may be temporarily stored prior to moving the receptacle to the apparatus for performing magnetic separation includes magnets for applying a magnetic field to the receptacle device held therein, thereby drawing at least a proton of the magnetically-responsive solid supports out of suspension before the receptacle device is moved to the magnetic separation station. An automated receptacle transport mechanism moves the receptacle devices between the apparatus for performing magnetic separation and the receptacle holding station.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: April 21, 2015
    Assignee: Gen-Probe Incorporated
    Inventors: Norbert D. Hagen, Byron J. Knight, David Opalsky
  • Publication number: 20150093754
    Abstract: Disclosed is an analyzer comprising: a liquid container mounting section in which a liquid container are set; a container mounting section in which at least one tip container accommodating a plurality of pipette tips is set; a cover detecting section that detects a presence of a cover mounted on the tip container; a dispensing section that equips a pipette tip accommodated in the tip container and dispenses a quantity of liquid from the liquid container to a reaction container via the equipped pipette tip; a detecting section that interrogate a property of the liquid; and a controller programmed to prohibit a process of equipping the pipette tip by the dispensing section when the cover on the tip container is detected, and permits the process when no cover is detected.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 2, 2015
    Inventors: Kazuki ASAO, Tsukasa HIRATA
  • Patent number: 8986611
    Abstract: A sample analysis apparatus configured to automatically press a start button upon installation of a sample tube is provided. The sample analysis apparatus includes: a body of the sample analysis apparatus; a door housing which may be provided in an opened state or a closed state, and configured to be coupled to the body of the sample analysis apparatus by a hinge; a tube accommodating unit included in the door housing and configured to accommodate the sample tube; a start button included in the body of the sample analysis apparatus and configured to start analysis of the sample; and an operating member positioned at a first position which is distant from the start button the sample tube is not installed in the tube accommodating unit, and a second position which is configured to operate the start button when a sample tube is installed and the door housing is closed.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong Koo Lee, Tae Soo Kim, In Duk Hwang, Seock Woo Jang, Chul Ho Yun
  • Publication number: 20150059149
    Abstract: A robot system includes a robot that includes arms each including multiple joints, a controller configured to control an operation of the robot, and a tip stocker configured to supply a tip box with a pipette tip attached to and detached from a pipette with an operation of the robot. In addition, the tip stocker includes a movable member configured to be movable in accordance with an operation of the robot.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventor: Kohei MIYAUCHI
  • Publication number: 20150044111
    Abstract: The invention relates to a metering apparatus (10), in particular a pipetting machine, comprising a pipetting device (12) that can be moved in three directions (X, Y, Z) orthogonal to each other and that has at least one pipetting channel (16) to which a pipetting tip (18) is or can be detachably attached in order to aspirate sample liquid from a sample container (34, 36) associated with the metering apparatus (10) or to dispense sample liquid into a sample container (34, 36), wherein the at least one pipetting channel (16) is designed in such a way that a pipetting tip (18) detachably attached to the pipetting channel can be removed from the pipetting channel (16), preferably can be automatically removed, and a disposal container (40), which is arranged on the metering apparatus (10) and in which used pipetting tips (18) can be accommodated after being removed from a relevant pipetting channel (16).
    Type: Application
    Filed: April 14, 2013
    Publication date: February 12, 2015
    Applicant: Hamilton Bonaduz AG
    Inventors: Torsten Peetz, Andreas Städler
  • Publication number: 20150030513
    Abstract: A hand-held, multi-channel pipettor has an electronically controlled motor to reposition pipette tips for different center to center spacing. Each repositionable tip fitting assembly has a cam following pin that is driven by cam tracks in a motor driven roller drum. Stationary ports for the multiple aspiration cylinders are strategically placed to simplify management of flexible tubes leading to the repositionable pipette tip fitting assemblies. The pipettor has a user interface that can be operated conveniently by one hand to reposition pipette tips. It has a pipette tip ejection mechanism with a sinusoidal stripper bar.
    Type: Application
    Filed: July 29, 2013
    Publication date: January 29, 2015
    Applicant: INTEGRA BIOSCIENCES CORP.
    Inventors: David Earl Butz, Gregory Mathus, Richard Cote, George P. Kalmakis
  • Patent number: 8920751
    Abstract: The present teachings provide apparatuses and methods for automated handling of samples, e.g., biological or chemical samples. The apparatuses and the methods of the present teachings allow automated performance of various sample manipulation steps without manual intervention. In a preferred embodiment, the present teachings provide apparatuses and methods for automated enrichment of templated beads produced by PCR.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: December 30, 2014
    Assignee: Life Technologies Corporation
    Inventors: Kristopher Barbee, Maximilian Carpino, Raymond Alan Wheeling, Nicholas Peter Bajka
  • Patent number: 8906324
    Abstract: An automatic inoculating system for depositing a sample on a substrate in a predetermined pattern. A turret is rotatable about a vertical axis, and an arm retained by the turret is pivotable about a horizontal axis. A stylus retained at a distal portion of the arm sucks up and dispenses the sample, such as by use of a pumping system in fluidic communication with the stylus. A support rotatably retains the substrate. The arm can be raised and lowered, such as by a cylinder on which the arm rests without a retaining mechanical connection therebetween. The arm can thus freely lift off the cylinder as when the stylus contacts the surface of the substrate. The sample can thus be deposited on the substrate in a predetermined pattern by a dispensing from the stylus in combination with rotation of the turret and the substrate and a pivoting of the arm.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: December 9, 2014
    Inventor: Emmanuel Jalenques
  • Patent number: 8900878
    Abstract: A pipetting device having a modular pipetting unit including a pipetting tip for pipetting of fluid samples and a pump conduit for transferring a negative or positive pressure to the pipetting tip is disclosed. The pipetting tip and a portion of the pump conduit adjoining the pipetting tip mutually define a fluid sample conduit for receiving the fluid samples. The modular pipetting unit is detachably attached to an automated positioning device for positioning the modular pipetting unit. A system and method for pipetting of fluid samples using such a pipetting device are also disclosed wherein pipetting of the fluid samples is performed in such a manner that each pipetted fluid sample volume is smaller than a volume of the fluid sample conduit.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 2, 2014
    Assignee: Roche Molecular Systems Inc.
    Inventors: Carsten Haack, Thomas Engel, Tobias Holenstein
  • Patent number: 8877513
    Abstract: The pipetting method is directed to mounting and ejecting a disposable pipette tip. The pipetting system has one or more tip mounting shafts with an upper locking section and a lower sealing section. The upper locking section has outwardly extending lobes spaced around the mounting shaft and located above a stop member. The lower sealing section on the tip mounting shaft is located below the stop. As the mounting shaft is inserted into the collar of the disposable pipette, the collar distorts out of round and engages the lobes on the upper locking section of the tip mounting shaft. Contemporaneously, the lower sealing section of the mounting shaft seals against the barrel of the disposable pipette tip.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: November 4, 2014
    Assignee: Integra Biosciences AG
    Inventors: Gregory Mathus, Terrance Kelly, Richard Cote
  • Patent number: 8840851
    Abstract: The present invention is a pipette tip supplying apparatus which comprises: a storing section configured to store a plurality of pipette tips; a supplying section configured to supply at least one of the plurality of pipette tips stored in the storing section outside the storing section; a detector configured to detect a pipette tip assembly in which one pipette tip and another pipette tip are piled up with a distal end of the one pipette tip inserted into the another pipette tip; and a discharging section configured to discharge the pipette tip assembly from the storing section, when the detector has detected the pipette tip assembly in the storing section.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: September 23, 2014
    Assignee: Sysmex Corporation
    Inventors: Takeo Kowari, Makoto Ueda
  • Publication number: 20140271405
    Abstract: The invention relates to a retaining device (1) for a hollow needle (12) of a pipetting device in an automatic analysis apparatus. The retaining device (1) comprises a first retaining element (2), which can be secured releasably on a base plate that is movable in an automated manner, and a second retaining element (4), which is connected to the first retaining element (2), wherein at least one bearing bushing (14) is provided, which is fixed between the retaining elements (2, 4) and in which the hollow needle (12) is mounted.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: Siemens Healthcare Diagnostics Products GmbH
    Inventor: Hugo Wilmes
  • Publication number: 20140260696
    Abstract: A sample processing apparatus includes a laser triangulation system that locates the position of a lower end of a pipette tip. When the laser triangulation system identifies a discrepancy between the actual position of the lower end and the proper position of the lower end, the sample processing apparatus may undergo a compensating action to compensate for the discrepancy.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Protedyne Corporation
    Inventor: Victor Criswell
  • Patent number: 8802026
    Abstract: The present invention relates to an improved system for efficiently and accurately performing immunoassays, such as ELISAs. The invention provides an immunoassay assembly which includes a flow-through unit and an aspiration pump. The immunoassay flow-through unit includes an outer seal; at least one bed support; an inner seal; and a packed non-porous bed. The unit is releasably attached to an aspiration pump which enables the controlled flow rate of liquid passing through the packed bed of the flow-through unit. The invention also provides a method of using the immunoassay assembly to identify analytical targets of interest.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: August 12, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Scott P. Fulton, Robert J. Sakowski, William Bowers
  • Patent number: 8772036
    Abstract: A method is described for distributing samples within an automated analyzer from a linear arrangement of sample vessels to a processing plate in a two-dimensional n×m arrangement wherein samples are sorted, followed by transfer with a pipetting device with a linear arrangement to a processing vessel in a two-dimensional n×m arrangement and subsequent processing of samples using a second pipetting device which has a two-dimensional n×m arrangement.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: July 8, 2014
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Paul Frank, Andreas Gisler, Robert Huesler, Rolf Knobel, Siegfried Mueller, Urs Schnieper, Heinz Trueeb
  • Patent number: 8758702
    Abstract: A clinical diagnostic sample analyzer for analyzing a sample of a patient is disclosed. The analyzer includes a telescoping closed-tube sampling assembly with a sample probe concentrically housed within a piercing probe and a venting mechanism. The closed-tube sampling assembly is used for aspirating a sample from a sample tube for analysis by a clinical diagnostic sample analyzer.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: June 24, 2014
    Assignee: Instrumentation Laboratory Company
    Inventors: Matthew Blouin, Gregory Murphy, Diana Mackenzie, Alan Weeks, Daniel Kobrenski
  • Patent number: 8753586
    Abstract: An apparatus for chemical separations includes a microfluidic substrate having an outlet aperture for outputting an eluent of a sample, a spray unit having an inlet to receive the eluent and an outlet to emit a spray of the eluent, and a force-applying unit. The spray unit has a deformable portion defining the inlet and having an elastic modulus that is lower than an elastic modulus of the microfluidic substrate. The force-applying unit, such as a spring, is disposed to urge the deformable portion in contact with the substrate to form a substantially fluid-tight seal.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: June 17, 2014
    Assignee: Waters Technologies Corporation
    Inventors: David P. Prentice, Russell L. Keene, Stanilaw Koziol, Joseph D. Michienzi, Paul E. Linderson
  • Patent number: 8747745
    Abstract: An apparatus for analyzing that performs a plurality of treatment operations includes a plurality of treatment units arranged in a vertical direction of the apparatus. The apparatus for analyzing also includes a conveying mechanism configured to convey a sample between the treatment units. The sample is delivered above or in the treatment units. A pipette chip is also delivered above or in the treatment units.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: June 10, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Atsushi Kitaoka
  • Patent number: 8715593
    Abstract: The present invention is a pipette tip device for extraction of liquid, semi-solid or solid solutions to be chemically analyzed and the methods for their use. The pipette tip extraction device contains a screen or filter at its lower narrow end to contain solid particulate matter and a barrier at its upper wide end. The optional upper frit is to be made of material that permits liquid solutions to flow through it. In addition to the barrier and screen, the pipette tip extraction device may contain solid-phase sorbent. Through the use of a removable cap, the pipette extraction tip may also serve as a sample collection container or tip in which samples can be delivered to the top of the tip (e.g., for direct collection of samples, including solid samples). A new method for DPX extraction using liquid-liquid-solid-phase extraction is also disclosed.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: May 6, 2014
    Inventor: William Brewer
  • Publication number: 20140112839
    Abstract: A multi-function dispense head operable by a single motor comprises a pipette housing having carriage driven pipette rods and carriage driven pistons and a wash/ejector head movable by the pistons. The carriage is attached to the pipette rods and vertically moves the rods through the pipette housing as needed for various pipette functions. The pistons are pushed into movement by the carriage and, in a lower position, into contact with a lower ledge along a bottom portion of the movable head forcing the lower ledge downwardly to eject pipette tips. The pistons also move the wash/ejector head when the movable head performs a wash function.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 24, 2014
    Applicant: Accel Biotech, Inc.
    Inventor: Bruce Richardson
  • Patent number: 8697012
    Abstract: A high-speed automatic dispensing apparatus capable of preparing samples under different conditions, minimizing waste liquid materials, and realizing high productivity. A dispensing station is also provided. The high-speed automatic dispensing apparatus with a replaceable dispensing head comprises a dispensing head including a plurality of pipettes, a pipette head to which one end of a plunger extending to pass through each pipette is fixed, and a head body part abutting against the pipette head and allowing the pipettes to pass therethrough, a pipette head moving mechanism vertically moving the pipette head, and a drive mechanism horizontally and vertically moving the dispensing head. The dispensing station includes the high-speed automatic dispensing apparatus.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: April 15, 2014
    Assignee: Musashi Engineering, Inc.
    Inventor: Kazumasa Ikushima
  • Patent number: 8679421
    Abstract: A dispensing device and an analyzer capable of improving dispensing accuracy as well as improving jamming detection accuracy can be realized by having a short distance between a syringe and a suction tip. The dispensing device 10 includes an upper fixed unit 10A, a lower movable unit 10B which is connected to the upper fixed unit 10A, the movable unit being relatively movable with respect to the upper fixed unit 10A, and a Z-axis movement mechanism 55Z which moves the upper fixed unit to and fro. A syringe 4 and a plunger 13 are held by the upper fixed unit 10A. A tip nozzle 8 is attached to the lower movable unit 10B. An interior space of the syringe 4 and an interior space of the tip nozzle 8 are connected with each other by a connection tube 1 having flexibility.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 25, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Minoru Sano, Kazutoshi Onuki, Yoshiyuki Shoji, Isao Yamazaki
  • Patent number: 8647588
    Abstract: An apparatus and method for packaging of an optical sensing fiber is disclosed. The apparatus includes a substrate with a plurality of openings, and each opening is configured for holding an optical sensing assembly. The assembly is positioned in the opening with a tip of the assembly extending through the opening to be suspended from the substrate. In addition, openings are arranged so the assembly positioned therein avoids contacting another assembly positioned therein. The apparatus can include a support member for supporting the substrate and positioning the substrate so the tip of the assembly suspended from the opening in the substrate contacts solution in one of a plurality of wells in a container adjacent to the substrate. The assembly can be configured for preparing of the optical assembly for assay. An agitation assembly for agitating the container to create flow of the solution in the container wells over an optical sensing assembly is also disclosed.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: February 11, 2014
    Assignee: Pall Corporation
    Inventors: Michael W. Recknor, Hong Tan, Robert Zuk, Krista Leah Witte, Sae Choo, Scott Lockard
  • Patent number: 8609038
    Abstract: Provided are a centrifugal force-based microfluidic device, in which biochemical treatments of samples are executed, and a method of fabricating the centrifugal force-based microfluidic device. The centrifugal force-based microfluidic device is mountable on a rotatable device and includes: a disk-shaped portion; and an inlet hole defined within, configured to receive fluid from outside the centrifugal force-based microfluidic device having a first opening with a first inner diameter, and a second opening disposed on the first opening having a second inner diameter greater than the first inner diameter, and a depth of the second opening greater than a height of a fluid droplet formable in the second opening.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chung-ung Kim, Ki-ju Lee, Jong-jin Park, Dong-hwi Cho, Su-bong Bae, Jong-cheol Kim
  • Patent number: 8580574
    Abstract: An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations, or modules, in which discrete aspects of the assay are performed on fluid samples contained in reaction receptacles. The analyzer includes stations for automatically preparing a specimen sample, incubating the sample at prescribed temperatures for prescribed periods, performing an analyte isolation procedure, and ascertaining the presence of a target analyte. An automated receptacle transporting system moves the reaction receptacles from one station to the next.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: November 12, 2013
    Assignee: Gen-Probe Incorporated
    Inventor: Robert J. Smith
  • Patent number: 8557200
    Abstract: An ergonomically designed pipette tip that can be securely mounted to a barrel of a pipetter yet is designed to substantially reduce the axial force necessary to install and eject the pipette tip from the pipetter thus reducing the injuries resulting in repetitive stress injury to the thumb and hand. The new ergonomic pipette tip incorporates a separate sealing member constructed from an elastomer that is coupled to the more rigid and chemically inert elongated tubular member that becomes the receptacle for transferring the fluid sample aspirated by the pipetter. The new elastomeric sealing member allows for greater sealing capability or squeeze between the pipetter barrel and the new pipette tip while lowering the coefficient of friction between the mating parts, thus decreasing the axial ejection forces require to overcome the breakaway friction between the new ergonomic pipette tip and the pipetter.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: October 15, 2013
    Inventor: James C. Smith
  • Patent number: 8545760
    Abstract: A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: October 1, 2013
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Takashi Yamato, Naohiko Matsuo, Satoshi Iguchi
  • Patent number: 8524170
    Abstract: A sealing pipette tip includes features to seal the tip directly against the piston in an air displacement pipette, avoiding the need for a piston seal within the pipette. This configuration reduces potential points of failure, allows the pipette-tip interface to be optimized, and improves liquid handling characteristics of the pipette.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: September 3, 2013
    Assignee: Rainin Instrument, LLC
    Inventor: James S. Petrek
  • Patent number: 8518347
    Abstract: The invention relates to a carrier enclosing tip, a carrier treating apparatus, and a method of carrier treatment. An object is to perform separation/purification more efficiently and rapidly as compared with treatments using conventional liquid chromatography or filters. There is provided a carrier enclosing tip comprising: a tip-like container having a fitting opening which is fittable to a nozzle for use in gas suction and discharge, or a member to be fitted to a nozzle, and a port through which fluid inflow and outflow can be effected by the gas suction and discharge; and a carrier which is enclosed in the tip-like container, and is capable of adsorbing a biosubstance in the fluid or is capable of reacting with or binding to the biosubstance.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: August 27, 2013
    Assignee: Universal Bio Research Co., Ltd.
    Inventor: Hideji Tajima