Combined With Recycling Means (e.g., Recycling Products, Reactants, Etc.) Patents (Class 422/620)
  • Patent number: 11549072
    Abstract: The invention relates to an improved system and method for relief of hot, high pressure, fouling fluid from the 1st Stage Reactor and the ISS in case of an unintended overpressure situation while allowing the quick establishing of normal fluid flow path once the overpressure situation has been corrected. This allows for rapid cooling of all subsequent reactor stages while minimizing VGO slop generation that needs reprocessing.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: January 10, 2023
    Assignee: Axens
    Inventors: Trushit Oza, Yu-Hwa Chang
  • Patent number: 9023299
    Abstract: A liquid/gas reactor includes a bulk catalyst bed and means for supplying fresh feed and recycled at least partially converted liquid product stream to the bulk catalyst bed. The reactor also includes means for collecting an at least partially converted liquid product stream from the bulk catalyst bed and recycling at least a portion thereto. A minor catalyst bed extends substantially vertically through the bulk catalyst bed. Means for supplying recycled at least partially converted product stream only to the minor catalyst bed is also provided. A separating wall is disposed between the bulk catalyst bed and the minor catalyst bed.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: May 5, 2015
    Assignee: Davy Process Technology Limited
    Inventors: Edward Adrian Lord, Arthur James Reason
  • Patent number: 8957119
    Abstract: Method of devulcanizing rubber and/or elastomers without the need for a chemical agent, in which method the vulcanized rubber and/or elastomers are fed into a planetary roller extruder, which planetary roller extruder has a housing, a central spindle, two groups of planetary roller spindles, and a dispersion ring disposed about the central spindle and between the two groups of planetary spindles. Mechanical and thermal stress is generated on the vulcanized rubber and/or elastomers by kneading and/or crushing the vulcanized rubber and/or elastomers using the central spindle and the planetary spindles, and by forcing the vulcanized rubber and/or elastomers through the dispersion ring, which is designated to substantially restrict passage of the vulcanized rubber and/or elastomers therethrough. The mechanical and thermal stress alone is sufficient to break or destroy the molecular chains or bonds of the vulcanized rubber and/or elastomers.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 17, 2015
    Assignee: Entex Rust & Mitschke GmbH
    Inventor: Harald Rust
  • Patent number: 8945488
    Abstract: A gas-to-liquids process and plant for treating natural gas, in which the natural gas is subjected to expansion through a flow restrictor so as to undergo cooling through the Joule Thomson effect, enables liquids to be separated from the gas stream. The natural gas may be cooled before it reaches the flow restrictor by heat exchange with fluid that has passed through the flow restrictor. This decreases the proportion of longer-chain hydrocarbons in the natural gas, which may simplify subsequent processing, and may enable the size of the plant to be decreased.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: February 3, 2015
    Assignee: CompactGTL Limited
    Inventors: Michael Joseph Bowe, Robert Peat, David James West, Philip Hawker
  • Patent number: 8936769
    Abstract: A system for the production of conversion products from synthesis gas, the system including a mixing apparatus configured for mixing steam with at least one carbonaceous material to produce a reformer feedstock; a reformer configured to produce, from the reformer feedstock, a reformer product comprising synthesis gas comprising hydrogen and carbon monoxide from the reformer feedstock; a synthesis gas conversion apparatus configured to catalytically convert at least a portion of the synthesis gas in the reformer product into synthesis gas conversion product and to separate from the synthesis gas conversion product a tailgas comprising at least one gas selected from the group consisting of carbon monoxide, carbon dioxide, hydrogen and methane; and one or more recycle lines fluidly connecting the synthesis gas conversion apparatus with the mixing apparatus, the reformer, or both.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: January 20, 2015
    Assignee: RES USA, LLC.
    Inventors: Randy Blevins, Joshua B. Pearson, Harold A. Wright
  • Patent number: 8912382
    Abstract: One exemplary embodiment can be a method of modifying an alkylation unit to increase capacity. The method may include combining a first alkylation zone with a second alkylation zone. Generally, the first alkylation zone includes a first settler having a height and a width. Typically, the width is greater than the height. In addition, the second alkylation zone may have a second settler having a height and a width. Usually, the height is greater than the width.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Daryl Dunham, Dale James Shields
  • Publication number: 20140330040
    Abstract: A process for synthesis of urea and a related reaction section of a urea plant, where: ammonia and carbon dioxide are reacted in a liquid phase in a first reaction zone (S1) and heat (Q1) is withdrawn from said first reaction zone to promote the formation of ammonium carbamate, the liquid product (103) from said first reaction zone is then passed to a second reaction zone (S2) distinguished from said first reaction zone, and heat (Q2) is added to said second reaction zone to promote the decomposition of ammonium carbamate into urea and water, where the liquid phase in at least one of said first reaction zone and second reaction zone is kept in a stirred condition. A downflow reactor for carrying out the above process is also disclosed.
    Type: Application
    Filed: November 15, 2012
    Publication date: November 6, 2014
    Applicant: Urea Casale SA
    Inventors: Giancarlo Sioli, Giacomo Cavuoti
  • Patent number: 8877147
    Abstract: A system for converting fuel is provided and includes a first reactor comprising a plurality of ceramic composite particles, the ceramic composite particles comprising at least one metal oxide disposed on a support, wherein the first reactor is configured to reduce the at least one metal oxide with a fuel to produce a reduced metal or a reduced metal oxide; a second reactor configured to oxidize at least a portion of the reduced metal or reduced metal oxide from the said first reactor to produce a metal oxide intermediate; a source of air; and a third reactor communicating with said source of air and configured to regenerate the at least one metal oxide from the remaining portion of the solids discharged from the said first reactor and the solids discharged from the said second reactor by oxidizing the metal oxide intermediate.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 4, 2014
    Assignee: The Ohio State University
    Inventors: Liang-shih Fan, Fanxing Li
  • Publication number: 20140323783
    Abstract: A method and system for converting hydrocarbons into C2+ unsaturates is described. The method includes providing a structural member upstream of a reaction zone having a surface of a catalytic material, wherein the catalytic material is rendered catalytically active to promote the reaction of coke and/or coke precursors with hydrogen (H2) and/or an oxidant. Then, the method involves exposing a hydrocarbon stream to the catalytic material, wherein the hydrocarbon stream comprising coke and/or coke precursors react in the presence of the catalytic material to convert at least a portion of the coke and/or coke precursors to vapor products. Finally, the hydrocarbons in the hydrocarbon stream containing vapor products and hydrocarbons are converted in the reaction zone to produce a reactor product having C2+ unsaturates.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 30, 2014
    Inventors: Paul F. Keusenkothen, Larry Lee Iaccino, Ronald G. Searle, S. Mark Davis
  • Patent number: 8840853
    Abstract: An integrated facility for the co-production of ethanol and biodiesel fuel is provided. Ethanol and corn oil, the primary product and a by-product from the ethanol plant, are utilized as feedstocks for a biodiesel plant operating within the same general facility as the corn ethanol plant. By-products of the biodiesel plant, principally crude liquid glycerol and gaseous ethanol or methanol, are recycled to various parts of the ethanol plant.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: September 23, 2014
    Assignee: WB Technologies LLC
    Inventors: Rachel Overheul, Brandon Awtrey, Daniel Johnson
  • Patent number: 8840854
    Abstract: An apparatus is disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit shares the same recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: September 23, 2014
    Assignee: UOP LLC
    Inventors: Andrew P. Wieber, Paul R. Zimmerman
  • Patent number: 8753108
    Abstract: A method and apparatus for treatment of unburnts in a flue stream 9 of a chemical looping combustion system. Unburnts present in the flue stream 9 are treated after CO2 is removed from the flue stream in a gas processing unit 13. As shown in FIG. 2, oxidation of the unburnts occurs primarily in an air reactor 2 in the presence of air 1, allowing the system to maintain CO2 capture effectiveness and removing the need for creation of enriched or pure oxygen 11.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: June 17, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Marc Ajhar, Jörgen Grubbström
  • Patent number: 8753577
    Abstract: Processing scheme and arrangement for increasing the relative yield of light olefins involves integration of the cracking a heavy hydrocarbon feedstock to produce an effluent comprising a range of hydrocarbon products including C4-C7 olefins and the subsequent cracking at least a portion of the C4-C7 olefins to produce additional light olefins.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventors: Joseph E. Zimmermann, Charles P. Luebke, John B. Baker
  • Patent number: 8747784
    Abstract: A process and apparatus are disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Paul R. Zimmerman, Andrew P. Wieber
  • Patent number: 8728416
    Abstract: In a method and apparatus for thermal processing of slurry, the slurry is combined with a bio-mass to produce a mixture which is then subjected to a cracking temperature in a receiving tank, thereby liquefying and allowing the mixture to catalytically undergo a cracking reaction. The cracking reaction which the liquefied mixture undergoes is continued in a mixer pump to thereby produce a reaction mixture. The reaction mixture is outgased in an intermediate tank to separate an outgased fraction from a non-outgased fraction. Subsequently, the outgased fraction is allowed to cool down, thereby producing fuel, while the non-outgased fraction is returned to the receiving tank and subjected again to the cracking temperature. Residual matter of the non-outgased fraction settles in the intermediate tank and is periodically removed.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: May 20, 2014
    Inventor: Jürgen Buchert
  • Patent number: 8690972
    Abstract: A hydrogen production system (X1) according to the present invention includes a reforming apparatus (Y1) having a vaporizer (1) and a reforming reactor (2), and a PSA apparatus (5). In the vaporizer (1) a mixed material (hydrocarbon-based material, water, and oxygen) is heated and vaporized. In the reforming reactor (2), steam reforming reaction and partial oxidation reaction of the hydrocarbon-based material take place at a time, so that reformed gas (containing hydrogen) is led out from the vaporized mixed material. In the PSA apparatus (5), the reformed gas is introduced into an adsorption tower loaded with an adsorbing agent, so that an unnecessary component in the gas is adsorbed by the adsorbing agent and hence hydrogen-rich gas is led out of the tower, while the unnecessary component is desorbed from the adsorbing agent, so that hydrogen-containing desorbed gas that contains the unnecessary component and hydrogen remaining in the tower is discharged out of the tower.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: April 8, 2014
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Yoshinori Takata, Masanori Miyake, Toshihiko Sumida
  • Patent number: 8658100
    Abstract: The present disclosure provides a system and method for responding to an unintended increase in pressure within a high pressure processing system. The system and method of the present disclosure provides a pressure relief system that releases pressure reliably even if the material under pressure is of mixed phase. In addition, the system and method for releasing pressure avoids the need for complex subsystems to contain and process materials that escape the system during the pressure release process.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: February 25, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Goutam Biswas, Darush Farshid, Lucy Wu, James Knight, David Bosi, Michael K. Porter
  • Publication number: 20140024863
    Abstract: A liquid/gas reactor includes a bulk catalyst bed and means for supplying fresh feed and recycled at least partially converted liquid product stream to the bulk catalyst bed. The reactor also includes means for collecting an at least partially converted liquid product stream from the bulk catalyst bed and recycling at least a portion thereto. A minor catalyst bed extends substantially vertically through the bulk catalyst bed. Means for supplying recycled at least partially converted product stream only to the minor catalyst bed is also provided. A separating wall is disposed between the bulk catalyst bed and the minor catalyst bed.
    Type: Application
    Filed: January 12, 2012
    Publication date: January 23, 2014
    Applicant: DAVY PROCESS TECHNOLOGY LIMITED
    Inventors: Edward Adrian Lord, Arthur James Reason
  • Publication number: 20140005283
    Abstract: A synthesis gas and nanocarbon production method has a lower hydrocarbon decomposition step for decomposing lower hydrocarbon to produce hydrogen and nanocarbon, a carbon dioxide reduction step for reacting a part of the nanocarbon produced with carbon dioxide to produce carbon monoxide, and a mixing step for mixing the hydrogen and carbon monoxide produced in a predetermined ratio, thereby nanocarbon and a synthesis gas having a desired gas ratio can be simultaneously produced easily.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 2, 2014
    Applicants: National University Corporation Kitami Institute of Technology, THE JAPAN STEEL WORKS, LTD.
    Inventors: Satoru Nakamura, Akio Tada
  • Publication number: 20130336850
    Abstract: An apparatus is disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit shares the same recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicant: UOP LLC
    Inventors: Andrew P. Wieber, Paul R. Zimmerman
  • Patent number: 8609058
    Abstract: A fluidized bed reactor and a Siemens reactor are used to produce polycrystalline silicon. The process includes feeding the vent gas from the Siemens reactor as a feed gas to the fluidized bed reactor.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: December 17, 2013
    Assignee: Hemlock Semiconductor Corporation
    Inventors: Arvid Neil Arvidson, Michael Molnar
  • Patent number: 8586003
    Abstract: Method of producing hydrogen from methanol comprising providing a feed mixture of methanol and water at high pressure, delivering the feed mixture to a reactor chamber (5) equipped with an internal heat exchanger, wherein said feed mixture is heated by heat exchange with an outgoing reformed mixture from the reactor chamber, and wherein said outgoing reformed mixture is simultaneously cooled by said feed mixture.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: November 19, 2013
    Assignee: Aquarden Technologies APS
    Inventor: Zhuoyan Cai
  • Publication number: 20130270483
    Abstract: The invention relates to systems and methods for producing synthesis gas. In particular, the systems of the present invention include two catalytic reactors in series, a wet reformer/gasifier followed by a dry reformer. The systems produce synthesis gas with very little to no methane.
    Type: Application
    Filed: July 17, 2012
    Publication date: October 17, 2013
    Applicant: Primus Green Energy Inc.
    Inventors: Moshe BEN-REUVEN, Howard L. Fang, Meifang Qin, Robert M. Koros, Arie Toren
  • Patent number: 8540949
    Abstract: An apparatus and process is disclosed for hydroprocessing hydrocarbon feed in a hydroprocessing unit and hydrotreating a second hydrocarbon. A warm separator sends vaporous hydrotreating effluent to be flashed with liquid hydroprocessing effluent to produce a vapor flash overhead that can be recycled to the hydrotreating unit to provide hydrogen requirements.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: September 24, 2013
    Assignee: UOP LLC
    Inventors: Andrew P. Wieber, Joao J. da Silva Ferreira Alves
  • Publication number: 20130217934
    Abstract: The present invention provides a process for producing aromatic hydrocarbons and ethylene, comprising: a. contacting a lower alkane feed comprising at least one of ethane, propane and butane with an aromatic hydrocarbon conversion catalyst within an alkane-to-aromatic zone to obtain at least hydrogen and aromatic reaction products, including at least benzene; b. converting an oxygenate feedstock in an oxygenate-to-olefin zone to obtain olefins, including at least ethylene; wherein at least part of the oxygenate feedstock is obtained by providing at least part of the hydrogen obtained in step a) and a feed containing carbon monoxide and/or carbon dioxide to an oxygenate synthesis zone and synthesizing oxygenates. In another aspect the invention provides an integrated system for aromatic hydrocarbons and ethylene and the use of hydrogen obtained from a process to convert lower alkanes to benzene to produce an oxygenate feed for an oxygenate-to-olefin process.
    Type: Application
    Filed: April 19, 2011
    Publication date: August 22, 2013
    Inventors: Leslie Andrew Chewter, Hervé Henry, Ajay Madgavkar, Jeroen Van Westrenen
  • Patent number: 8507619
    Abstract: The invention relates to a process for the polymerization of vinyl-containing monomers such as, for example, monomeric vinyl halides, in a reaction mixture, in which process less waste is generated.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: August 13, 2013
    Assignee: Vinnolit Technologie GmbH & Co. KG
    Inventors: Ulrich Woike, Heinz Klippert, Jürgen Kirschner, Peter Kammerhofer
  • Publication number: 20130152458
    Abstract: When processing cellulosic biomass, it may be desirable for a digestion unit to operate without being fully depressurized for process efficiency purposes. A biomass conversion system can comprise a first digestion unit and a second digestion unit that are operatively connected to one another; a valve separating the first digestion unit from the second digestion unit; a fluid circulation loop establishing fluid communication between an outlet of the first digestion unit and an inlet of the second digestion unit; and a bypass line establishing fluid communication between an outlet of the second digestion unit and the fluid circulation loop.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: SHELL OIL COMPANY
    Inventors: Joseph Broun POWELL, Thomas Lamar FLOWERS
  • Publication number: 20130101475
    Abstract: A process and apparatus are disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Application
    Filed: December 13, 2011
    Publication date: April 25, 2013
    Applicant: UOP LLC
    Inventors: Paul R. Zimmerman, Andrew P. Wieber
  • Publication number: 20130078168
    Abstract: Disclosed is a method for solidifying carbon dioxide into carbonate, in which carbon dioxide is stably converted into and solidified into carbonate (mineral facies) by using steel slag or natural mineral by extracting an alkali component by supplying an ammonium salt solvent as an extraction solvent to raw slag and injecting carbon dioxide into an extract solution supplied to a carbonation reactor to produce carbonate precipitate from the extract solution through the induction of a conversion reaction of the carbon dioxide into the carbonate precipitate. Then after the above two step are performed at least one an acetic acid solvent is supplied as an extraction solvent to the raw slag so as to finally extract an alkali component; and carbon dioxide is injected into an extract solution to produce carbonate precipitate from the extract solution through the induction of a conversion reaction of the carbon dioxide into the carbonate precipitate.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 28, 2013
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Tae Young Kim, Sung Yeup Chung, Ki Chun Lee
  • Patent number: 8404007
    Abstract: An object of the present invention is to provide a reforming apparatus and the like capable of uniformly mixing water (steam) and a raw material together, of preventing the precipitation of carbon without using a temperature controller, and of efficiently heating the water and the mixture by heating gas. Accordingly, the reforming apparatus has the following configuration. The reforming apparatus includes: a first vaporizer (05) that is cylindrically shaped and includes a first flow passage; a second vaporizer (06) that is cylindrically shaped and includes a second flow passage; a duct (027) that connects an outlet of the first flow passage to an inlet of the second flow passage; a raw-material mixing portion (028) formed at a certain point of the duct. The first vaporizer and the second vaporizer are concentrically disposed. An interstice between the first vaporizer and the second vaporizer serves as a heating-gas flow passage (024).
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: March 26, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Naohiko Matsuda, Katsuki Yagi, Keiji Tanizaki, Akira Goto
  • Patent number: 8372934
    Abstract: Organopolysiloxanes with consistent product properties are prepared while minimizing alcohol usage in the hydrolysis of chlorosilanes by use of a vertical continuous loop reactor having a heating unit on an ascending side of the loop which is regulated such that the temperature of the reactant mixture is within ±5° C. of a set value.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: February 12, 2013
    Assignee: Wacker Chemie AG
    Inventor: Gerhard Staiger
  • Publication number: 20120317872
    Abstract: Biofuels can be produced by: (i) providing a biomass containing celluloses, hemicelluloses, lignin, nitrogen compounds and sulfur compounds; (ii) contacting the biomass with a digestive solvent to form a pretreated biomass containing carbohydrates; (iii) contacting the pretreated biomass with hydrogen in the presence of a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co and/or Ni incorporated into a suitable support to form a plurality of oxygenated intermediates, and (vi) processing at least a portion of the oxygenated intermediates to form a liquid fuel.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Joseph Broun POWELL, John Anthony SMEGAL
  • Patent number: 8323589
    Abstract: A pyrolysis process is provided. The process includes the steps of: depositing a quantity of waste into a porous container, the porous container adapted to allow a convective stream of substantially anaerobic gas to flow therethrough; inserting the porous container into a pyrolysis thermal processor; sealing the thermal processor; circulating the convective stream of gas through the pyrolysis thermal processor; heating the waste according to a first time-temperature profile to pyrolyze the waste and form a carbonaceous char; and cooling the carbonaceous char by circulating the convective stream of gas through a cooler. An oil product and a gaseous hydrocarbon product are produced during the pyrolysis. The carbonaceous char is further processed to form a carbon black product and a recyclable metal product.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 4, 2012
    Assignee: Tellus Technology, Inc.
    Inventors: Kenneth Wesley Hamby, James Brian Kelly, Timothy Joseph Kuhn
  • Patent number: 8313715
    Abstract: A process for producing metal oxide from metal salts includes cleaning a metal salt in a filter. After cleaning, the metal salt is dried in a drying apparatus. Steam is formed in the drying apparatus. The metal salt is preheated in at least one preheating stage. The metal salt is calcined to metal oxide in a fluidized-bed reactor. The metal oxide is cooled. The steam formed in the drying apparatus is recirculated into the filter.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: November 20, 2012
    Assignee: Outotec Oyj
    Inventors: Michael Missalla, Guenter Schneider, Jan Jarzembowski, Erwin Schmidbauer
  • Patent number: 8303916
    Abstract: A reactor system for the transformation of solid, liquid, gaseous, and related hydrocarbon feedstocks into high-purity, high-pressure gas streams capable of withstanding high temperatures and high pressures. The system comprises a plurality of reactor housings and a plurality of molten-metal bath vessels within the housings, the bath vessels in fluid communication with each other via conduits, with communication facilitated by gravity and temperature/pressure differentials.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: November 6, 2012
    Assignee: Oscura, Inc.
    Inventors: Michael C. Collins, Robert D. Bach
  • Patent number: 8303930
    Abstract: The present invention relates to various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit followed by either a CO2 vacuum swing adsorption unit or a CO2 vacuum swing adsorption unit in combination with an additional CO2 pressure swing adsorption unit. By using an uncoupled H2 PSA and CO2 VSA unit it is possible to produce high purity H2 and high purity CO2. The present invention further relates to a process for optimizing the recovery of CO2 from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/H2 pressure swing adsorption unit utilizing either a CO2 vacuum swing adsorption unit or a CO2 vacuum swing adsorption unit in combination with a CO2 pressure swing adsorption unit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 6, 2012
    Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LP
    Inventors: Yudong Chen, Glenn Fair
  • Publication number: 20120251403
    Abstract: An apparatus is disclosed for hydrocracking hydrocarbon feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The hydrocracking unit and the hydrotreating unit shares the same recycle gas compressor. A warm separator separates recycle gas and hydrocarbons from diesel in the hydrotreating effluent, so fraction of the diesel is relatively simple. The warm separator also keeps the diesel product separate from the more sulfurous diesel in the hydrocracking effluent, and still retains heat needed for fractionation of lighter components from the low sulfur diesel product.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: UOP LLC
    Inventors: Andrew P. Wieber, Paul R. Zimmerman
  • Publication number: 20120244064
    Abstract: The present invention relates to a process and a device for the combustion of sulphur and/or sulphur-containing compounds, with formation of sulphur dioxide.
    Type: Application
    Filed: October 28, 2010
    Publication date: September 27, 2012
    Applicant: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Dieter Förtsch, Martin Kürten
  • Patent number: 8246921
    Abstract: One exemplary embodiment can be an alkylation unit. The alkylation unit can include at least one alkylation reaction zone having an alkylation catalyst, at least one cooler communicating with the at least one alkylation reaction zone, a settler communicating with the at least one alkylation reaction zone and the at least one cooler, a fractionation zone receiving an effluent from the settler passing through a line, and a boot coupled to a substantially horizontal portion of the line. Generally, the boot receives an effluent portion rich in the alkylation catalyst.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: August 21, 2012
    Assignee: UOP LLC
    Inventors: Mark A. Clark, Jason J. Gislason
  • Patent number: 8221707
    Abstract: One exemplary embodiment can be a process for the isomerization of a non-equilibrium alkylaromatic feed mixture. The process can include contacting the non-equilibrium alkylaromatic feed mixture in a C8 isomerization zone. The C8 isomerization zone may include a first isomerization stage and a second isomerization stage. At the first isomerization stage, at least a portion of the non-equilibrium alkylaromatic feed mixture can be contacted at a first isomerization condition in a liquid phase in the substantial absence of hydrogen to obtain an intermediate stream. At the second isomerization stage, at least part of the intermediate stream and at least a part of a stream rich in at least one naphthene can be contacted at a second isomerization condition to obtain a concentration of at least one alkylaromatic isomer that is higher than a concentration of that at least one alkylaromatic isomer in the non-equilibrium feed mixture.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: July 17, 2012
    Assignee: UOP LLC
    Inventor: John E. Bauer
  • Publication number: 20120174471
    Abstract: Biomass is contacted with an aqueous media to form an extracted biomass. An aqueous liquor separated from the extracted biomass is treated with a purification substrate to form a treated carbohydrate stream having less than 35% of the sulfur content and less than 35% of the nitrogen content, based on the untreated aqueous liquor stream, prior to contact with an aqueous phase reforming catalyst to form oxygenated intermediates that can be further processed to form a liquid fuel. An extracted biomass solids stream is also separated from the extracted biomass which is contacted with a first digestive solvent and then a second digestive solvent to form a solubilized pulp. This solublilized pulp may be combined with the aqueous liquor stream or combined to an aqueous reforming reaction system or recycled to the aqueous media to be processed further for an effective process to produce the liquid fuel.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 12, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Joseph Broun Powell, Juben Nemchand Chheda
  • Publication number: 20120156742
    Abstract: A method to produce biofuels from biomass is provide by contacting the biomass with an aqueous media to form an extracted biomass, separating at least a portion of an aqueous liquor from the extracted biomass thereby providing the aqueous liquor stream comprising soluble carbohydrates; contacting the aqueous liquor stream with a purification substrate effective to remove sulfur compounds and nitrogen compounds thereby producing a treated carbohydrate stream having less than 35% of the sulfur content and less than 35% of the nitrogen content of the untreated aqueous liquor feed, based on the untreated aqueous liquor stream, then contacting the treated carbohydrate stream with an aqueous phase reforming catalyst to form a plurality of oxygenated intermediates; and processing at least a portion of the oxygenated intermediates to form a liquid fuel.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Joseph Broun POWELL, Juben Nemchand CHHEDA
  • Publication number: 20120156743
    Abstract: A method to produce biofuels from biomass is provide by contacting the biomass with an aqueous media to form an extracted biomass, separating at least a portion of an aqueous liquor from the extracted biomass thereby providing the aqueous liquor stream comprising soluble carbohydrates; contacting the aqueous liquor stream with a purification substrate effective to remove sulfur compounds and nitrogen compounds thereby producing a treated carbohydrate stream having less than 35% of the sulfur content and less than 35% of the nitrogen content of the untreated aqueous liquor feed, based on the untreated aqueous liquor stream, then contacting the treated carbohydrate stream directly with hydrogen in the presence of a hydrogenolysis catalyst to form a plurality of oxygenated intermediates; and processing at least a portion of the oxygenated intermediates to form a liquid fuel.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Joseph Broun POWELL, Juben Nemchand CHHEDA
  • Publication number: 20120157730
    Abstract: A process for producing biofuels from biomass is provided by removing sulfur compounds and nitrogen compounds from the biomass by contacting the biomass with a digestive solvent to form a pretreated biomass containing soluble carbohydrates and having less than 35% of the sulfur content and less than 35% of the nitrogen content, based on untreated biomass on a dry mass basis, prior to carrying out aqueous phase reforming and further processing to form a liquid fuel.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Joseph Broun POWELL, Juben Nemchand CHHEDA
  • Patent number: 8178059
    Abstract: A system for supplying chlorine to and recovering chlorine from a polysilicon plant may include a brine treatment system, at least one membrane cell, a chlorine drying system, a chlorine compression system, a hydrogen drying system, a hydrogen compression system, a hydrogen chloride synthesis/desorption system, a hydrogen chloride liquefaction system, a liquefied hydrogen chloride storage system, a hydrogen chloride vaporizer, and a waste conversion and filtration system. These systems may be operatively joined to generate hydrogen chloride gas for delivery to the polysilicon plant. A method for supplying chlorine to the polysilicon plant may include generating hydrogen gas and chlorine gas from recovered and raw salt, converting at least a portion of the hydrogen gas and at least a portion of the chlorine gas to hydrogen chloride, passing the hydrogen chloride through a cryogenic column, vaporizing the hydrogen chloride, and providing the vaporized hydrogen chloride to the polysilicon plant.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: May 15, 2012
    Assignee: CH2M HILL Engineers, Inc.
    Inventor: James T. Sims
  • Patent number: 8178061
    Abstract: Processes and systems are disclosed that relate to the removal of impurities and separation the light olefins from an MTO product vapor stream. Specifically, the processes and systems relate to recovery of light olefins during regeneration of an adsorber in an oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can include recycling residual effluent stream to an upstream operation unit upstream of the oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can also include recycling residual effluent gas produced by depressurizing residual effluent in the first adsorber, as well as preferably venting an effluent gas from the first adsorber to a compressor upstream of the oxygenate removal unit.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 15, 2012
    Assignee: UOP LLC
    Inventor: Jason T. Corradi
  • Patent number: 8147797
    Abstract: A system for cooling and recuperative heating of a slurry in a metallurgical process which includes heat exchangers, pumps and autoclaves is described herein. The heat exchangers use a non-scaling common liquid heat transfer medium. Preferably, the heat exchangers are tube-in-tube heat exchangers with 3 to 7 slurry tubes in each heat exchanger. An advantage of this system is that it does not use flash tanks. To minimize abrasive wear on impinged surfaces, the velocity of the slurry is not more than 5 meters per second. The slurry comprises a solids concentration of 25% to 50%. Preferably, the pumps in the system are float-type pumps in which the driven liquid from the discharge pumps is also used as the drive liquid for the feed pumps.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 3, 2012
    Inventor: Donald J. Donaldson
  • Patent number: 8128895
    Abstract: Processing schemes and arrangements are provided for obtaining propylene and propane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the propylene into cumene without separating the propane from the propane/propylene feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of propylene from propane produced by a FCC process prior to using the combined propane/propane stream as a feed for a cumene alkylation process. A bottoms stream from the cumene column of the cumene alkylation process can be used and an absorption solvent in the FCC process thereby eliminating the need for a transalkylation reactor and a DIPB/TIPB column.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventor: Michael A. Schultz
  • Patent number: 8124034
    Abstract: One exemplary embodiment can be a method of modifying an alkylation unit to increase capacity. The method may include combining a first alkylation zone with a second alkylation zone. Generally, the first alkylation zone includes a first settler having a height and a width. Typically, the width is greater than the height. In addition, the second alkylation zone may have a second settler having a height and a width. Usually, the height is greater than the width.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 28, 2012
    Assignee: UOP LLC
    Inventors: Daryl Dunham, Dale James Shields
  • Publication number: 20120024752
    Abstract: An integrated process is provided for producing high octane naphtha. Hydrocracked naphtha from a hydrocracking reaction zone is contacted with a reforming catalyst that includes a silicate having a silica to alumina molar ratio of at least 200, and a crystallite size of less than 10 microns. Products from the reforming include a reformed naphtha and a hydrogen-rich stream, which is passed to the hydrocracking reaction zone.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Inventors: Cong-Yan Chen, Stephen J. Miller, James N. Ziemer, Ann J. Liang