Electrically Operated Patents (Class 422/518)
  • Patent number: 11291988
    Abstract: The invention concerns pipette tips for connecting to a pipette tube of a pipetting device are used for taking up and discharging fluids. The pipette tip is in the shape of an elongated tube forming a pipette body that has an opening at one end and is designed for connecting to the pipette tube at the other end. The pipette tip has a first electrode as a volume measuring electrode of a measuring capacitor and a second electrode as an immersion detector electrode. The first electrode is located on an outer surface of the pipette body or is embedded in the pipette body, and the second electrode is located at least partially on an inner surface of the pipette body.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: April 5, 2022
    Assignee: TECAN TRADING AG
    Inventors: Philipp Ott, Matthias Dzung, Martin Kuster
  • Patent number: 10065325
    Abstract: A transport tool for transporting a laboratory article using a pipette of a pipetting system includes at least one plug-in sleeve, which is implemented for the releasable plugging-in of a receptacle cone of a pipette, and which can be plugged onto the receptacle cone of the pipette instead of a disposable pipette tip. In addition, the transport tool comprises an article holder having at least one holding part, which is implemented to form a support connection with a laboratory article. A connecting part connects the article holder to the plug-in sleeve, so that holding axes of the at least one article holder and the sleeve axis of the plug-in sleeve are arranged coaxially or axially-parallel to one another. The laboratory article has at least one flat, at least approximately horizontal surface. The article holder has a holding plate or a holding sleeve.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 4, 2018
    Assignee: TECAN TRADING AG
    Inventors: Stefan Buchloh, Thomas Iten, Sara Ferdi, Nico Birkner
  • Patent number: 9579645
    Abstract: The invention relates to a fluid transfer apparatus, in particular pipetting apparatus, for transferring at least one fluid laboratory sample, in particular a biochemical or medical laboratory sample, comprising a base body, which has a connecting section serving for connecting a container to the base body for the intake of the at least one fluid sample into the container, a movement device, which can bring about the intake and/or delivery of at least one fluid laboratory sample into the container, an electrical control device, which controls at least one function of the fluid transfer apparatus, a sensor device, which comprises at least one acceleration sensor which is signal-connected to the control device and by means of which at least one acceleration value can be measured during the movement of the fluid transfer apparatus, wherein the control device is designed such that it uses the at least one acceleration value during the control of the at least one function.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: February 28, 2017
    Assignee: Eppendorf AG
    Inventors: Burkhardt Reichmuth, Herbert Belgardt, Stefen Hofmann, Mike Queck
  • Patent number: 9005527
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: April 14, 2015
    Assignee: Bayer Healthcare LLC
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Patent number: 8999266
    Abstract: A slotted pin tool, a delivery system containing the pin tool, a substrate for use in the system and methods using the pin tool and system are provided. The slotted pin tool contains a plurality of pins having slotted ends designed to fit around each loci of material deposited on a surface, such as a microarray, without contacting any of the deposited material. Sample is delivered by contacting the pin tool with the surface; the amount delivered is proportional to the velocity of the pin tool as it contacts the surface or the velocity of the liquid when movement of the pin is halted.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: April 7, 2015
    Assignee: Agena BioScience, Inc.
    Inventors: Xian-Wei Yao, Chao Lin, Paul Heaney, Thomas Becker, Aaron A. Hanson, Michael C. Willis
  • Patent number: 8980198
    Abstract: The present invention relates to filler fluids for droplet operations. According to one embodiment of this aspect, a droplet microactuator is provided and includes: (a) a first substrate comprising electrodes configured for conducting droplet operations on a surface of the substrate; (b) a second substrate spaced from the surface of the substrate by a distance sufficient to define an interior volume between the first substrate and second substrate, wherein the distance is sufficient to contain a droplet disposed in the space on the first substrate; and (c) a droplet arranged in the interior volume and arranged with respect to the electrodes in a manner which permits droplet operations to be effected on the droplet using the electrodes.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 17, 2015
    Assignees: Advanced Liquid Logic, Inc., Duke University
    Inventors: Vijay Srinivasan, Michael G. Pollack, Philip Y. Paik, Vamsee K. Pamula, Richard B. Fair
  • Patent number: 8940232
    Abstract: An automated assay system is described with stations for placement of materials to be used in an assay of materials inside capillaries and an automated gripper for manipulating capillaries. The system includes a separation and immobilization station where reactions inside the capillaries take place and a detector station where photoemissions from the capillary reactions are detected. The photoemissions from the capillaries may be displayed as line graphs or in columns of a pseudo-gel image resembling the familiar Western gel blot. An automated control system has a user interface by which an operator can select a run protocol and define the locations of samples and reagents to be used in the protocol run: Following the setup the control system will cause the automated system to execute the protocol, then display the results in a selected display format.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 27, 2015
    Assignee: ProteinSimple
    Inventors: David J. Roach, Tom W. Yang, Roger A. O'Neill, Robert T. Loder, Jr.
  • Patent number: 8920751
    Abstract: The present teachings provide apparatuses and methods for automated handling of samples, e.g., biological or chemical samples. The apparatuses and the methods of the present teachings allow automated performance of various sample manipulation steps without manual intervention. In a preferred embodiment, the present teachings provide apparatuses and methods for automated enrichment of templated beads produced by PCR.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: December 30, 2014
    Assignee: Life Technologies Corporation
    Inventors: Kristopher Barbee, Maximilian Carpino, Raymond Alan Wheeling, Nicholas Peter Bajka
  • Patent number: 8920752
    Abstract: Novel and improved systems and methods for high speed arraying, hybridization, quantitative development and/or assaying are provided. Some embodiments provide a web based arraying format. Some other embodiments provide a sheet based arraying format. Some embodiments use a drop on drop assaying or hybridization mode. In some embodiments, a substantially inert substrate is utilized. In some other embodiments, an interactive substrate is utilized.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 30, 2014
    Assignee: Biodot, Inc.
    Inventors: Thomas C Tisone, Holger Eickhoff
  • Patent number: 8900527
    Abstract: A pipetting device is described comprising more than one pipetting unit, wherein said pipetting units are independently movable in Y and Z direction and comprise at least one module arranged in a staggered manner compared to the adjacent pipetting unit.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 2, 2014
    Assignee: Roche Molecular Systems Inc.
    Inventors: Alessandro D'Amore, Urs Knecht, Rolf Schneebeli
  • Patent number: 8894930
    Abstract: A specimen processing device is disclosed that comprises: a processing unit configured to aspirate a specimen from a specimen container accommodating the specimen, and to process the aspirated specimen; a state transition section configured to make the processing unit undergo transition to a pause state; an instruction accepting section configured to accept an instruction to start processing of the specimen when the processing unit is in the pause state; and a pause state releasing section configured to release the processing unit from the pause state to make the processing unit perform the processing of specimen when the instruction to start the processing is accepted by the instruction accepting section. A specimen processing method using a specimen processing device is also disclosed.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: November 25, 2014
    Assignee: Sysmex Corporation
    Inventor: Toru Mizumoto
  • Patent number: 8877145
    Abstract: A device for generating a drop of a primary liquid is described, including: a reservoir fillable with the primary liquid, a pressure generation device for generating a hydraulic pressure on the primary liquid, at least one inlet channel for introducing a secondary fluid, and a channel having a flow cross-section transverse to a main flow direction, wherein the flow cross-section includes a main region and at least one sub-region extending from the main region, designed such that the primary liquid can be held in the main region by capillary forces, and the secondary fluid can be held in the sub-region by capillary forces, wherein the reservoir is fluidically connected to a first end of the channel via an output opening, and the at least one inlet channel is also fluidically connected to the channel, and wherein the pressure generation device is implemented to apply a hydraulic pressure to the primary liquid, whereby the same is moved along the channel and output at a second end of the channel as free-flying d
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 4, 2014
    Assignee: Albert-Ludwigs-Universitaet Freiburg
    Inventors: Tobias Metz, Peter Koltay
  • Patent number: 8828336
    Abstract: An active matrix device is provided which includes N array elements arranged spatially in a sequence of first through Nth array elements (where N is an integer ?2); the N array elements each including a write input for receiving a corresponding write input signal which controls operation of the array element, and a sense circuit for sensing a property of the array element and providing a sensor output based on the sensed property; and further including a manipulation circuit including logic circuitry connecting the sensor output from an nth array element in the sequence directly to the write input of an (n+1)th array element and configured to provide the write input signal to the write input of the (n+1)th array element based on the sensor output from the nth array element.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: September 9, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector
  • Patent number: 8821796
    Abstract: A mechanism is provided for sensing molecules. A twin-nanopore probe includes a first channel and a second channel. A first pressure-controlled reservoir is connected to the first channel to generate a positive pressure. A second pressure-controlled reservoir is connected to the second channel to generate a negative pressure. A container includes ionic solvent with molecules, and a tip of the twin-nanopore probe is submerged in the container of the ionic fluid with the molecules. The first channel, the second channel, the first pressure-controlled reservoir, and the second pressure-controlled reservoir are filled with the ionic fluid. The first pressure-controlled reservoir drives the ionic fluid out of the first channel and the second pressure-controlled reservoir draws in the ionic fluid with the molecules and solvent through the second channel. A flow of ionic current in the twin-nanopore probe is measured to differentiate the molecules that flow through the second channel.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventor: Hongbo Peng
  • Patent number: 8758702
    Abstract: A clinical diagnostic sample analyzer for analyzing a sample of a patient is disclosed. The analyzer includes a telescoping closed-tube sampling assembly with a sample probe concentrically housed within a piercing probe and a venting mechanism. The closed-tube sampling assembly is used for aspirating a sample from a sample tube for analysis by a clinical diagnostic sample analyzer.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: June 24, 2014
    Assignee: Instrumentation Laboratory Company
    Inventors: Matthew Blouin, Gregory Murphy, Diana Mackenzie, Alan Weeks, Daniel Kobrenski
  • Patent number: 8758707
    Abstract: An apparatus and method for applying reagents to tissue mounted on slides, in the field of histology is disclosed. The apparatus holds a number of slides, in slide trays, which are loaded onto the apparatus. Each slide tray forms a batch of slides, with all the batched forming a group. The apparatus holds a number of reagents, grouped into a first group comprising bulk type reagents, and a second group comprising antibodies or probes, and detection systems, for identifying elements of the tissue. A group fluid dispenser, in the form of a robot arm, dispense reagents to the group of slides. Each batch of slides has its own batch fluid dispenser to dispense reagents onto the batch of slides. In on embodiment, the group fluid dispenser dispense antibodies, probes, detection reagents to all slides depending on the protocol defined for each slide, and the batch dispensers dispense bulk reagent to each batch, thus freeing the group fluid dispense from dispensing bulk reagents to all slides.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: June 24, 2014
    Assignee: Leica Biosystems Melbourne Pty Ltd
    Inventors: Andrew Watkins, Nathan Ray, David Huang
  • Patent number: 8691148
    Abstract: The invention provides a small-sized automatic analyzer being compact, enabling a large number of analysis items to be carried out, and having a high processing speed. The automatic analyzer is particularly suitably applied to a medical analyzer used for qualitative/quantitative analysis of living body samples, such as urine and blood. A plurality of sample dispensing mechanism s capable of being operated independently of each other are provided to suck a sample from any one of a plurality of sample suction positions and to discharge the sucked sample to any one of a plurality of positions on a reaction disk. The automatic analyzer having a high processing capability can be thus realized without increasing the system size.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: April 8, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hideyuki Yanami, Isao Yamazaki, Masaaki Hanawa, Hitoshi Otake
  • Patent number: 8679421
    Abstract: A dispensing device and an analyzer capable of improving dispensing accuracy as well as improving jamming detection accuracy can be realized by having a short distance between a syringe and a suction tip. The dispensing device 10 includes an upper fixed unit 10A, a lower movable unit 10B which is connected to the upper fixed unit 10A, the movable unit being relatively movable with respect to the upper fixed unit 10A, and a Z-axis movement mechanism 55Z which moves the upper fixed unit to and fro. A syringe 4 and a plunger 13 are held by the upper fixed unit 10A. A tip nozzle 8 is attached to the lower movable unit 10B. An interior space of the syringe 4 and an interior space of the tip nozzle 8 are connected with each other by a connection tube 1 having flexibility.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 25, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Minoru Sano, Kazutoshi Onuki, Yoshiyuki Shoji, Isao Yamazaki
  • Patent number: 8632738
    Abstract: A syringe, defined by a cylinder and by a piston slidingly engaged in the cylinder itself, is actuated after having inserted the cylinder within a gripper and having axially fed the syringe through the gripper so as to move an outer flange of the cylinder into contact with the gripper and/or the piston in a stop position within the cylinder.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: January 21, 2014
    Assignee: Health Robotics S.r.l
    Inventors: Paolo Giribona, Walter Bianco, Michele Minisini, Garcia Gaspar de Viedma Santoro
  • Patent number: 8632735
    Abstract: A system for titrating liquids, with a syringe or tip, comprising a holding device and at least one tag and a metering equipment, comprising an additional holding device for holding the syringe or tip on the holding device, a reading device for reading the tag of the syringe or tip held by the additional holding device, a driving device having a motor, which is detachably coupled with a plunger of the syringe when the same is held by the additional holding device, or which is coupled with a plunger which is arranged in a cylinder which is coupled with the tip via a fluid conduit, when the same is held by the additional holding device, an operating device for operating the metering equipment and a control device, connected with the operating device, the reading device and the driving device, which controls the movement of the plunger depending of the tag of the inserted syringe or tip.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: January 21, 2014
    Assignee: Eppendorf AG
    Inventors: Heinz-Gerhard Kohn, Karl-Friedrich Andres
  • Patent number: 8628723
    Abstract: An apparatus for introducing a specimen into a flow cytometer comprises: a syringe having a hollow barrel containing the specimen, a plunger partially within the barrel and a needle that extends into a volume of a nozzle of the flow cytometer; a one-way port in the nozzle forming a seal against the needle; a mounting platform coupled to both the syringe and to the flow cytometer; and a syringe pump coupled to the plunger, the syringe pump comprising a motor, a drive mechanism coupled to the motor; and a clamping mechanism coupled to the drive mechanism, wherein the motor operates the drive mechanism so as to cause the clamping mechanism to depress the plunger into the barrel.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: January 14, 2014
    Assignee: Beckman Coulter, Inc.
    Inventor: Angela L. Vandergaw
  • Patent number: 8614100
    Abstract: A method for depositing samples, in which at least one sample (10) is arranged on a substrate (30), comprises the following steps: positioning a sample dispenser (20) above the substrate (30), and actuating the sample dispenser (20) so that the sample (10) is moved from the sample dispenser (20) along a trajectory (11) to a predefined deposition position (32) on the substrate (30), wherein at least part of the trajectory (11) is shielded against electrical interference fields. Also described is a substrate (30) for receiving samples (10), comprising a substrate body (31), on the surface of which at least one deposition position (32) is provided, and a shielding electrode (40), which is designed so as to electrostatically shield the space above the at least one deposition position (32) against electrical interference fields.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: December 24, 2013
    Assignee: Scienion AG
    Inventors: Eckhard Nordhoff, Alan Bullock, Christine Lubbert, Antonin Schenk, Holger Eickhoff, Martin Horn
  • Patent number: 8609040
    Abstract: A system for automatically creating a denaturation curve is disclosed. In accordance with certain embodiments, a movement system including a unit having a plurality of cannulas is used. The cannulas are in fluid communication with a fluid system, which allows the cannulas to draw in and dispense fluid. A measurement system is included which draws fluid from a well into a detector to determine a characteristic of the fluid. A controller is used to control these systems and also to create a denaturation graph from the measured characteristics. In another embodiment, a plurality of formulations may be created using the system.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: December 17, 2013
    Assignee: AVIA Biosystems, LLC
    Inventors: Richard Brown, Burleigh Hutchins, Ernesto Freire
  • Patent number: 8580210
    Abstract: A sample aspirating apparatus including a pipette which aspirates a sample, wherein the pipette is able to penetrate a cap of a capped container; a cap sensor which detects the cap of the capped container; a driving section which moves the pipette upward and downward; a crash sensor which detects a crash of the pipette with an obstacle; and a controller which controls the driving section to move the pipette, and stop the pipette when the crash sensor detects a crash by the pipette, wherein when aspirating a sample from a container after the cap sensor has detected a cap, the controller controls the driving section to move the pipette downward regardless of the detection by the crash sensor and thereby cause the pipette to penetrate the cap of the container. A sample analyzer which includes the above mentioned sample aspirating apparatus is also disclosed.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 12, 2013
    Assignee: Sysmex Corporation
    Inventors: Hironori Katsumi, Jun Inagaki
  • Patent number: 8545757
    Abstract: A sample treatment apparatus is designed to directly monitor a pressure signal from a pressure sensor to examine pressure fluctuations resulting from a sample's sway before a discharge of the sample, so that the discharge is performed after the confirmation of the absence of pressure changes. The apparatus has a detection function that allows a discharge to be started even before a pressure fluctuation vanishes completely, by allowing the operator to set a desired number of pressure monitorings, monitoring time, or pressure amplitude. The detection function also allows an alarm to be raised when a pressure fluctuation has not fallen within a given range. The sample treatment apparatus therefore allows discharge of more accurate amounts of samples.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: October 1, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yasushi Utsugi, Kuniaki Onizawa, Ken Takakura, Yoshio Kiyonari, Isao Yamazaki
  • Patent number: 8518347
    Abstract: The invention relates to a carrier enclosing tip, a carrier treating apparatus, and a method of carrier treatment. An object is to perform separation/purification more efficiently and rapidly as compared with treatments using conventional liquid chromatography or filters. There is provided a carrier enclosing tip comprising: a tip-like container having a fitting opening which is fittable to a nozzle for use in gas suction and discharge, or a member to be fitted to a nozzle, and a port through which fluid inflow and outflow can be effected by the gas suction and discharge; and a carrier which is enclosed in the tip-like container, and is capable of adsorbing a biosubstance in the fluid or is capable of reacting with or binding to the biosubstance.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: August 27, 2013
    Assignee: Universal Bio Research Co., Ltd.
    Inventor: Hideji Tajima
  • Patent number: 8470260
    Abstract: A light beam guided liquid delivery device for tracking the placement of a sample by a liquid delivery device into a receptacle like a milliliter or microliter scale tube, or a microtiter plate, includes a liquid delivery device and a light beam generator. The light beam generator may be positioned on the outside or inside of the liquid delivery device. The light beam generator may be adapted to shoot a light beam below the tip of the liquid delivery device, whereby, a user may track the placement of the tip of the liquid delivery device via the light beam.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: June 25, 2013
    Assignee: University of North Carolina at Charlotte
    Inventors: David Andrew Carr, Jennifer W. Weller
  • Patent number: 8465707
    Abstract: A sample handling method may include drawing an encapsulating liquid from an encapsulating-liquid input; discharging the drawn encapsulating liquid (a) onto a free surface of a carrier liquid in a carrier-liquid conduit comprising a stabilisation feature and (b) proximate to the stabilisation feature, the encapsulating liquid being immiscible with the carrier liquid, so that the discharged encapsulating liquid does not mix with the carrier liquid, floats on top of the carrier liquid, and is immobilised by the stabilisation feature; drawing a sample liquid from a sample-liquid input; and discharging the drawn sample liquid, the sample liquid being immiscible with the encapsulating liquid and with the carrier liquid, so that the sample liquid does not mix with the encapsulating liquid or with the carrier liquid.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: June 18, 2013
    Assignee: GenCell Biosystems Ltd.
    Inventors: Kieran Curran, Paul Fleming, Séamus Gillhooley, Micheál Keane, Inga Rosca, Patrick Tuohy
  • Patent number: 8444935
    Abstract: A sample testing system includes a plurality of sample tubes, each sample tube coupled to a pumping chamber, a pressure control subsystem and a flow control subsystem. The pressure control system includes a first dynamic pump equipped to induce pulsatile pressure in a mass of pumping fluid coupled to the pumping chambers. The flow control subsystem includes a mean flow pump equipped to generate a flow of sample fluid in a plurality of flow loops. Each of the flow loops conducts the flow of sample fluid between the mean flow pump and one of the sample tubes. The pumping chamber couples pressure from the pumping fluid to the sample fluid.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 21, 2013
    Assignee: Bose Corporation
    Inventors: Troy D. Nickel, David Louis Dingmann, Mark Hanson
  • Patent number: 8389295
    Abstract: A system for fluid transport is provided where a quantity of fluid is held in a reservoir. A droplet generator is employed to generate droplets from the fluid, for example a nozzle-based system or a nozzleless system such as an acoustic ejection system. A generated droplet has a trajectory whereby it arrives at a target. A circuit is used to modify one or more characteristics of the generated droplet in a way which increases the likelihood that the droplet will not splash or bounce when it arrives at the target. The circuit may in different embodiments control the speed of the droplet or the Weber number of the droplet. The circuit may create an electric field in an area of space where the droplet passes. The circuit may charge the droplet by causing it to contact ions.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: March 5, 2013
    Assignee: Labcyte Inc.
    Inventors: Richard G. Stearns, Stephen J. Hinkson
  • Patent number: 8377396
    Abstract: Gripping tool for automatic laboratory machines, with gripping appliances for gripping vessels, an appliance for converting and/or transferring of movements, the power take-off of which is coupled with the gripping appliances in order to drive them, a coupling appliance for detachable connection with a drive appliance of a tool support of an automatic laboratory machine, which is coupled with the drive of the appliance for converting and/or transferring in order to drive it, and a mounting appliance for detachable mounting of the gripping tool on the tool support of the automatic laboratory machine, while the coupling appliance is connected with the drive appliance of the tool support.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: February 19, 2013
    Assignee: Eppendorf AG
    Inventors: Matthias Meinicke, Jens Wilmer
  • Patent number: 8366997
    Abstract: A modular laboratory automation system for monitoring and controlling laboratory experiments, the modular laboratory automation system including a controller, an interface board, and a portable power supply. Power levels of standard laboratory equipment can be automatically controlled, and conditions and parameters of experiments can be automatically monitored and recorded. The laboratory automation system is modular and can be configured to operate with laboratory experiments having varying setups and equipment.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: February 5, 2013
    Assignee: Shoto Technologies LLC
    Inventor: Richard James Degroot
  • Patent number: 8364315
    Abstract: The present invention provides modified droplet actuator systems, software, and software-executed methods for use in droplet actuator operation and droplet actuator systems that are configured and programmed to execute such software. An aspect of the software components of the invention is an interface description file for each hardware component of a microfluidics system that allows hardware components to be changed without modifying the program for performing droplet operations protocols. Another aspect of the software components of the invention is the establishment of electrode-to-electrode relationships and other aspects of droplet actuator configurations, which may be used when programming droplet operations protocols. Another aspect of the software components of the invention is a physical design library of predefined electrode elements that may be used by a droplet actuator designer when constructing a layout of electrodes.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: January 29, 2013
    Assignee: Advanced Liquid Logic Inc.
    Inventors: Ryan A. Sturmer, Gregory F. Smith, Michael Fogleman, Keith R. Brafford, Sai Ram Rongali
  • Patent number: 8337779
    Abstract: A reagent open mechanism of the luminescence measurement system comprises a triaxial actuator and a reagent dispensing nozzle which is driven by the triaxial actuator. A reagent cartridge where a reagent to be divided by the reagent dispensing nozzle is filled in a concave and the opening of the concave is sealed by an aluminum sheet can be set in. This reagent open mechanism comprises an open needle which is driven by the triaxial actuator and makes a hole in the aluminum sheet and a fixation block between the reagent dispensing nozzle and the open needle which arranges the reagent dispensing nozzle and the open needle in such location that the reagent dispensing nozzle or the open needle does not contact with a structure including the reagent cartridge in a Z-axis operation during opening time or reagent dividing and dispensing time.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: December 25, 2012
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventor: Noe Miyashita
  • Patent number: 8333936
    Abstract: The present invention provides for a reagent splitting/dispensing device and method that can prevent contamination of an operation fluid when a reagent dispensing nozzle is in a waiting state and prevent falling of a droplet. The reagent splitting/dispensing method includes disposing and adjusting an air layer between an interface of an operation fluid and a reagent aspirated and subsequently dispensed from a nozzle tip end in an reagent dispensing nozzle.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: December 18, 2012
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Noe Miyashita, Hideyuki Noda, Masahiro Okanojo
  • Patent number: 8277758
    Abstract: In an assembly for actuating a syringe, two gripping devices are designed to receive and withhold a containment cylinder and, respectively, a piston of the syringe, and are defined by respective pairs of jaws for gripping a flange of the containment cylinder and, respectively, of an end head of the piston, the jaws of at least one gripping device being mobile with respect to one another between a gripping position and a release position under the thrust of a corresponding actuation device.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: October 2, 2012
    Assignee: AEA, S.r.l.
    Inventor: Graziano Mattioli
  • Patent number: 8231846
    Abstract: A tag (1) for a laboratory sample cassette has a first layer (3). A chip (8) is mounted on a surface (7) of the first layer (3), and an antenna (6) is printed on the surface of the first layer (3). The antenna (6) is arranged to establish communication between the chip (8) and an electric or electronic read/write device. A second layer (4) is positioned and bonded against the surface (7) and has a hole (9) which passes through the second layer (4). The hole (9) contains the chip (8) and a third layer (5) covers the hole (9) from the opposite side to the first layer (3), the third layer (5) being bonded to the second layer (4). Thus, the antenna (6) and chip (8) are sealed within the tag (1). A plurality of perforations (10) are provided which pass through all the layers (3,4,5) of the tag (1) from one side of the tag (1) to an opposite side thereof to enable liquid to pass through the tag (1).
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 31, 2012
    Assignee: Raymond A Lamb Limited
    Inventor: Thomas Fergus Hughes
  • Patent number: 8197754
    Abstract: The invention provides a small-sized automatic analyzer being compact, enabling a large number of analysis items to be carried out, and having a high processing speed. The automatic analyzer is particularly suitably applied to a medical analyzer used for qualitative/quantitative analysis of living body samples, such as urine and blood. A plurality of sample dispensing mechanism s capable of being operated independently of each other are provided to suck a sample from any one of a plurality of sample suction positions and to discharge the sucked sample to any one of a plurality of positions on a reaction disk. The automatic analyzer having a high processing capability can be thus realized without increasing the system size.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: June 12, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hideyuki Yanami, Isao Yamazaki, Masaaki Hanawa, Hitoshi Otake
  • Patent number: 8080202
    Abstract: A vibrator has a large strength of a standing wave even with a low driving voltage, thereby improving the accuracy of component separation. A device according to the present invention includes a substrate having a channel groove provided in an upper surface of the substrate, a seal provided above the substrate so as to cover an upper opening of the channel groove, a projection provided on an outer side wall opposite to the channel groove, and a vibrator causing the projection to warp and vibrate in a depth direction of the channel groove. The warping vibration of the projection is amplified due to effect of leverage, and generates a large stress on the outer wall of the channel groove having the projection provided thereon. Consequently, the strength of a standing wave in the channel groove increases even for a low driving voltage, thereby improving the accuracy of component separation.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 20, 2011
    Assignee: Panasonic Corporation
    Inventors: Makoto Takahashi, Masaya Nakatani
  • Patent number: 8026104
    Abstract: A biosensor system determines an analyte concentration of a biological sample using an electrochemical process without Cottrell decay. The biosensor system generates an output signal having a transient decay, where the output signal is not inversely proportional to the square root of the time. The transient decay is greater or less than the ?0.5 decay constant of a Cottrell decay. The transient decay may result from a relatively short incubation period, relatively small sample reservoir volumes, relatively small distances between electrode surfaces and the lid of the sensor strip, and/or relatively short excitations in relation to the average initial thickness of the reagent layer. The biosensor system determines the analyte concentration from the output signal having a transient decay.
    Type: Grant
    Filed: October 21, 2007
    Date of Patent: September 27, 2011
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Steven C. Charlton, Amy H. Chu, Andrew J. Edelbrock, Sung-Kwon Jung, Dijia Huang
  • Patent number: 7910073
    Abstract: The microfluidic system is constituted of modules that comprise one microfluidic unit and one corresponding electric control unit each and that are retained on a rear panel unit next to each other in a row. To prevent the formation of accumulation of ignitable or toxic gas mixtures a fluid conduit for a rinsing fluid extends through the rear panel unit. Branches lead from said fluid conduit to the modules, and said branches flowing into respective distributor compartments that extend vertically across the module height in the modules. Said distributor compartments are delimited in relation to the interior of the respective module by a distributor panel that is provide with openings. The interior of the respective module comprises, on its lower or rear surface, an exit opening for the rinsing fluid.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: March 22, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Astrid Lohf, Reinhold Schneeberger, Waldemar Wenzel
  • Patent number: 7910074
    Abstract: A liquid transfer system for transferring liquid from a plurality of containers to a plurality of destinations comprises a plurality of inlet valves. Each inlet valve is operable between an open position allowing liquid from a container to be drawn into the system and a closed position blocking liquid from a container from being drawn into the system. Liquid drawn from each of the liquid containers is delivered to a buffer chamber designed to degas the liquid in the buffer chamber. The buffer chamber leads to a vented feeder chamber that is also adapted to retain a volume of liquid. A chamber connection valve is provided between the buffer chamber and the feeder chamber to allow or block the flow of liquid between the buffer chamber and the feeder chamber. The feeder chamber is connected to a plurality of distribution valves operable to deliver liquid to a plurality of destinations.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: March 22, 2011
    Assignee: Beckman Coulter, Inc.
    Inventors: William W. Li, Rongchang Xin, Elgardo Echevarria, John A. Mitchell
  • Patent number: 6165625
    Abstract: Improved instrument pad surgical drape for use during surgical procedures is disclosed which is resistant to melting caused by high intensity light generated from sources such as fiberoptic illumination systems. The instrument pad and drape comprise an infrared energy reflective film/foam laminate that may also have a high coefficient of friction which is useful for retaining surgical instruments in place and preventing them from slipping off the pad during a surgical procedure.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: December 26, 2000
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jay R. Sommers, Richard C. Dowdy, Hilary Walker, D. Mark Foreste