Combustible Gas Detector Patents (Class 422/94)
  • Patent number: 8087151
    Abstract: A gas sensor includes zinc oxide nano-structures formed on a substrate, a plurality of metal islands coated on a surface of each zinc oxide nano-structure and separated from one another, a first electrode electrically connected to one end of each zinc oxide nano-structure through the substrate, a second electrode electrically connected to the other end of each zinc oxide nano-structure, and a current variation-measuring unit electrically connected to each of the first electrode and the second electrode so as to measure a variation in the amount of current flowing between the first electrode and the second electrode. In order to form the plurality of metal islands on the zinc oxide nano-structures, a solution of metal components of a metal material is coated on the surface of each zinc oxide nano-structure.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: January 3, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Rae-Man Park, Sang-Hyeob Kim, Jonghyurk Park, Sunglyul Maeng
  • Patent number: 8078388
    Abstract: An oxygen sensor device and method for a motor vehicle having an electrode within an outer shell for measuring oxygen in exhaust gas exiting the vehicle. A communication device, powered by a capacitor, wirelessly transmits the measured amount of oxygen from the electrode to a powertrain control module. Vibration transmitting from the motor vehicle shakes a magnet, wound inside a coil, for generating the electrical current used by the capacitor.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: December 13, 2011
    Assignee: DENSO International America, Inc.
    Inventor: Patrick Powell
  • Patent number: 8057741
    Abstract: A gas sensor assembly may include a housing defining a chamber. A gas sensor may be mounted in the chamber. An inlet tube may be secured to the housing and extend into the chamber of the housing. The inlet tube may define a passage providing fluid communication between outside the housing and the chamber of the housing.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: November 15, 2011
    Assignee: Caterpillar Inc.
    Inventor: Ronald R. Gustin
  • Patent number: 8052949
    Abstract: Configurations herein include a novel process and apparatus for generating and maintaining sulfur trioxide gas. The generation system and process operate to provide sulfur trioxide calibration gas for calibrating sulfur trioxide detection devices. The system and process provides a known, concentration of sulfur trioxide gas via a heated catalyst, which enables accurate calibration of measurement equipment. The system functions in part by controlling temperature, amount of moisture, residence time, catalyst selection, diluting generated sulfur trioxide and by locating the sulfur trioxide generator at a point of injection of a sulfur trioxide detection system.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: November 8, 2011
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Dieter Kita, Yongquan Li, Jeffrey Socha, Bryan A. Marcotte
  • Patent number: 8052855
    Abstract: A carbon nanotube (“CNT”) gas sensor includes a substrate, an insulating layer formed on the substrate, electrodes formed on the insulating layer, and CNT barriers that protrude higher than the electrodes in spaces between the electrodes to form gas detecting spaces. A method of manufacturing the gas sensor includes forming an insulating layer on a substrate, forming an electrode pattern on the insulating layer, coating CNT paste having a thickness greater than a thickness of electrodes in the electrode pattern on the electrodes and the insulating layer, and patterning and firing the carbon nanotube paste, including using a photolithography method, to retain only portions of the CNT paste coated on spaces between the electrodes.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-im Han, Soo-hyung Choi, Jeong-hee Lee, Soo-suk Lee, Jeong-na Heo
  • Patent number: 8043567
    Abstract: A gas sensor which includes walls delimiting a gas detection chamber, and having an introduction port (or an inlet) through which an observed gas is introduced into the gas detection chamber, a measuring element disposed in the gas detection chamber and measuring concentration of a subject gas contained in the observed gas, and a heater constituting at least a portion of the walls, the portion facing the gas detection chamber.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: October 25, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takashi Sasaki, Takashi Saito, Akihiro Suzuki, Hidetoshi Oishi
  • Patent number: 8043566
    Abstract: Disclosed herein is a method and apparatus for analyzing, sensing and measuring information related to the concentrations of various gases, including NOx, hydrocarbons, carbon monoxide and oxygen, in a multi-component gas system using chemical sensors and chemical sensor arrays. The sensors and sensor arrays use chemo/electro-active materials to analyze and detect the presence of gases.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: October 25, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Patricia A. Morris
  • Patent number: 8034290
    Abstract: Reigniting a flame in a volatile organic compound (VOC) detector in the event that the flame has gone out. In one implementation, a signal is received at a handheld personal computer indicating that a flame in the VOC detector has gone out. The flame in the VOC detector may then be reignited using the handheld personal computer and a Bluetooth enabled device facilitating communication between the handheld personal computer and the VOC detector.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: October 11, 2011
    Assignee: LDARtools, Inc.
    Inventors: Leo Skiba, Rex Moses, Keith Adams, Jack Clark, Bradley O'Keefe, Kevin Moses, Andrew Reiter
  • Patent number: 8021616
    Abstract: A gas sensor including: a gas detection element; a metal shell extending in an axial direction; and a metal cylinder extending in an axial direction, wherein a leading end portion of the metal cylinder surrounds a base end portion of the metal shell and is fixed to the metal shell via a circumferential welded portion. The metal shell includes: Fe in an amount equal to or more than 50.0 mass %; C in an amount of 0.02 mass % to 0.15 mass %; Cr in an amount of 11.5 mass % to 18.0 mass %; and Nb in an amount equal to or more than twice amount of C in mass %.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: September 20, 2011
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Daisuke Miyata, Makoto Hirasawa, Yoshiaki Matsubara
  • Patent number: 8003055
    Abstract: Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100° C. to plus 500° C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 23, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Muradov
  • Patent number: 7998417
    Abstract: An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 16, 2011
    Assignee: Board of Regents, University of Texas System
    Inventor: Matthew Hall
  • Patent number: 7980116
    Abstract: The hydrogen gas sensor is a catalytic combustion hydrogen gas sensor with a detection element 1, and is characterized by comprising a measuring circuit configured to selectively provide a normal voltage mode for applying a normal voltage to the detection element 1 and a high voltage mode for applying a high voltage higher than said normal voltage to said detection element 1. Thereby, upon energization of the hydrogen gas sensor, the detection element 1 can be first applied the high voltage to be rapidly heated to raise a temperature of the detection element 1 immediately. And then, the detection element 1 can be applied the normal voltage to be heated to be kept at a predetermined temperature at which the hydrogen gas is detected.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 19, 2011
    Assignee: FIS Inc.
    Inventors: Hiroshi Koda, Kiyonori Ono
  • Patent number: 7976780
    Abstract: Methods and apparatus are provided to measure isotopic characteristics of a number of sample types. Embodiments of the invention combine novel and existing components to produce more accurate isotopic information. Further, embodiments of the invention allow for isotopic readings to be taken and analyzed outside of a laboratory. An example of such an embodiment is an apparatus comprising a combustion furnace; a reactant tube passing through the combustion furnace; an injector coupled to one, or a combination of, the combustion furnace, and reactant tube, to introduce a sample; a laser isotopic measurement device coupled to the reactant tube on the exit end; and a processor electrically coupled to one, or a combination of, the injector, the combustion furnace, the reactant tube, and the isotopic measurement device, in which a carrier gas transports the sample through the apparatus.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: July 12, 2011
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Louis W. Elrod, Christopher M. Jones
  • Patent number: 7977113
    Abstract: A biological agent detector detects the presence of any biological agents, such as anthrax or other biological warfare agents, in a sample of air. The biological agent detector includes a bio-concentrator that concentrates an aerosol and a pyrolyzer portion including two detecting devices. One detecting device operates in a sample collection mode and collects a sample of air when the other detecting device operates in a sample analysis mode and analyzes a sample of air. After a predetermined amount of time, the detecting devices switch functions, providing continuous sampling of air.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: July 12, 2011
    Assignee: Hamilton Sundstrand Corporation
    Inventors: William S. Donaldson, Richard K. Chun
  • Patent number: 7972865
    Abstract: A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: July 5, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Dechang Yi, Lawrence R. Senesac, Thomas G. Thundat
  • Patent number: 7968055
    Abstract: The measurement is conducted by means of thermogravimetric scales (10) bearing at one end of the beam (20) a catalyst body (30) for catalysing a coking reaction of the tars present in the gas state. Precautions are taken in order to ensure homogeneity and regularity of the sampled gas flow and to guarantee predominant catalysis on the catalytic body (30), the weight increase of which gives the weight of the deposited coke and indirectly the content of tars present in the gas state in the gas to be measured. A calorimetric device (34) for analyzing gases from the coking of the tars provides a complementary and/or additional measurement. The solid tars are filtered beforehand, but their content may be measured by an auxiliary device. Possible application to analyzing gases from biomass.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: June 28, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Meryl Brothier, Pierre Estubier, Johann Soyez
  • Patent number: 7947226
    Abstract: A sensing element for catalytic combustion type gas sensor includes: a heat conducting layer (12); a heater coil (13) buried in the heat conducting layer (12); and a combustion catalyst layer (11) coating or carried by a surface of the heat conducting layer (12) and causing combustion of a detection target gas brought into contact therewith, wherein the combustion catalyst layer (11) and the heat conducting layer (12) are both made of a firing material whose main component is tin oxide. Preferably, the heat conducting layer (12) is made of fine powder of the firing material, the firing material being produced by firing at a higher temperature than a temperature for producing the firing material of the combustion catalyst layer (11). Accordingly, durability and waterproof performance of the gas sensor itself can be enhanced, and without the need to take measures such as special environment setting, mounting thereof on a FCV can be realized.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 24, 2011
    Assignee: Citizen Holdings Co, Ltd.
    Inventor: Ikuo Takahashi
  • Patent number: 7924561
    Abstract: A circuit board case including: a cover that includes a cover front wall and a rise wall connected to the cover front wall, the cover being attachable to an attaching object at a position on the rise wall opposite the cover front wall; and a case that houses a circuit board and includes a case front wall and a first wall surface oriented toward a direction opposite the case front wall, the case being housed in the cover such that the case front wall opposes the cover front wall. A fitting that engages the first wall surface is formed in the rise wall of the cover so as to urge the case toward the cover front wall and thus hold the case within the cover.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: April 12, 2011
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Yoshihiko Kohmura, Masaru Kondo, Shingo Yoshida
  • Publication number: 20110068005
    Abstract: With a method for the determination of the sulfur content in fuels, a fuel sample is introduced into a miniaturized and/or microstructured combustion chamber (2) for thermal oxidation of the total sulfur, wherein an electrochemical gas sensor (3) is provided for the determination of the SO2 content in the gas produced during the thermal oxidation, and gas transport to the gas sensor (3) is brought about by a pump (4). The thermal oxidation takes place hereby by a pyrolysis in the micromechanically produced combustion chamber (2), wherein the energy for the thermal oxidation is preferably supplied via an electric heating platform or a heating wire.
    Type: Application
    Filed: November 8, 2010
    Publication date: March 24, 2011
    Applicant: TESTO AG
    Inventor: Ralf Stich
  • Patent number: 7875244
    Abstract: A gas sensor has shock resistance and temperature resistance attributes. The gas sensor includes at least one catalytic measuring element (3), which is arranged in a sensor housing (1) forming a combustion chamber (2). The sensor housing (1) has at least one gas-permeable housing opening (4) for the gas exchange between the environment and the combustion chamber (2). The catalytic measuring element (3) is arranged between at least two disk-shaped support elements (5) made of a heat-insulating and temperature-resistant material.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: January 25, 2011
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Mladen Schlichte, Erik Stender
  • Patent number: 7846742
    Abstract: The invention relates to a method and apparatus for detecting substance to be detected. The apparatus comprises at least one sampling member for sampling air contained in a closed space, the sampling member comprising at least one filter presenting pore or mesh size adapted to filtering solid particles of the substance to be detected that might be dispersed in the air contained in the closed space; the apparatus further comprising a pump (not shown) enabling the air contained in the closed space to be sucked in. The invention can be used for detecting a substance to be detected comprising, for example, an explosive or a narcotic.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: December 7, 2010
    Assignee: ICTS Europe Holdings B.V.
    Inventors: Oren Sapir, Zamir Eldar, Abraham Bar Yoseph
  • Patent number: 7837935
    Abstract: Disclosed is a small-sized joint for joining hydrogen gas running route-forming members, which can surely prevent the leakage of hydrogen gas, and a portable hydrogen flame ionization gas detector that can prevent the leakage of hydrogen gas to achieve high safety. The joint comprises a metallic base having an internal space at least one end of which is opened, and a ring-like sealing member composed of an elastic material and arranged at opening edge of the metallic base, wherein a hydrogen gas running route-forming member is fixed in a state inserted into an internal space of the metallic base through the sealing member, and the sealing member is squeezed to gastightly seal the space, whereby one hydrogen gas running route-forming member is removably joined. In the gas detector, the joint is used to form a hydrogen gas running route.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: November 23, 2010
    Assignee: Riken Keiki Co., Ltd.
    Inventors: Haruhiko Kondo, Nobuhisa Kawai, Yukio Nakamura
  • Patent number: 7833482
    Abstract: A low power consumption catalytic gas sensor includes three beads. A trigger bead, which is smaller than either a sensing on a compensating bead can be monitored for the presence of a combustible gas. Where gas has been sensed, the sensing and compensating beads can be energized to establish a gas concentration.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 16, 2010
    Assignee: Honeywell International Inc.
    Inventor: Ravosh Samari
  • Patent number: 7829344
    Abstract: The present invention relates to a device and a method for the detection of hydrogen in a gas volume by means of an exothermal catalytic recombination of hydrogen and oxygen present in the gas volume into water. The amount of energy that is released during such an exothermal catalytic recombination is measured in the form of a temperature difference and is compared with a stored limit value. When a corresponding limit value is exceeded an appropriate signal is output.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: November 9, 2010
    Assignee: Hoppecke Batterien GmbH & Co. KG
    Inventors: Heinrich Kesper, Eduardo Cattaneo, Bernhard Riegel
  • Publication number: 20100197035
    Abstract: An assembly and method for gas analysis. The assembly comprises a catalyst compartment for catalytically reacting a component of a gas sample, producing one or more gas species as products. A product compartment receives the gas species, and a sensing element within the compartment senses the amount of one or more of the gas species. This amount is compared to the amount of the same gas species present in a reference compartment containing a non-catalyzed gas sample, providing the amount of the gas species produced by catalysis. Using this value, the content of the gas component in the gas sample is calculated based upon the stoichiometry of the catalyzed reaction. In preferred embodiments, the gas for analysis is a process gas for fuel production, and the catalyst is a high temperature shift catalyst that catalyzes the reaction of carbon monoxide and water into hydrogen and carbon dioxide.
    Type: Application
    Filed: April 8, 2010
    Publication date: August 5, 2010
    Inventors: Chan Seung Park, Colin E. Hackett, Nora A. Hackett, Joseph M. Norbeck
  • Patent number: 7754491
    Abstract: An assembly and method for gas analysis. The assembly comprises a catalyst compartment for catalytically reacting a component of a gas sample, producing one or more gas species as products. A product compartment receives the gas species, and a sensing element within the compartment senses the amount of one or more of the gas species. This amount is compared to the amount of the same gas species present in a reference compartment containing a non-catalyzed gas sample, providing the amount of the gas species produced by catalysis. Using this value, the content of the gas component in the gas sample is calculated based upon the stoichiometry of the catalyzed reaction. In preferred embodiments, the gas for analysis is a process gas for fuel production, and the catalyst is a high temperature shift catalyst that catalyzes the reaction of carbon monoxide and water into hydrogen and carbon dioxide.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: July 13, 2010
    Assignee: The Regents of the University of Calif.
    Inventors: Chan Seung Park, Colin E. Hackett, Nora A. Hackett, legal representative, Joseph M. Norbeck
  • Patent number: 7737700
    Abstract: Detecting air ingredients is obtained, a heater and gas sensitive acting layers are arranged on a substrate, which are connectable to an analyzing unit. Electrical resistances of n acting layers are connected in series; heater is a temperature sensor connected in parallel with this series connection, electrical resistance of heater is smaller than the sum of electrical resistances of acting layers and resistances are connected with a total of n+1 electrical terminals via electrodes so that heater is connected with two terminals and n?1 other terminals are connected with a respective junction that interconnects two acting layers. Heater is intermittently heated so that a predefined constant temperature of acting layers is achieved, temperature of acting layers is acquired by determining electrical resistance of heater; voltages in the series connection of acting layers are analyzed and a concentration of gases are determined from electrical resistances of acting layers.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 15, 2010
    Assignee: UST Umweltsensortechnik GmbH
    Inventors: Olaf Kiesewetter, Anatolij Ewert, Volkmar Melchert, Sven Kittelmann
  • Publication number: 20100120162
    Abstract: With a method for the determination of the sulfur content in fuels, a fuel sample is introduced into a miniaturized and/or microstructured combustion chamber (2) for thermal oxidation of the total sulfur, wherein an electrochemical gas sensor (3) is provided for the determination of the SO2 content in the gas produced during the thermal oxidation, and gas transport to the gas sensor (3) is brought about by a pump (4). The thermal oxidation takes place hereby by a pyrolysis in the micromechanically produced combustion chamber (2), wherein the energy for the thermal oxidation is preferably supplied via an electric heating platform or a heating wire.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Applicant: TESTO AG
    Inventor: Ralf Stich
  • Patent number: 7713480
    Abstract: A lead portion (25) of a heater coil (22) is constituted of a single coil wound into a coil and a bead portion (24) is constituted of a double coil formed by further winding the single coil into a coil. By constituting a detecting element (2) by burying the bead portion (24) in a heat conductive layer (21) and adhering a catalyst layer (23) on the surface of the heat conductive layer (21), improvement of the gas sensitivity and the response speed of a catalytic combustion gas sensor is facilitated. Zero point variation is reduced by improving impact resistance. When both ends of the heater coil are fixed to electrode pins, both ends of the heater coil are welded to the electrode pins using a resistance welding method, etc., with a platinum wire, etc., wound on a primary core wire, and thereafter, the primary core wire is melted and eliminated while leaving the platinum wire, etc., by a wet etching process.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: May 11, 2010
    Assignee: Citizen Holdings Co., Ltd.
    Inventors: Ikuo Takahashi, Junji Satoh, Yoshirou Hirai
  • Patent number: 7708943
    Abstract: A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: May 4, 2010
    Assignee: Sandia Corporation
    Inventors: Alex L. Robinson, Ronald P. Manginell, Matthew W. Moorman
  • Patent number: 7704748
    Abstract: A novel Flame Temperature Analyzer (FTA) method and apparatus for measuring combustible gas concentration and oxygen content in a sample gas includes supplying a mixture of oxidant and fuel to a sensing flame and measuring the temperature of the flame as the sample is added to the combustion chamber.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: April 27, 2010
    Assignee: Control Instruments Corporation
    Inventors: Christopher G. Schaeffer, Matthew James Schaeffer, Pravin Patel
  • Patent number: 7684931
    Abstract: A method and apparatus for interfacing a plurality of gas measurement systems, including a mainstream and a sidestream gas measurement system, to a host system via an interface unit. The present invention also pertains to a sidestream gas measurement system that output signals emulating the signals output by a mainstream gas measurement system or portion thereof, so that the sidestream gas measurement system can seamlessly communicate with a host system configured to communicate with a mainstream gas measurement system or a portion thereof.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: March 23, 2010
    Assignee: RIC Investments, LLC
    Inventors: Anthony T. Pierry, David R. Rich
  • Publication number: 20100047917
    Abstract: The present invention relates to a sulfur assaying method comprising converting carbon monoxide in a sample gas generated by combustion of the sample to nitrogen dioxide by a pretreatment, and then measuring the intensity of fluorescence of sulfur dioxide in the sample gas, the pretreatment comprising irradiating the sample gas with light from a low pressure mercury lamp, and also relates to a sulfur assaying apparatus comprising a combustor (1) which generates a sample gas from a sample, a pretreatment means (2) for converting nitrogen monoxide in the sample gas to nitrogen dioxide, and an ultraviolet fluorescence detector (4) for measuring the intensity of fluorescence of sulfur dioxide in the sample gas, the pretreatment means (2) comprising a low pressure mercury lamp (3) disposed in a container (20).
    Type: Application
    Filed: May 11, 2009
    Publication date: February 25, 2010
    Applicant: MITSUBISHI CHEMICAL ANALYTECH CO., LTD.
    Inventors: Shuichi Akasaka, Tamaki Tomoyose
  • Patent number: 7657384
    Abstract: Method for managing a response to a triggering event in connection with a fugitive emissions monitor of a component. In one implementation, the method may include determining whether an input is a triggering event. If the input is a triggering event, then a message regarding the triggering event and one or more actions to remedy the triggering event may be displayed. The method may further include displaying one or more queries to confirm that the actions have been completed.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: February 2, 2010
    Assignee: Environmental Analytics, Inc.
    Inventor: Rex Moses
  • Patent number: 7628959
    Abstract: A hydrogen gas sensor and/or switch fabricated from arrays nanowires composed of metal or metal alloys that have stable metal hydride phases. The sensor and/or switch response times make it quite suitable for measuring the concentration of hydrogen in a flowing gas stream. The sensor and/or switch preferably operates by measuring the resistance of several metal nanowires arrayed in parallel in the presence of hydrogen gas. The nanowires preferably comprise gaps or break junctions that can function as a switch that closes in the presence of hydrogen gas. Consequently, the conductivity of the nanowires of the sensor and/or switch increases in the presence of hydrogen.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: December 8, 2009
    Assignee: The Regents of the University of California
    Inventors: Reginald Mark Penner, Erich C. Walter, Fred Favier
  • Patent number: 7629177
    Abstract: The present invention is a method and apparatus for sampling a high-temperature gaseous process stream containing components with high boiling points. The sampling system is especially suited for instruments having extremely low pressure chambers, such as mass spectrometers. The invention reduces the condensation of high boiling point components of the sample in the sampling system without the necessity of maintaining extremely high temperatures. The gaseous sample is passed through an orifice from the high temperature stream into a lower-temperature zone of the sampling system where a low pressure is maintained by a vacuum pump. The low pressure reduces the boiling point of the sample components so they may be maintained in a gas phase without excessive heating. The low pressure sample is then introduced into an instrument chamber through a sample introduction valve.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: December 8, 2009
    Assignee: Siemens Industry, Inc.
    Inventors: Dean Vinson Davis, Jeffrey Scott Spaulding, Eugene L. Kesselhuth
  • Patent number: 7588726
    Abstract: A vapor analysis system comprising a vapor analyzer capable of collecting and analyzing a vapor sample for detection of a compound that may be contained within the vapor sample. A controller is coupled to the vapor analyzer. The controller is programmed to produce an indicator signal indicative of a relative concentration of the compound detected by the vapor analyzer within the vapor sample. A sample probe includes a housing containing a vapor channel through which the vapor sample is collected, and a vapor cable couples the sample probe to the vapor analyzer to allow collection and channeling of the vapor sample to the vapor analyzer. A multi-dimensional user indicator is disposed on the housing of the sample probe receives and operates in response to the indicator signal to indicate the relative concentration of the compound detected within the vapor sample for presentation via a multi-directional stimulus to a user of the vapor analysis system.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: September 15, 2009
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Robert F. Mouradian, Patrick John Kennedy, K. Stephen Johnson, Jr.
  • Patent number: 7537737
    Abstract: An installation structure for a gas sensor capable of detecting gas concentration in a highly accurate manner is provided. The installation structure for a gas sensor which detects concentration of gas circulating inside an outlet-side piping comprises a through hole 18 in an inner wall of the outlet-side piping and the gas sensor comprises a gas inlet portion with one face open within the outlet-side piping 14, and the gas sensor is installed to the outlet-side piping in a condition where the gas inlet portion does not protrude from the inner wall of outlet-side piping.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 26, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroyuki Abe, Akihiro Suzuki, Takashi Sasaki
  • Publication number: 20090035184
    Abstract: The present invention provides a catalytic combustion type hydrogen gas sensor of a simple structure, which is capable of inhibiting the degradation of the sensitivity thereof over a long period of time even in the presence of a silicon compound being a catalyst poison. This hydrogen gas sensor is equipped with a detection element 1 having a sensing part 2 and a silicon trapping body 3. The sensing part 2 has a function of being heated by Joule heat generated by energization of the sensing part 2, a function of combusting hydrogen gas while being heated, and a function of outputting a change in electrical resistance of the sensing part 2 indicative of hydrogen gas concentration, the change in electrical resistance being caused by an increase in temperature of the sensing part 2 caused by the combustion heat of the hydrogen gas.
    Type: Application
    Filed: February 27, 2007
    Publication date: February 5, 2009
    Inventors: Hiroshi Koda, Kazuyasu Iida
  • Patent number: 7479255
    Abstract: A hydrogen sensor 25 has a fitting base plate 29 in which a gas-sensing chamber 34 is formed, a specimen gas intake 35 formed on said fitting base plate 29, opening toward an exit passage 24 and introducing hydrogen gas into the gas-sensing chamber 34, a gas-sensing element 39 held in the gas-sensing chamber 34 and adapted to sense hydrogen gas, and a water-repelling filter 44 covering the specimen gas intake 35.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: January 20, 2009
    Assignee: Riken Keiki Co., Ltd.
    Inventors: Seiichi Otani, Yukio Nakamura, Mamoru Furusato
  • Publication number: 20090016934
    Abstract: A gas sensor has shock resistance and temperature resistance attributes. The gas sensor includes at least one catalytic measuring element (3), which is arranged in a sensor housing (1) forming a combustion chamber (2). The sensor housing (1) has at least one gas-permeable housing opening (4) for the gas exchange between the environment and the combustion chamber (2). The catalytic measuring element (3) is arranged between at least two disk-shaped support elements (5) made of a heat-insulating and temperature-resistant material.
    Type: Application
    Filed: June 3, 2008
    Publication date: January 15, 2009
    Applicant: DRAGER SAFETY AG & CO. KGaA
    Inventors: Mladen SCHLICHTE, Erik STENDER
  • Publication number: 20080206108
    Abstract: A single cell oxygen sensor apparatus and method are disclosed. An yttrium-based stabilized layer having electrical terminals connected to the yttrium-based stabilized layer can be provided on a substrate, wherein the yttrium-based stabilized layer is excitable by a constant current applied to the electrical terminals. A plurality of electrodes are located on a side of the yttrium-based stabilized layer and a plurality of heater elements located on said substrate opposite said yttrium-based stabilized layer. The heater elements can maintain the yttrium-based stabilized layer at a particular temperature. A cavity is formed and located between the yttrium-based stabilized layer and the heater elements. The partial pressure of oxygen can be measured by comparing the partial pressure of oxygen within the cavity with respect to the partial pressure of oxygen in the atmosphere external to the single cell oxygen sensor apparatus.
    Type: Application
    Filed: February 27, 2007
    Publication date: August 28, 2008
    Inventors: Ramsesh Anilkumar, Peter J.M. Kroot, Baburaj K.P, Vishal Malhan, Palani Thanigachalam
  • Publication number: 20080206107
    Abstract: A gas sensor apparatus and method of forming the same generally includes a gas sensor element comprising a heater and a plurality of electrodes. A ceramic substrate can be provided for supporting the electrodes on one side of the ceramic substrate and the heater on the opposite side of the ceramic substrate. The gas sensor element is preferably embedded in the ceramic substrate. The ceramic substrate also possesses a substantially circular shape in order to prevent a breakage of the gas sensor element, avoid thermal loss, and permit the gas sensor apparatus to withstand mechanical shock and high vibrations while occupying a minimal package space.
    Type: Application
    Filed: February 23, 2007
    Publication date: August 28, 2008
    Inventors: Palani Thanigachalam, Thirumani A. Selvan
  • Publication number: 20080206882
    Abstract: Apparatus and method for determining incomplete combustion in a combustion analyzer comprising a combustion chamber (60). A sample is supplied to the combustion chamber and combusted to produce combustion products. A target gas characteristic of incomplete combustion of the sample is detected in the combustion products by a target gas sensor (72). The target gas may be carbon monoxide, methane, methanal and/or methanol, among others. Preferably, the gas sensor is an electronic or catalytic combustible gas sensor. Whether incomplete combustion of the sample has occurred may be determined. A signal indicative of incomplete combustion is output from the target gas sensor to a controller (78). The combustion products can be directed to waste and/or further supply of the sample/oxygen may be stopped/adjusted. Faulty analysis measurements and/or contamination of downstream components, which would otherwise result from incomplete combustion—in particular, from soot formation—can thereby be avoided.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 28, 2008
    Applicant: THERMO FISHER SCIENTIFIC INC.
    Inventors: Louis Marie SMEETS, Maurice Stephan VAN DOESELAAR, David Marco Gertruda ALBERTI
  • Publication number: 20080176335
    Abstract: A combustion analyzer apparatus and method for combustion analysing a sample, the analyzer comprising a combustion chamber (82) for receiving a sample for combustion therein to form combustion products, and a fluid supply apparatus for supplying fluid(s) into the chamber. The fluid supply apparatus (130-140) comprises a nitrogen oxides (NOx) generating apparatus (140,190,210,240) and is arranged to supply NOx into the combustion chamber. A yield of sulphur dioxide in the combustion products may thereby be improved. The NOx generating apparatus may be operated at a raised working temperature. The NOx generating apparatus may be provided by an ozonator with a supply of nitrogen and oxygen. A Venturi tube arrangement (246) may draw the generated NOx into a (carrier or oxygen) gas line to the combustion chamber. Ozone may be supplied to the combustion products to convert nitrogen monoxide therein to nitrogen dioxide. The NOx and ozone may be supplied by a single device (210,240).
    Type: Application
    Filed: December 31, 2007
    Publication date: July 24, 2008
    Applicant: THERMO FISHER SCIENTIFIC INC.
    Inventors: David Marco Gertruda ALBERTI, Louis Marie SMEETS
  • Patent number: 7402284
    Abstract: A method and apparatus for determining the orientation of a gas analyzer. Because condensation can build-up in a filter of the gas analyzer, it needs to be purged from the analyzer so that accurate readings can be made. By having a orientation device built-in, the analyzer can be purged at the desired orientation so that, as much water, can be purged, as possible, to the designated outlet.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: July 22, 2008
    Assignee: SPX Corporation
    Inventors: Phillip McGee, Rob Kochie
  • Patent number: 7395692
    Abstract: A portable, preferably explosion-proof gas meter is improved in respect to shock loads and has a cylindrical measuring cell (5) and an evaluating circuit on a printed circuit board (6). The measuring cell (5) is connected to the printed circuit board (6) and is mounted in the housing in a shock-absorbing manner in the radial and longitudinal directions and is in gas flow connection with the environment through openings (40) in the housing.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: July 8, 2008
    Assignee: Dräger Safety AG & Co. KGaA
    Inventor: Markus Wansing
  • Publication number: 20080159917
    Abstract: Embodiments of the present invention relate a gas sensor comprising a gas detector and a hydrocarbon gas generating device, wherein the hydrocarbon gas generating device is positioned to provide an amount of hydrocarbon gas to the gas detector for testing. The hydrocarbon gas generating device comprises a heater and a gas releasing material.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Inventor: Peter Tobias
  • Patent number: 7387764
    Abstract: An apparatus for analyzing the amount of gas in a solid sample such as a contained oxygen analyzing apparatus and method utilizing a preliminary reducing furnace which can be connected to an analyzing furnace by a transfer unit. A sample such as steel can be reduced in the preliminary reducing furnace and transferred to the analyzing furnace, for example, by a magnetic force, a gripping unit or a transporting sample body holder. A controller can control the application of heat and the mixing of a metal flux to provide discharge gas to an analyzer.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: June 17, 2008
    Assignee: Horiba, Ltd.
    Inventors: Hiroshi Uchihara, Masahiko Ikeda
  • Patent number: 7374722
    Abstract: The sampling system of the invention includes a column comprising a first separator associated with a first collector so as to extract particles whose diameter is larger than a first diameter, and a second separator associated with a second collector which eliminates the finest particles and concentrates the other particles in the gas flow sucked up by the suction pipe of an analysis device.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: May 20, 2008
    Assignee: Proengin SA
    Inventors: Henri Lancelin, Gilles Guene, Patrick Bleuse, Pierre Clausin