Measuring Electrical Property Patents (Class 422/82.01)
  • Publication number: 20130189158
    Abstract: A system includes a sensor including a sensor pad and a well wall structure defining a well operatively coupled to the sensor pad. The well is further defined by a lower surface disposed over the sensor pad. The well wall structure defines an upper surface and defines a wall surface extending between the upper surface and the lower surface. The system further includes a conductive layer disposed over the lower surface and the wall surface.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Shifeng LI, James Bustillo, Wolfgang Hinz
  • Publication number: 20130183243
    Abstract: The present invention relates to a diagnostic device and methods of using the same for diagnostic assays for monitoring the presence of biological samples wherein the device allows for the determination of at least two assay components on one sensor. More specifically, the invention relates to a multi-marker electrochemical impedance spectroscopy sensor comprising a plurality of molecular recognition elements wherein the sensor comprises multiple different molecular recognition element types that are tuned in a manner that alters the frequency of the molecular recognition element type such that it is at a detectably different frequency to the frequency of other molecular recognition element types on the same sensor.
    Type: Application
    Filed: July 12, 2011
    Publication date: July 18, 2013
    Applicants: Arizona State University
    Inventors: Jeffrey LaBelle, Ugur Demirok
  • Publication number: 20130183660
    Abstract: Among others, the present invention provides apparatus for detecting a disease, comprising a system delivery biological subject and a probing and detecting device, wherein the probing and detecting device includes a first micro-device and a first substrate supporting the first micro-device, the first micro-device contacts a biologic material to be detected and is capable of measuring at the microscopic level an electric, magnetic, electromagnetic, thermal, optical, acoustical, biological, chemical, physical, or mechanical property of the biologic material.
    Type: Application
    Filed: June 30, 2011
    Publication date: July 18, 2013
    Inventors: Chris C Yu, He Yu, Xuedong Du
  • Patent number: 8486709
    Abstract: Systems and methods related to optical nanosensors comprising photoluminescent nanostructures are generally described. Generally, the nanosensors comprise a photoluminescent nanostructure and a polymer that interacts with the photoluminescent nanostructure. In some cases, the interaction between the polymer and the nanostructure can be non-covalent (e.g., via van der Waals interactions). The nanosensors comprising a polymer and a photoluminescent nanostructure may be particularly useful in determining the presence and/or concentration of relatively small molecules, in some embodiments. In addition, in some instances the nanosensors may be capable of determining relatively low concentrations of analytes, in some cases determining as little as a single molecule. In some embodiments, the interaction between the analyte and the nanosensor (e.g.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 16, 2013
    Assignee: Massachusetts Institute ofTechnology
    Inventors: Michael S. Strano, Jong-Ho Kim, Jinqing Zhang, Daniel A. Heller
  • Patent number: 8486333
    Abstract: This invention provides rotors and methods of precisely metering a sample fluid and mixing the sample with a reagent. The rotors have a metering tube of defined volume that fills until sample flow is stopped by surface tension of a meniscus at a capillarity port, while excess sample is stripped from the metering tube inlet by centripetal force of the spinning rotor. By spinning the rotor at a higher speed, a reagent can be forced from a reagent chamber to contact the meniscus, breaking the surface tension and allowing the metered sample to mix with the reagent.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: July 16, 2013
    Assignee: MicroPoint Biosciences, Inc.
    Inventors: Mark Wang, Nan Zhang
  • Patent number: 8489341
    Abstract: A method and apparatus for monitoring fluid in a fluid line are disclosed. The apparatus includes a first capacitor and a processor in communication with the first capacitor. The first capacitor is configured to sense the capacitance of the fluid line at the first capacitor. The processor is configured to compare the sensed capacitance at the first capacitor with a reference capacitance to determine the composition of the fluid in the fluid line at the first capacitor. In some embodiments, the apparatus also includes a second capacitor. The second capacitor is configured to sense the capacitance of the fluid line at the second capacitor. The processor is configured to compare the sensed capacitance at the second capacitor with a reference capacitance to determine the composition of the fluid in the fluid line at the second capacitor.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: July 16, 2013
    Assignee: CareFusion 303, Inc.
    Inventor: Houston Brown
  • Patent number: 8486721
    Abstract: Methods and devices for reducing interference from leukocytes in an analyte immunoassay are provided. In one embodiment, a method is provided comprising the steps of amending a biological sample with magnetic sacrificial beads opsonized to leukocytes, binding leukocytes in the sample to the magnetic sacrificial beads, and magnetically retaining the beads out of contact from an immunosensor.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 16, 2013
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Graham Davis
  • Patent number: 8480955
    Abstract: The disclosure provides sensor for gas sensing including CO2 gas sensors comprising a porous framework sensing area for binding an analyte gas.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 9, 2013
    Assignees: The Regents of the University of California, BASF SE
    Inventors: Omar M. Yaghi, Alexander U. Czaja, Bo Wang, Hiroyasu Furukawa, Kosmas Galatsis, Kang L. Wang
  • Patent number: 8480956
    Abstract: Laterally oscillating gravimetric sensing device embeddable under micro-fluidic channels and fabricated with micro-electro mechanical systems (MEMS) technology, which detects biological cells and analytes by measuring the change of mass attached on its surface is composed of four main groups, namely a resonator that can be placed onto the basis of the channel, components of the resonator bio-activation, a micro fluidic channel, and the microfabrication techniques, and its main components are the proof mass (1), comb fingers fixed to proof mass (2), folded spring beams (3), channel floor and mechanical soil (4), stationary electrodes (5), comb fingers attached to the stationary electrodes (6), golden film deposited onto the mass (7), immobilized biologic recognition molecules (8), and micro fluidic channel placed on resonator structure (9).
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: July 9, 2013
    Inventors: Haluk Kulah, Ata Tuna Ciftlik
  • Patent number: 8475716
    Abstract: An embodiment of the invention described herein is directed to a detection system utilizing at least one radiofrequency identification (RFID) sensor comprising: an RFID sensor comprising: a substrate; an antenna; a sensor material selected to be sensitive to one of chemical or biological environment; and a reader, wherein said reader is configured to measure a signal in the form of a complex impedance from said RFID tag wherein said signal comprises a plurality of frequencies and a frequency shift of the maximum of the imaginary part of the complex impedance, a frequency shift of the minimum of the imaginary part of the complex impedance, a frequency shift of the maximum of the real part of the complex impedance, and changes in magnitude of the real part of the complex impedance; and, wherein said complex impedance is related to a nature and a concentration of analyte species derived from multivariate analysis.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, William Guy Morris
  • Publication number: 20130164771
    Abstract: The measuring device of the invention includes: a first container and a second container for holding a sample; and an optical measurement part for carrying out an optical measurement. The first container has a first sample supply inlet for supplying a sample containing an analyte to the first container and at least one electrode. The second container has a second sample supply inlet for supplying the sample to the second container and a reagent holding part for holding a reagent for the optical measurement.
    Type: Application
    Filed: November 23, 2012
    Publication date: June 27, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Panasonic Corporation
  • Patent number: 8468680
    Abstract: A biological test member, and method of making the same, is disclosed with the member including a substrate. The test member has usefulness, for example, in testing a person's blood glucose level. A first layer and a second layer of conductive metal are printed or otherwise applied on the substrate in an electrode pattern. The metal or metals are cured or sintered at a low, non-damaging temperature, such as by applying one or more pulses of a high-energy broad spectrum light. A layer of reagent may be provided on said second metal layer.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: June 25, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Abner David Joseph
  • Patent number: 8470606
    Abstract: The invention provides a method of circulating magnetically responsive beads within a droplet in a droplet actuator. The invention also provides methods for splitting droplets. The invention, in one embodiment, makes use of a droplet actuator with top and bottom substrates, a plurality of magnetic fields respectively present proximate the top and bottom substrates, wherein at least one of the magnet fields is selectively alterable, and a plurality of droplet operations electrodes positioned along at least one of the top and bottom surfaces. A droplet is positioned between the top and bottom surfaces and at least one of the magnetic fields is selectively altered.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: June 25, 2013
    Assignees: Duke University, Advanced Liquid Logic Inc.
    Inventors: Vijay Srinivasan, Vamsee K. Pamula, Michael G. Pollack, Richard B. Fair
  • Patent number: 8465978
    Abstract: Methods and devices for conducting platelet aggregation analysis. A method for conducting platelet aggregation analysis by a cartridge device, including providing a blood sample in the cartridge device, stirring the blood sample within the cartridge device, measuring the electrical impedance between electrodes to obtain measured electrical impedance values, comparing measured electrical impedance values, discarding and repeating the measurements of the electrical impedance in case a variation of the measurements is outside a predetermined threshold range, or reporting the measured electrical impedance values in case the variation of the measurements is within the predetermined threshold range. Reported measured electrical impedance values indicate platelet aggregation in a blood sample.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: June 18, 2013
    Assignee: F. Hoffmann-la Roche AG
    Inventors: Andreas Calatzis, Ben Krüger, Marc Wittwer
  • Patent number: 8460922
    Abstract: An electrochemical immunosensor system with reduced interference, comprising: a first immunosensor that generates an electrochemical signal based on the formation of a sandwich between an immobilized antibody, a target analyte and a labeled antibody, wherein a portion of the signal arises from non-specific binding of the labeled antibody in the region of the first immunosensor, and a second immunosensor that acts as an immuno-reference sensor and generates a signal that is the same as or predictably related to the degree of non-specific binding which occurs in the region of the first immunosensor, and has an immunocomplex between an immobilized antibody and an endogenous or exogenous protein that is in the sample and that is not the target analyte.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: June 11, 2013
    Assignee: Abbott Point of Care Inc.
    Inventors: Cary James Miller, John Lewis Emerson Campbell
  • Publication number: 20130143330
    Abstract: A reaction characteristic detector comprising a ladder assembly including a plurality of rungs, where each rung in the plurality of rungs comprises a reaction passage determiner spaced a distance from a point of an energetic material reaction initiation. Each reaction passage determiner has at least one characteristic that is configured to change in response to the reaction occurring proximate to the reaction passage determiner.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Inventors: Steven J. Apperson, Christopher J. Morris, Luke J. Currano, Collin R. Becker, Madan Dubey
  • Patent number: 8454902
    Abstract: A sensing device is configured that a first piezoelectric vibrator and a second piezoelectric vibrator, changing over a connection to an oscillation circuit, have the oscillation circuit in common, that an impedance of a conductive path including a first one-surface-side electrode constituting the first piezoelectric vibrator from the oscillation circuit and an impedance of a conductive path including a second one-surface-side electrode constituting the second piezoelectric vibrator from the oscillation circuit are uniform with each other, and that an impedance of a conductive path including a first other-surface-side electrode constituting the first piezoelectric vibrator from the oscillation circuit and an impedance of a conductive path including a second other-surface-side electrode constituting the second piezoelectric vibrator from the oscillation circuit are uniform with each other.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: June 4, 2013
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Hiroyuki Kukita, Shunichi Wakamatsu, Wakako Shinobu
  • Patent number: 8455262
    Abstract: A method to avert an unlawfully intoxicated driver from operating a vehicle is provided. The method utilizes a passive ethanol vapor sensor to measure ethanol vapor concentration in air from a vehicle cabin and imposes a safety response when the passive ethanol vapor sensor detects that a sample of vehicle cabin air indicates that a vehicle occupant exceeds the legal blood alcohol concentration (BAC) for a motor vehicle driver. The ethanol vapor sensor may have a passive measurement mode and an active breathalyzer mode. Ethanol vapor in a vehicle cabin may be passively measured and if a predetermined ethanol level is measured, a countermeasure is invoked to improve safety. An active breathalyzer may be used as a countermeasure. The active breathalyzer can be imposed for a number of vehicle trips or for a predetermined time period.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: June 4, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Michel F. Sultan, David K. Lambert
  • Patent number: 8454894
    Abstract: Described is a device for evaluating biochemical samples (1), with a sample carrier (2), with an image recording means having a light-sensitive layer (3) connected to an evaluation circuit (10), and with a means for illuminating the samples (1). In order to provide simple design conditions, it is proposed that the light-sensitive layer (3), provided on the sample carrier (2), of the image recording means comprise a photoactive layer (4) based on organic semiconductors between two electrode layers (5, 6), of which the electrode layer (6) between the photoactive layer (4) and the samples (1) is translucent at least in certain regions.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: June 4, 2013
    Assignee: ASMAG-Holding GmbH
    Inventors: Franz Padinger, Klaus G. Schröter
  • Patent number: 8449824
    Abstract: A sensor instrument system for detecting and identifying analytes in fluids of a region contains a local sensor instrument and remote central station. The instrument includes a core technology employing a single sensor having two electrodes operated by an electrical frequency sweeping to generate two sets of patterned electrical information from a single measurement, a data transmission module and a GPS receiver module. The central station connects to a network means connected to a plurality of local receiving sites equipped with including the respective transceivers, so that the local analyte electrical information and geographic position information transmitted by the instrument can be wirelessly and remotely received and processed by the central station.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: May 28, 2013
    Inventor: Yizhong Sun
  • Patent number: 8449826
    Abstract: Since known detection devices include detectors of the same number as that of samples, the system configuration is complicated. According to the present invention, therefore, a plurality of electromagnetic-wave-transmission lines with different propagation-delay times and a coupled-transmission line coupling the electromagnetic-wave-transmission lines with each other are provided, and an electromagnetic wave is detected by the same electromagnetic-wave-detection unit. Subsequently, a detection device including at least one electromagnetic-wave detector of a number smaller than that of samples can be provided, which decreases the system complexity.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: May 28, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Ryoji Kurosaka
  • Patent number: 8449825
    Abstract: The present invention relates to a structure comprising a biological membrane and a porous or perforated substrate, a biological membrane, a substrate, a high throughput screen, methods for production of the structure membrane and substrate, and a method for screening a large number of test compounds in a short period. More particularly it relates to a structure comprising a biological membrane adhered to a porous or perforated substrate, a biological membrane capable of adhering with high resistance seals to a substrate such as perforated glass and the ability to form sheets having predominantly an ion channel or transporter of interest, a high throughput screen for determining the effect of test compounds on ion channel or transporter activity, methods for manufacture of the structure, membrane and substrate, and a method for monitoring ion channel or transporter activity in a membrane.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: May 28, 2013
    Assignee: Xention Limited
    Inventors: David Geraint Owen, Nicholas Gerard Byrne
  • Publication number: 20130130261
    Abstract: A sensor comprising a memory device having a first electrode and a first chemical-sensing layer coupled to the first electrode. The chemical-sensing layer, in the presence of an analyte, is arranged to change a property of the Memristive device. The sensor can detect an analyte by providing a sample to be detected proximate the chemical sensing layer, observing the state of the memory element; and determining a property of the sample by comparing the observed state of the memory element with a previous state. The sensor is manufactured by depositing a second electrode on a surface, depositing an active layer or layers onto said second electrode, depositing a first electrode onto said active layer(s), and coupling a chemically sensitive layer to the first electrode.
    Type: Application
    Filed: September 6, 2011
    Publication date: May 23, 2013
    Applicant: VAGONYX LIMITED
    Inventors: Themistoklis Prodromakis, Christofer Toumazou
  • Patent number: 8445290
    Abstract: A biosensor system determines analyte concentration from an output signal generated by an oxidation/reduction reaction of the analyte. The biosensor system adjusts a correlation for determining analyte concentrations from output signals at one temperature to determining analyte concentrations from output signals at other temperatures. The temperature-adjusted correlation between analyte concentrations and output signals at a reference temperature may be used to determine analyte concentrations from output signals at a sample temperature.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 21, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Patent number: 8444937
    Abstract: A method and apparatus for near real-time in-situ soil solution measurements is presented. An outer sleeve is placed in soil where ionic concentrations of organic or inorganic species are to be measured. A porous section connects with the outer sleeve (the porous section initially loaded with distilled water) equilibrates with the solution present in soil pores to form a solution to be measured. The initial distilled water is displaced within the porous section by a removable plunger. After substantial equilibration of the solution to be measured within the apparatus, the plunger is removed and a removable probe replaced. The probe may be an Ion Selective Electrode, or a transflection dip probe. The probe then may be used under computer control for measurement of solution properties. The Ion Selective Electrode may measure nitrate (NO3?) concentrations. The transflection dip probe may be read with spectrometer with an input deuterium light source.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 21, 2013
    Assignee: The Regents of the University of California
    Inventors: Atac Tuli, Jan W. Hopmans, Tamir Kamai, Benjamin D. Shaw
  • Patent number: 8440467
    Abstract: Electronic devices comprising a dielectric material, at least one carbon sheet, and two electrode terminals are described herein. The devices exhibit non-linear current-versus-voltage response over a voltage sweep range in various embodiments. Uses of the electronic devices as two-terminal memory devices, logic units, and sensors are disclosed. Processes for making the electronic devices are disclosed. Methods for using the electronic devices in analytical methods are disclosed.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: May 14, 2013
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Yubao Li, Alexander Sinitskiy
  • Patent number: 8440062
    Abstract: A miniature, lightweight, inexpensive, environmental monitoring system containing a number of sensors that can simultaneously and continuously monitor fluorescence, absorbance, conductivity, temperature, and several ions. Sensors that monitor similar parameters can cross-check data to increase the likelihood that a problem with the water will be discovered.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: May 14, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: David A Kidwell
  • Patent number: 8440140
    Abstract: A sample analyzer prepares a measurement sample from a blood sample or a body fluid sample which differs from the blood sample; measures the prepared measurement sample; obtains characteristic information representing characteristics of the components in the measurement sample; sets either a blood measurement mode for measuring the blood sample, or a body fluid measurement mode for measuring the body fluid sample as an operating mode; and measures the measurement sample prepared from the blood sample by executing operations in the blood measurement mode when the blood measurement mode has been set, and measuring the measurement sample prepared from the body fluid sample by executing operations in the body fluid measurement mode that differs from the operations in the blood measurement mode when the body fluid measurement mode has been set, is disclosed. A computer program product is also disclosed.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 14, 2013
    Assignee: Sysmex Corporation
    Inventors: Takaaki Nagai, Noriyuki Narisada, Daigo Fukuma
  • Publication number: 20130115708
    Abstract: Systems and methods for monitoring a particle/fluid mixture are provided. The method can include flowing a mixture comprising charged particles and a fluid past a particle accumulation probe. The method can also include measuring electrical signals detected by the probe as some charged particles pass the probe without contacting the probe while other charged particles contact the probe. The measured electrical signals can be manipulated to provide an output. The method can also include determining from the output if the charged particles contacting the probe have, on average, a different charge than the charged particles that pass the probe without contacting the probe.
    Type: Application
    Filed: July 8, 2011
    Publication date: May 9, 2013
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventor: Eric J. Markel
  • Publication number: 20130115705
    Abstract: Devices, methods and systems for detecting nitro-containing compounds such as TNT, which utilize semiconductor nanostructures modified by a functional moiety that interacts with the nitro-containing compound, are disclosed. The functional moiety is attached to the nanostructures and is being such that upon contacting a sample that contains the nitro-containing compound, the nanostructure exhibits a detectable change in an electrical property, which is indicative of the presence and/or amount of the nitro-containing compound in the sample. Electronic noses for generating recognition patterns of various nitro-containing compounds, comprising a plurality of nanostructures modified by versatile functional moieties are also disclosed. The devices, methods and systems are suitable for detecting nitro-containing compounds in both liquid and gaseous states and for detecting a concentration of a nitro-containing compound such as TNT as low as attomolar concentrations.
    Type: Application
    Filed: June 6, 2011
    Publication date: May 9, 2013
    Applicant: Ramot at Tel-Aviv University Ltd.
    Inventors: Fernando Patolsky, Yoni Engel, Roey Elnathan
  • Patent number: 8434161
    Abstract: A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 30, 2013
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada
    Inventors: Jesse D. Adams, Todd A. Sulchek, Stuart C. Feigin
  • Patent number: 8431337
    Abstract: There are provided a method and apparatus for detecting nucleic acid using bead and nanopore, and more specifically, a method and apparatus capable of detecting nucleic acid fragments of 70 bps to 300 bps in length by a nanopore detection unit with nanopores of 20 to 120 nm in diameter by attaching a bead to a nucleic acid probe and then detecting the bead attached to nucleic acid not nucleic acid itself. Accordingly, the present invention can detect the nucleic acid fragments using the nanopore detection unit with nanopores of 20 to 120 nm in diameter, even in case where Polymerase Chain Reaction (PCR) products are given as the sample, particularly the PCR products are the nucleic acid fragments of 70 to 300 bps in length.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kui Hyun Kim, Jun Hong Min, Ah Gi Kim, In Ho Lee
  • Patent number: 8434160
    Abstract: A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 30, 2013
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada
    Inventors: Jesse D. Adams, Todd A. Sulchek, Stuart C. Feigin
  • Patent number: 8431403
    Abstract: Provided is method for detecting an analyte, wherein the analyte is labelled with one or more labels relatable to the analyte which are suitable for optical detection, which method comprises: a) applying an oscillating voltage having a first frequency across the labelled analyte and simultaneously performing an optical detection method on the labelled analyte to obtain data from the one or more labels; b) applying an oscillating voltage having a second frequency across the labelled analyte and simultaneously performing an optical detection method on the labelled analyte to obtain data from the one or more labels; c) determining the identity and/or quantity of the analyte from the data obtained in step (a) and step (b).
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 30, 2013
    Assignee: ITI Scotland Limited
    Inventor: Andy Mount
  • Publication number: 20130102085
    Abstract: A semiconductor chip, apparatus, and associated method wherein the semiconductor chip, having at least one electrode and configured as a sensor such as a biosensor, is removably attachable to a tip of a dipstick. The dipstick tip, with the attached semiconductor chip, is arranged to be dipped into a well containing an analyte. The well may be part of a micro-titre plate. The chip electrically senses the presence of a target molecule in the analyte. The sensing may be by detecting a change in capacitance associated with the electrode which occurs in the presence of the target molecule. The apparatus may include plural dipsticks and associated semiconductor chips which are sensitive for different target molecules. Alternatively or in addition, a single semiconductor chip may have a plurality of electrodes, which may be sensitive to different target molecules.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 25, 2013
    Applicant: NXP B.V.
    Inventor: NXP B.V.
  • Patent number: 8425742
    Abstract: A high throughput biological screening assay comprising at least two anodes, at least two cathodes acting as the reference electrode, and a polymer membrane placed between each anode and cathode, wherein the at least two anodes comprise a biological culture, and wherein the at least two cathodes comprise an oxidizing agent and a buffering agent. The high throughput biological screening assay wherein the at least two cathodes are connected in parallel to simulate the connection between the same cathode and different anodes. The high throughput biological screening assay further including an external resistor or open circuit and means for measuring the voltage across the external resistor or open circuit. A method of measuring power generation using a single cathode as a reference electrode to monitor the biological production of energy. A method of correlating bacterial biofilm formation within an operational microbial fuel cell directly to current output.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: April 23, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Justin C Biffinger, Meghann Ribbens, Kenneth H. Nealson, Bradley R Ringeisen
  • Patent number: 8425745
    Abstract: Sensor devices, methods and kits for detection of biomolecules are provided. According to various embodiments, the devices, methods and kits provide enhanced sensitivity through the measurement of electrochemical impedance and related properties. Certain embodiments employ nanostructured electrode elements including nanotubes, nanoparticles, nanowires, and nanocones. In a particular embodiment, single walled carbon nanotubes disposed in interconnected networks are used as electrodes. The device, methods and kits described herein have application for detection and measurement of biomolecular species including polynucleotides, proteins, polysaccharides and the like.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: April 23, 2013
    Assignee: Nanomix, Inc.
    Inventors: Mikhail Briman, Ray Radtkey, Eugene Tu, Christian Valcke
  • Patent number: 8425839
    Abstract: A sample analyzer is disclosed that comprising: a first reagent container to hold a first reagent container with a first record section which contains a first reagent management information; a second reagent container holder to hold a second reagent container with a second record section which contains a second reagent management information; a first information reader; a second information reader; a registration section for registering the combination of the first reagent and the second reagent based on the first reagent management information; a measurement section for conducting a measurement of a predetermined analysis item by using the first reagent and the second reagent corresponding to the combination registered by the registration section; and a processing section for processing a measurement result obtained by the measurement section, and for obtaining an analysis result of the sample.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 23, 2013
    Assignee: Sysmex Corporation
    Inventors: Yuji Wakamiya, Tomohiro Okuzaki, Hisato Takehara
  • Patent number: 8425844
    Abstract: Apparatus comprising surface site comprising substantially inorganic surface having chemical composition selected from group consisting of metals, semiconductors, insulators, and mixtures thereof, the surface positioned within polypeptide bonding region and having selective bonding affinity for polypeptide; plurality of interlayers between which surface site is interposed; distal site end on surface site and distanced from interlayers, the surface being provided on distal site end; surface site and interlayers being interposed between first and second supports; first and second conductors provided on first and second supports and having respective first and second distal conductor ends positioned within polypeptide bonding region; conductors being capable of applying external voltage potential across polypeptide bonding region.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 23, 2013
    Assignee: Alcatel Lucent
    Inventors: Robert L. Willett, Kirk W. Baldwin, Loren N. Pfeiffer
  • Publication number: 20130095508
    Abstract: A pipette component for use in performing an experimental procedure with a fluid sample and a pipette, the pipette component including: a pipette interface configured to engage sealingly and separably with a body of the pipette; a tip interface configured to engage sealingly and separably with a replaceable tip; and an experiment region configured to receive at least part of the fluid sample by operation of the pipette, and configured to perform at least part of the experimental procedure in the experiment region using the at least part of the fluid sample.
    Type: Application
    Filed: September 17, 2010
    Publication date: April 18, 2013
    Applicant: MINIFAB (AUSTRALIA) PTY LTD
    Inventors: Andrew Paul Campitelli, Erol Craig Harvey, John Edward McCormack, Matthew Daniel Solomon, Edward Francis Wilkinson, Michael William Wilkinson, Grit Diessner
  • Patent number: 8420313
    Abstract: Multiplexed analysis of molecular structures of samples. A plurality of sample wells is arranged on a substrate. A plurality of electrodes is fabricated on a first side of the substrate. The electrodes are disposed on the side of the substrate exposed to the sample wells. The electrodes include working electrodes, counter electrodes, and optionally include reference electrodes. At least two of the sample wells includes a plurality of working electrodes. The plurality of electrodes is configured to allow electrochemical analysis of the associated sample wells in a multiplexed fashion. The plurality of electrodes is electrically coupled to an interface to a sample analysis system. The interface to the sample analysis system can include contacts or connections. The sample analysis system controls a signal to the electrodes in a multiplexed fashion and performs the electrochemical analysis.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 16, 2013
    Assignee: GeneOhm Sciences, Inc.
    Inventor: Xing Yang
  • Patent number: 8420399
    Abstract: A method for analyzing hemoglobin in a sample by separation analysis while suppressing the denaturation of the hemoglobin includes separating hemoglobin in the presence of at least one of a sulfurous acid compound and a dithionous acid compound.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 16, 2013
    Assignee: ARKRAY, Inc.
    Inventor: Yusuke Nakayama
  • Patent number: 8420404
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: April 16, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8415166
    Abstract: The present invention provides a device for the detection of a peroxide-based explosive, in particular, triacetone triperoxide (TATP), which is based on a molecular controlled semiconductor resistor (MOCSER) and composed of at least one insulating or semi-insulating layer, at least one conducting semiconductor layer, two conducting pads and a layer of multifunctional organic molecules capable of adsorbing molecules of the peroxide-based explosive. The invention further provides an array of semiconductor devices for the selective detection of a peroxide-based explosive, as well as a method for the selective detection of vapors of a peroxide-based explosive in a gaseous mixture using this array.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: April 9, 2013
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Ron Naaman, Eyal Capua, Roberto Cao
  • Publication number: 20130084226
    Abstract: A sensing test block with rapid conductive reaction effect includes a test block body, reaction detector, reaction space and chemical reaction layer. A porous separation and filtering layer and a capillary guiding and diffusion portion are set onto the chemical reaction layer. The porous separation and filtering layer could separate the blood corpuscle in the test blood sample due to its smaller aperture, and the porous separation and filtering layer is provided with a guiding portion that is mated with the specimen inlet. The capillary guiding and diffusion portion is provided with a specimen guiding portion that is mated with the specimen inlet. A venting portion is set onto the capillary guiding and diffusion portion, and located correspondingly to the external side of the porous separation and filtering layer, making the venting portion farther from the specimen inlet than the porous separation and filtering layer.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: SAND COUNTY BIOTECHNOLOGY, INC.
    Inventors: Tong-Yuh HUANG, Hui-Fang Wang
  • Publication number: 20130078732
    Abstract: The invention provides methods for diagnosing impending joint failure in an animal by measuring the concentration of phenylalanine in a body fluid; measuring the concentration of one or more of tyrosine, alanine, valine, and glutamine in the body fluid; determining the ratio of phenylalanine to one or more of tyrosine, alanine, valine, and glutamine; and diagnosing impending joint failure by comparing the ratio to ratios predicative of impending joint failure.
    Type: Application
    Filed: January 29, 2010
    Publication date: March 28, 2013
    Inventors: Wendell Ray Guffey, Dennis Lawler, Selena E. Richards
  • Patent number: 8399262
    Abstract: Disclosed herein are biosensors for the detection of airborne biomolecules. The biosensors include a housing, a sensing component, and optionally a sample capture component. The biosensors may utilize a gel-based detection platform.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: March 19, 2013
    Inventors: Darrel A. Mazzari, Martin A. Seitz
  • Patent number: 8398939
    Abstract: A microfluidic test module for detecting target nucleic acid sequences in a fluid, the test module having an outer casing configured for hand-held portability, the outer casing having an inlet for receiving the fluid containing the target nucleic acid sequences, a hybridization chamber mounted in the casing, the hybridization chamber containing electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the ECL probes having an ECL luminophore for emitting photons when in an excited state and a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, and electrodes for receiving an electrical pulse to excite the ECL luminophores, wherein, the hybridization chamber has a volume less than 900,000 cubic microns.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: March 19, 2013
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Mehdi Azimi, Kia Silverbrook
  • Patent number: 8398845
    Abstract: A measuring device for analyzing a sample liquid having at least one analyte is provided. A test field support housed in the device includes a number of individual test fields in communication with electrochemical measuring cells of the test field support. Reagents can be assigned to the electrochemical measuring cells which can react with a sample liquid. The reaction can lead to a measurable change of at least one quantity characteristic of the presence or concentration of an analyte in the sample. The measuring device includes evaluation electronics. The individual test fields on the test field support are accessible to the user after the measuring device has been opened.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 19, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Michael Marquant, Mihail-Onoriu Lungu
  • Patent number: 8398921
    Abstract: A chemical sensor using metal nano-particles and a method for manufacturing a chemical sensor using metal nano-particles are provided. The chemical sensor includes: metal nano-particles; single-ligand organic molecules (or a single molecule) that binds to the metal nano-particles by using a metal bonding functional group; a substrate bonding functional group formed at the metal nano-particles and the single-ligand organic molecules as bound to each other; a substrate; electrodes formed on the substrate and having an interdigitate (IDT) structure; and a substrate functional group formed on the substrate and positioned between the electrodes, wherein the substrate bonding functional group and the substrate functional group are covalently bonded.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 19, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Myung Lae Lee, Young Jun Kim, Sung Hae Jung, Ho Jun Ryu, Jong Moo Lee