Nitrating Patents (Class 423/125)
  • Patent number: 11623894
    Abstract: A bonded abrasive article includes elongate shaped abrasive particles. The elongate shaped abrasive particles comprise an elongate shaped ceramic body having opposed first and second ends joined to each other by at least two longitudinal sidewalls. At least one of the at least two longitudinal sidewalls is concave along its length. At least one of the first and second ends is a fractured surface.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: April 11, 2023
    Assignee: 3M Innovative Properties Company
    Inventor: Dwight D. Erickson
  • Patent number: 10131968
    Abstract: A process is disclosed for recovering lithium from a lithium-containing silicate mineral. The process comprises mixing the silicate mineral with nitric acid. The process also comprises subjecting the mixture to a leaching process having conditions such that lithium values in the silicate mineral are leached into an aqueous phase as lithium nitrate. The leaching process conditions may be controlled such that non-lithium values in the silicate mineral tend not to be leached into the aqueous phase.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: November 20, 2018
    Inventor: Richard Hunwick
  • Patent number: 8268269
    Abstract: As population density increases, the transportation of hazardous chemicals, including acids and disinfectants, lead to an increased incidence of spills while the consequences of spills become more serious. While solutions of halide acids, hypohalites and halites are safer disinfectants for transportation, handling, storage and use than traditional gaseous chlorine, the manufacturing cost of these disinfectants has here-to-fore limited their use. Economical processes are presented for the manufacture of O2, halogen oxides, halide acids, hypohalites, and halates; as well as polynucleate metal compounds, metal hydroxides and calcium sulfate hydrate (gypsum). The instant invention presents methods and processes that incorporate the use of sulfur. This is while environmental regulators, such as the US EPA, require an increased removal of sulfur from hydrocarbon fuels, thereby creating an abundance of sulfur, such that the refining industry is in need of a way to dispose of said abundance of sulfur.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: September 18, 2012
    Inventors: Richard Alan Haase, John Smaardyk
  • Publication number: 20110274598
    Abstract: Disclosed is a process for removing metals from waste, particularly electronic waste (or “e-waste”). The process generally includes the steps of dissolving at least some of the metals from the waste with nitric acid reagent and then causing at least some of the metals to precipitate as metal oxides and/or metal nitrates. NOx gases produced as by-product by the nitric acid dissolution of metallic components in the electronic waste are reused, in particular for generating permanganate when one of the metallic components comprises manganese.
    Type: Application
    Filed: April 14, 2009
    Publication date: November 10, 2011
    Inventor: James R. Akridge
  • Patent number: 5266201
    Abstract: The invention relates to a process for the purification of aqueous solutions polluted by nitrate ions. This process is characterised in that it consists in precipitating hydrated double or mixed calcium nitroaluminates, such as, in particular, hydrated calcium mononitroaluminate, by adding at least one agent supplying the element aluminium and at least one agent supplying the element calcium to the solutions to be treated, the overall mole ratio of the element aluminium to nitrate, Al/NO3, being superior to 1 and the overall mole ratio of calcium to nitrate, Ca/NO3, being superior to 2, and in that the precipitation reaction is performed with stirring and at a basic pH, preferably above 10.5.The process according to the invention is intende, in particular, to the treatment of polluted waters such as municipal waste water and factory effluents and to the treatment of liquid manure.
    Type: Grant
    Filed: April 26, 1993
    Date of Patent: November 30, 1993
    Assignee: Lafarge Fondu International
    Inventors: Jean-Pierre Letourneux, Alain Bourdeau
  • Patent number: 4865823
    Abstract: A method for recovering gallium, which comprises a capturing step of contacting an aqueous solution containing gallium to a chelating agent containing a water-insoluble substituted quinolinol as the active ingredient, to let the chelating agent capture gallium, and an eluting step of contacting an eluting solution composed of an aqueous solution of an acid or strong base containing said substituted quinolinol, to the chelating agent from the capturing step, to elute gallium therefrom.
    Type: Grant
    Filed: August 3, 1988
    Date of Patent: September 12, 1989
    Assignees: Mitsubishi Chemical Industries Limited, Nippon Light Metal Company, Ltd.
    Inventors: Yukinori Minagawa, Minoru Tanaka, Kunihiko Yamaguchi, Kazumasa Arai, Gouichi Muramatsu
  • Patent number: 4260589
    Abstract: Aluminum nitrate solutions are subjected to hydrolysis at elevated temperature and pressure, with the pressure being kept relatively low by continual bleeding of reactant gases from the reaction vessel. The resultant product is a noncrystalline alumina that may be readily converted to crystalline alumina by roasting.In addition, the discharged reactant gases are employed for leaching of clay to provide aluminum nitrate feed solution.
    Type: Grant
    Filed: July 10, 1979
    Date of Patent: April 7, 1981
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Barlane R. Eichbaum, Judith A. Eisele, Donald J. Bauer
  • Patent number: 4252777
    Abstract: The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.
    Type: Grant
    Filed: November 1, 1979
    Date of Patent: February 24, 1981
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William J. McDowell, Forest G. Seeley
  • Patent number: 4246239
    Abstract: Alumina values are extracted from clay by the steps of pelletizing into spherical particles, calcining the pellets in a fluidized bed reactor, extracting the clay in about 30-40% nitric acid, purifying the basic aluminum nitrate produced, crystallizing aluminum nitrate nonahydrate, decomposing the nonahydrate in at least three steps, calcining the produced alumina and reconstituting the NO.sub.x gases to nitric acid.
    Type: Grant
    Filed: July 27, 1979
    Date of Patent: January 20, 1981
    Assignee: Reynolds Metals Company
    Inventors: John L. Dewey, Charles E. Scott, James F. Kane, Claud L. Stratton, John C. Rushing, Robert H. Spoonts
  • Patent number: 4094955
    Abstract: Alumina monohydrate is produced by leaching calcined clay and subjecting the leach liquor to pressure hydrolysis wherein the vapor and heat resulting from the pressure hydrolysis are directly utilized for leaching of the calcined clay. The aluminum monohydrate may be roasted to yield alumina.
    Type: Grant
    Filed: June 24, 1977
    Date of Patent: June 13, 1978
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Donald J. Bauer, Judith A. Eisele, Barlane R. Eichbaum
  • Patent number: 3986866
    Abstract: A method is provided for recovering metal compounds and metals from ores, concentrates, alloys and other metal containing materials. The material containing said metals is leached in an aqueous solution of nitric acid at atmospheric pressure and temperatures which may vary from ambient to the atmospheric boiling point. An inorganic salt is admixed or formed in the solution to raise the atmospheric boiling point of said solution. The solution is heated to evaporate the water and to increase the concentration of the salt. The atmospheric boiling point of the solution increases with an increase in the salt concentration and causes an evolution of nitric acid or nitrogen containing gas and the sequential precipitation of metal compounds as the boiling point of the solution increases. The solution is filtered after each sequential precipitation to recover the metal compound or mixture of metal compounds which have precipitated as aforesaid.
    Type: Grant
    Filed: August 11, 1975
    Date of Patent: October 19, 1976
    Inventor: Lynn Wallace Coffer