Ternary Compound Patents (Class 423/371)
  • Publication number: 20150140660
    Abstract: The present invention provides a process of coating at least a portion of a substrate surface comprising contacting the surface with hydrogen cyanide monomeric units under conditions permitting polymerisation of the hydrogen cyanide monomeric units to form a polymer that coats the surface. Also provided is a substrate coated by a polymer according to the claimed process. Also provided is a method of forming a hydrocyanic acid-based hydrogel, the method comprising co-polymerisation in a solution, the solution comprising hydrogen cyanide monomer units and co-monomers.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 21, 2015
    Inventors: Helmut Thissen, Richard Evans, Aylin Koegler
  • Publication number: 20140162130
    Abstract: The present invention is directed to compositions comprising free standing and stacked assemblies of two dimensional crystalline solids, and methods of making the same.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 12, 2014
    Applicant: DREXEL UNIVERSITY
    Inventors: MICHEL W. BARSOUM, YURY GOGOTSI, MICHAEL NAGUIB ABDELMALAK, OLHA MASHTALIR
  • Publication number: 20140147365
    Abstract: The invention relates to a hydrocyanic acid containing bioresourced carbon, and to a method for producing a raw material mainly containing the same by reacting ammonia with methane or methanol optionally in the presence of air and/or oxygen, characterized in that at least one of the reagents selected from ammonia, methane and methanol is obtained from a biomass. The invention also relates to the uses of the raw material for producing acetone cyanohydrin, adiponitrile, methionine or methionine hydroxyl-analog, and sodium cyanide.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: ARKEMA FRANCE
    Inventor: JEAN-LUC DUBOIS
  • Patent number: 8668887
    Abstract: Methods and systems are provided for the in situ generation of polysulfide ions in a process stream including S2? and/or HS? ions. Methods and systems are also provided to ameliorate corrosion in a process stream containing an acid gas or a scrubbing agent solvent, and abate mercury and cyanide in process streams containing a scrubbing agent solvent.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 11, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon Bryce McGarvey, Robert J. Falkiner, David R. Slim, Bryan M. Knickerbocker
  • Patent number: 8641997
    Abstract: The invention relates to a method for producing shaped inorganic cyanide bodies, especially made of alkaline metal cyanides and alkaline earth metal cyanides, by pressing particulate inorganic cyanide obtained by means of a crystallization method. According to the invention, a cyanide crystallate separated from a mother liquor by means of a solid-liquid separation device and containing 2-15 wt. % water is fed to a forming device without the addition of an auxiliary forming agent and placed under pressure and compressed to form shaped bodies containing 0.1-12 wt. % water. The amount of water contained by the shaped bodies is always less than that contained in the crystallates used for the production thereof. Preferably, the crystallite is pressed out of a rotary filter or a centrifuge at a temperature of more than 40° C. to form shaped bodies containing 0.2-6 wt. % residual water. The inventive method can be carried out in a more economical manner than previously known methods using dried cyanide.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: February 4, 2014
    Assignee: CyPlus GmbH
    Inventors: Markus Jafeld, Stephan Schäflein, Norbert Steier, Annette Dickmann, Stefan Franke, Andreas Rubo, Manfred Sauer, Ernst Gail
  • Patent number: 8632743
    Abstract: Provided are methods of converting carbon dioxide to carbon nitrides. In a first reaction, carbon dioxide may be reacted with metal nitrides, such as Li3N, to form carbon nitrides in a fast and exothermic reaction. Also provided are methods of using product metal cyanamides from the first reaction to subsequently generate additional carbon nitrides.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: January 21, 2014
    Assignee: Michigan Technological University
    Inventor: Yun Hang Hu
  • Patent number: 8491736
    Abstract: The present invention relates to a method for crystallizing ammonium dinitramide (ADN), through spontaneous nucleation and crystal growth, from a solution containing said ammonium dinitramide (AND) dissolved in a solvent. Said solvent characteristically has a viscosity greater than or equal to 0.25 Pa s (250 cP) when said spontaneous nucleation is implemented. The ADN crystals obtained by said method have a median shape factor of 1 to 1.5 and are perfectly suitable for placement in the composition of energy materials.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: July 23, 2013
    Assignees: Herakles, Eurenco
    Inventors: Florent Muscatelli, Joel Renouard, Jean-Marc Bouchez
  • Patent number: 8430598
    Abstract: Provided is a method of remediating cyanide-contaminated soil. The method is provided to remediate soil contaminated with cyanide and treat the cyanide, which includes collecting the soil contaminated with first cyanide in a solid state and second cyanide in a gaseous or dissolved state, dissociating cyanide by mixing the soil with an alkali washing solution, dissolving the first cyanide in a solid state in the washing solution, and transferring the second cyanide in a dissolved state dissociated from the soil to the washing solution, dissociating the soil from the washing solution, precipitating the first cyanide in a solid state by acidifying the washing solution containing the cyanide, and performing post-treatment on the first cyanide after the first cyanide precipitated in a solid state is dissociated from the washing solution.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: April 30, 2013
    Assignee: Korea Institute of Geoscience and Mineral Resources (KIGAM)
    Inventors: Jae-Gon Kim, Jung-Hwa Lee, Young-Woo Choi, Yong-Chan Cho
  • Patent number: 8293203
    Abstract: A method of making nanosized copper (I) compounds, in particular, copper (I) halides, pseudohalides, and cyanocuprate complexes, in reverse micelles or microemulsions is disclosed herein. The method of the invention comprises (a) dissolving a copper (II) compound in the polar phase of a first reverse micelle or microemulsion, (b) dissolving a copper (II) to copper (I) reducing agent or a pseudohalide salt in the polar phase of a second sample of the same reverse micelle or microemulsion, (c) mixing the two reverse micelle/microemulsions samples to form nanometer sized copper (I) compounds and (d) recovering said nanometer sized copper (I) compounds. The present invention is also directed to the resultant nanosized copper (I) compounds, such as copper (I) chloride, copper (I) cyanide, and potassium cyanocuprate complexes having an average particle size of about 0.1 to 600 nanometers.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: October 23, 2012
    Assignee: Momentive Performance Materials Inc.
    Inventors: Kenrick M. Lewis, Chi-Lin O'Young
  • Patent number: 8133458
    Abstract: A reactor for converting methane, ammonia and oxygen and alkaline or alkaline earth hydroxides into alkaline or alkaline earth cyanides by two-stage reactions comprising a first stage with a gas inlet, wherein the first stage is formed by a cone with distribution plates providing an even gas distribution over the catalyst material wherein the distribution plates are located between the gas inlet of the reactor and catalyst material and the distribution plates being perforated with a number of holes, with the distribution plates spaced from each other in the flow direction of the gas, the first distribution plate(s) functioning mainly to distribute the gas, whereas the last distribution plate works as a heat radiation shield and as a distribution plate facing the catalyst material, and wherein the catalyst material is present in the form of catalyst gauze fixed by catalyst weights.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: March 13, 2012
    Assignee: EICPROC AS
    Inventor: Erik Fareid
  • Patent number: 8119090
    Abstract: Disclosed is a method for preparation of a nickel-carbonitride sphere, which includes preparing a melamine-formaldehyde resin, adding a nickel salt and a surfactant to the melamine-formaldehyde resin to prepare a nickel-melamine resin mixture, and conducting spray pyrolysis for the mixture to produce nickel-containing powder including nickel-carbonitride spheres. In addition, this method may further include thermal treatment of the nickel-containing powder.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 21, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Se-Yun Kim, Jun-Ho Kwon, Seung-Jun Heo
  • Publication number: 20110250696
    Abstract: Provided is a method for high concentration cation exchange metathesis of divalent ions such as calcium with univalent ions such as sodium or potassium. Due to the difference between ionic valences between the exchanged ions, the provided process behavior is strongly dependent upon the selection of resin properties and to total solution normality. A combination of resin properties and solution normality is provided to achieve the cation exchange.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 13, 2011
    Inventors: Marcus RAJCHEL, Michael F. RAY
  • Publication number: 20110183234
    Abstract: The invention has an object of providing catalysts that are not corroded in acidic electrolytes or at high potential, have excellent durability and show high oxygen reducing ability. An aspect of the invention is directed to a process wherein metal carbonitride mixture particles or metal oxycarbonitride mixture particles are produced from an organometallic compound of a Group IV or V transition metal, a metal salt of a Group IV or V transition metal, or a mixture of these compounds using laser light as a light source.
    Type: Application
    Filed: October 6, 2009
    Publication date: July 28, 2011
    Inventors: Yasuaki Wakizaka, Toshikazu Shishikura
  • Publication number: 20110150743
    Abstract: The invention relates to a hydrocyanic acid containing bioresource carbon, and to a method for producing a raw material mainly containing the same by reacting ammonia with methane or methanol optionally in the presence of air and/or oxygen, characterized in that at least one of the reagents selected from ammonia, methane and methanol is obtained from a biomass. The invention also relates to the uses of the raw material for producing acetone cyanohydrin, adiponitrile, methionine or methionine hydroxyl-analog, and sodium cyanide.
    Type: Application
    Filed: May 19, 2009
    Publication date: June 23, 2011
    Applicant: Arkema France
    Inventor: Jean-Luc Dubois
  • Publication number: 20110038780
    Abstract: Disclosed is a method for preparation of a nickel-carbonitride sphere, which includes preparing a melamine-formaldehyde resin, adding a nickel salt and a surfactant to the melamine-formaldehyde resin to prepare a nickel-melamine resin mixture, and conducting spray pyrolysis for the mixture to produce nickel-containing powder including nickel-carbonitride spheres. In addition, this method may further include thermal treatment of the nickel-containing powder.
    Type: Application
    Filed: June 25, 2010
    Publication date: February 17, 2011
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: JEUNG-KU KANG, Se-Yun Kim, Jun-Ho Kwon, Seung-Jun Heo
  • Publication number: 20100150811
    Abstract: A method of making nanosized copper (I) compounds, in particular, copper (I) halides, pseudohalides, and cyanocuprate complexes, in reverse micelles or microemulsions is disclosed herein. The method of the invention comprises (a) dissolving a copper (II) compound in the polar phase of a first reverse micelle or microemulsion, (b) dissolving a copper (II) to copper (I) reducing agent or a pseudohalide salt in the polar phase of a second sample of the same reverse micelle or microemulsion, (c) mixing the two reverse micelle/microemulsions samples to form nanometer sized copper (I) compounds and (d) recovering said nanometer sized copper (I) compounds. The present invention is also directed to the resultant nanosized copper (I) compounds, such as copper (I) chloride, copper (I) cyanide, and potassium cyanocuprate complexes having an average particle size of about 0.1 to 600 nanometers.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 17, 2010
    Applicant: MOMENTIVE PERFORMANCE MATERIALS INC.
    Inventors: Kenrick M. Lewis, Chi-Lin O'Young
  • Publication number: 20100143232
    Abstract: The present invention allows the relatively easy production of binary and ternary compounds of metals, including noble metals. Embodiments of the invention allow, for the first time, the production of novel compositions of metal compounds, such as thick, stress-free single-phase binary and ternary compositions of metals, and porous compositions of such compounds. As such, the present invention allows for the production of metal compounds and/or compositions of matter thereof that have not before been possible, thereby providing for important new materials that find use in a multitude of different applications, including medical device and non-medical device applications.
    Type: Application
    Filed: June 21, 2007
    Publication date: June 10, 2010
    Inventors: Benedict James Costello, Jeremy Frank, Vladimier Gelfandbein
  • Patent number: 7632480
    Abstract: Provided is a thermal expansion inhibitor which has a much broader application range and which can be used with ease. Used is a thermal expansion inhibitor comprising a manganese nitride crystal.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: December 15, 2009
    Assignee: Riken
    Inventors: Koshi Takenaka, Hidenori Takagi
  • Patent number: 7510694
    Abstract: The present invention relates to an environmentally benign process for the simultaneous preparation of nanocrystalline anatase titanium dioxide and hydrazine mohydrochloride, in substantial amounts from the acidic aqueous titanium tetrachloride solution by reacting with hydrazine monohydrate at ambient conditions of temperature and pressure. The process of the present invention is simple, easy to operate, pollution free, high in product purity and homogeneous in product particle.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: March 31, 2009
    Assignee: Council of Scientific & Industrial Research
    Inventors: Sunkara Vardhireddy Manorama, Kongara Madhusudan Reddy, Pratyay Basak, Chundayil Kalarickal Nisha, Chada Venkata Gopal Reddy
  • Publication number: 20090004087
    Abstract: Provided is a thermal expansion inhibitor which has a much broader application range and which can be used with ease. Used is a thermal expansion inhibitor comprising a manganese nitride crystal.
    Type: Application
    Filed: July 29, 2005
    Publication date: January 1, 2009
    Applicant: RIKEN
    Inventors: Koshi Takenaka, Hidenori Takagi
  • Publication number: 20080317655
    Abstract: The invention relates to a method for producing shaped inorganic cyanide bodies, especially made of alkaline metal cyanides and alkaline earth metal cyanides, by pressing particulate inorganic cyanide obtained by means of a crystallization method. According to the invention, a cyanide crystallate separated from a mother liquor by means of a solid-liquid separation device and containing 2-15 wt. % water is fed to a forming device without the addition of an auxiliary forming agent and placed under pressure and compressed to form shaped bodies containing 0.1-12 wt. % water. The amount of water contained by the shaped bodies is always less than that contained in the crystallates used for the production thereof. Preferably, the crystallite is pressed out of a rotary filter or a centrifuge at a temperature of more than 40° C. to form shaped bodies containing 0.2-6 wt. % residual water. The inventive method can be carried out in a more economical manner than previously known methods using dried cyanide.
    Type: Application
    Filed: August 26, 2008
    Publication date: December 25, 2008
    Inventors: Markus Jafeld, Stephan Schaflein, Norbert Steier, Annette Dickmann, Stefan Franke, Andreas Rubo, Manfred Sauer, Ernst Gail
  • Publication number: 20080102015
    Abstract: The present invention relates to a method for manufacturing a transition metal-carbon nanotube hybrid material using nitrogen as a medium. The present invention is characterized in that nitrogen-added carbon nanotube is grown in the presence of metal catalyst particles by reacting an hydrocarbon gas with a nitrogen gas by a chemical vapor deposition (CVD) and a transition metal-carbon nanotube hybrid material where a transition metal is uniformly attached to the entire carbon nanotube structure in which nitrogen with a great chemical reactivity is added as heterogeneous elements is chemically manufactured. Therefore, the present invention does not use an acid treatment required to attach transition-metal atoms to the carbon-nanotube, a surface treating process using a surfactant and the like and an inhibitor for preventing the coagulation of the transition metal so that a simplification of the process is obtained and the method is an environment-friendly method.
    Type: Application
    Filed: July 20, 2007
    Publication date: May 1, 2008
    Inventors: Jeung-Ku Kang, Seong-Ho Yang, Hyun-Seok Kim, Kyu-Sung Han, Se-Yun Kim, Jung-Woo Lee, Weon-Ho Shin, Jun-Hyeon Bae
  • Patent number: 6964932
    Abstract: A compound having a space spinel structure and the formula Si3-x Cx N4 wherein 0<x?1. An example of the compound is spinel silicon carbonitride. The compound of the invention may be made by providing a silicon carbo-diimide compound and subjecting the compound to elevated temperature and pressure conditions.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: November 15, 2005
    Inventors: Andreas Zerr, Edwin Rolf Balduin Kroke, Ralf Peter Riedel, Marcus Rolf Schwarz
  • Patent number: 6861038
    Abstract: A method of continuously producing a non-oxide ceramic formed of a metal constituent and a non-metal constituent. A salt of the metal constituent and a compound of the non-metal constituent and a compound of the non-metal constituent are introduced into a liquid alkali metal or a liquid alkaline earth metal or mixtures to react the constituents substantially submerged in the liquid metal to form ceramic particles. The liquid metal is present in excess of the stoichiometric amount necessary to convert the constituents into ceramic particles to absorb the heat of reaction to maintain the temperature of the ceramic particles below the sintering temperature. Ceramic particles made by the method are part of the invention.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: March 1, 2005
    Assignee: International Titanium Powder, LLC.
    Inventors: Donn Reynolds Armstrong, Stanley S. Borys, Richard Paul Anderson
  • Patent number: 6838070
    Abstract: The invention relates to a method of producing cyanuric chloride by trimerizing chlorocyan at a temperature of at least 250° C. on washed activated carbon as the catalyst. The service life of the catalyst can be improved by using an activated coal with an effective pore volume V eff of equal or greater 0.17 ml/g, with V eff being the result of pores with a pore diameter ranging from 0.5 to 7 nm.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: January 4, 2005
    Assignee: Degussa AG
    Inventors: Walter Boerner, Ralph Marquardt, Stephanie Schauhoff, Christine Schick, Rudolf Vanheertum
  • Patent number: 6800583
    Abstract: Catalyst suspensions for the ring-opening polymerization of alkylene oxides comprise a) at least one multimetal cyanide compound having a crystalline structure and a content of platelet-shaped particles of at least 30% by weight, based on the multimetal cyanide compound, and b) at least one organic complexing agent c) water and/or d) at least one polyether and/or e) at least one surface-active substance, with the proviso that at least component a) and at least two of the components b) to e) have to be present.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: October 5, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Kathrin Harre, Jörg Erbes, Reinhard Lorenz, Stephan Bauer, Thomas Ostrowski, Eva Baum, Dieter Junge, Edward Michael Dexheimer
  • Publication number: 20040009117
    Abstract: A method of making nanosized copper (I) compounds, in particular, copper (I) halides, pseudohalides, and cyanocuprate complexes, in reverse micelles or microemulsions is disclosed herein. The method of the invention comprises (a) dissolving a copper (II) compound in the polar phase of a first reverse micelle or microemulsion, (b) dissolving a copper (II) to copper (I) reducing agent or a pseudohalide salt in the polar phase of a second sample of the same reverse micelle or microemulsion, (c) mixing the two reverse micelle/microemulsions samples to form nanometer sized copper (I) compounds and (d) recovering said nanometer sized copper (I) compounds. The present invention is also directed to the resultant nanosized copper (I) compounds, such as copper (I) chloride, copper (I) cyanide, and potassium cyanocuprate complexes having an average particle size of about 0.1 to 600 nanometers.
    Type: Application
    Filed: April 16, 2003
    Publication date: January 15, 2004
    Applicant: CROMPTON CORPORATION
    Inventors: Kenrick M. Lewis, Chi-Lin O'Young
  • Patent number: 6649136
    Abstract: Methods for producing cyanide salts using a metathesis process using ion exchange to facilitate a double-decomposition reaction where components of a cyanide-containing compound are exchanged to produce a cyanide salt product are provided. In one embodiment of the invention, HCN may be converted to an alkali salt using a base. The alkali cyanide salt undergoes ion-exchange to yield the desired cyanide salt product. In another embodiment of the invention, hydrogen cyanide is directly converted to cyanide salts in an ion exchange bed without first being converted to a basic salt.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: November 18, 2003
    Inventors: Michael F. Ray, Marcus Rajchel
  • Patent number: 6613714
    Abstract: In multimetal cyanide complexes, more than 30% by weight of the primary particles have a platelet-like habit, i.e. the length and width of the primary particles is at least three times the thickness of the particles.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: September 2, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Georg Heinrich Grosch, Kathrin Harre, Jörg Erbes, Reinhard Lorenz, Stephan Bauer, Thomas Ostrowski, Eva Baum, Dieter Junge
  • Publication number: 20030143147
    Abstract: The invention relates to a method for producing shaped inorganic cyanide bodies, especially made of alkaline metal cyanides and alkaline earth metal cyanides, by pressing particulate inorganic cyanide obtained by means of a crystallization method. According to the invention, a cyanide crystallate separated from a mother liquor by means of a solid-liquid separation device and containing 2-15 wt. % water is fed to a forming device without the addition of an auxiliary forming agent and placed under pressure and compressed to form shaped bodies containing 0.1-12 wt. % water. The amount of water contained by the shaped bodies is always less than that contained in the crystallates used for the production thereof. Preferably, the crystallite is pressed out of a rotary filter or a centrifuge at a temperature of more than 40° C. to form shaped bodies containing 0.2-6 wt. % residual water. The inventive method can be carried out in a more economical manner than previously known methods using dried cyanide.
    Type: Application
    Filed: November 18, 2002
    Publication date: July 31, 2003
    Inventors: Markus Jafeld, Stephan Schflein, Norbert Steier, Annette Dickmann, Stefan Franke, Andreas Rubo, Manfred Sauer, Ernst Gail
  • Publication number: 20020044905
    Abstract: Methods for producing cyanide salts using a metathesis process using ion exchange to facilitate a double-decomposition reaction where components of a cyanide-containing compound are exchanged to produce a cyanide salt product are provided. In one embodiment of the invention, HCN may be converted to an alkali salt using a base. The alkali cyanide salt undergoes ion-exchange to yield the desired cyanide salt product. In another embodiment of the invention, hydrogen cyanide is directly converted to cyanide salts in an ion exchange bed without first being converted to a basic salt.
    Type: Application
    Filed: March 27, 2001
    Publication date: April 18, 2002
    Inventors: Michael F. Ray, Marcus Rajchel
  • Patent number: 6290925
    Abstract: Flowable cyanuric chloride containing hydrophilic silica as a flow auxiliary, the hydrophilic silica is a precipitated silica or silica gel having an average agglomerate diameter of less than 15 &mgr;m. Preferred products exhibit improved bulk density, reactivity and/or flowability properties.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: September 18, 2001
    Assignee: Degussa AG
    Inventors: Josef Leutner, Manfred Schmidt
  • Patent number: 6231980
    Abstract: The invention provides crystalline nanoscale particles and tubes made from a variety of stoichiometries of BxCyNz where x, y, and z indicate a relative amount of each element compared to the others and where no more than one of x, y, or z are zero for a single stoichiometry. The nanotubes and nanoparticles are useful as miniature electronic components, such as wires, coils, schotky barriers, diodes, etc. The nanotubes and nanoparticles are also useful as coating that will protect an item from detection by electromagnetic monitoring techniques like radar. The nanotubes and nanoparticles are additionally useful for their mechanical properties, being comparable in strength and stiffness to the best graphite fibers or carbon nanotubes. The inventive nanoparticles are useful in lubricants and composites.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: May 15, 2001
    Assignee: The Regents of the University of California
    Inventors: Marvin Lou Cohen, Alexander Karlwalter Zettl
  • Patent number: 6200545
    Abstract: The invention provides a process for recovering hydrogen cyanide from an aqueous solution by extracting the hydrogen cyanide into an organic solvent phase. The organic solvent may comprise a neutral organophosphorous compounds, such as compounds selected from the group consisting of alkyl or aryl substituted phosphates, phosphonates and phosphine oxides. In alternative embodiments the organophosphorous compound is tri-butyl phosphate, di-butyl-butyl-phosphonate or tri-alkyl phosphine oxides. The organic solvent may be diluted in an organic diluent, such as an aliphatic or kerosene-type diluent. Alternative dilutions may be used, such as 75%, 50% or 25%. In some embodiments, the pH of the aqueous solution containing dissolved cyanide may be adjusted to between 2 and 8, or between 3 and 7, or between 4 and 6. The organic solvent may be contacted following extraction with a basic aqueous solution to strip cyanide from the organic solvent into a basic aqueous cyanide strip solution.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: March 13, 2001
    Inventor: David Bruce Dreisinger
  • Patent number: 6183710
    Abstract: A sodium cyanide composition having a paste-like consistency is provided which comprises sodium cyanide, a base, water, and a rheology modifier. Also provided are processes for producing and using the composition. The composition can be used in applications that require sodium cyanide solution.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: February 6, 2001
    Assignee: E. I du Pont de Nemours and Company
    Inventors: Janet Marie Rogers, Thomas Peter Tufano
  • Patent number: 6162263
    Abstract: Metal cyanide suitable for shipment is prepared by introducing an aqueous metal cyanide feed stream to a crystallizer to form a slurry of metal cyanide crystals in their mother liquor. The crystallization step occurs at a temperature between 30.degree. C. and 70.degree. C., and preferably between 50.degree. C. to about 60.degree. C. The metal cyanide crystals are separated from their mother liquor to form a wet cake product containing from about 75 to 98 wt. % anhydrous metal cyanide crystals, from about 4 to 24 wt. % water, and from about 1 to 5 wt. % of metal hydroxide. The wet cake product is placed into a shipping container for shipment to a desired location. A metal cyanide solution is prepared by dissolving the wet cake product.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: December 19, 2000
    Assignee: Mining Services International
    Inventors: John T. Day, Clayton Odum, Mark Reynolds
  • Patent number: 6132695
    Abstract: A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: October 17, 2000
    Assignee: The Regents of the University of California
    Inventors: Joseph Barrera, David C. Smith
  • Patent number: 5958588
    Abstract: A process for the direct preparation of alkali metal cyanide and alkaline earth metal cyanide granules from an HCN-containing gas and an aqueous solution or suspension of an alkali metal or alkaline earth metal hydroxide. The reaction is performed in a reactor for fluidized bed spray granulation, wherein a solution or suspension of the hydroxide is sprayed onto seed granules of the cyanide being prepared and at the same time a hydrogen cyanide-containing gas is supplied to the reactor and water is evaporated by means of a fluidizing gas. The preferred fluidizing gas is steam. The reaction gases from a BMA or Andrussow process may be quenched with water and the gas mixture used as fluidizing gas. By using a CO.sub.2 -free HCN-containing gas, alkali metal cyanide granules with advantageous properties, including a combined concentration of alkali metal carbonate and alkali metal formate of less then 0.4 wt. %, are obtainable.
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: September 28, 1999
    Assignee: Degussa-Huls AG
    Inventors: Rudiger Schutte, Hans Christian Alt, Catrin Becker-Balfanz, Manfred Sauer, Lukas Von Hippel, Oliver Feuer, Jurgen Lorosch
  • Patent number: 5914075
    Abstract: New alkali metal cyanide granulates based on sodium cyanide or potassium cyanide and a method for their preparation are disclosed. Commercially available alkali metal cyanide granulates consist of irregular particles; disadvantages are in particular the tendencies to form dust and to cake. The disclosed alkali metal cyanide granulates demonstrate a reduced tendency to cake and virtually no abrasion. The granulates are characterized by essentially spherical particles with particle diameters in the range 0.1 to 20 mm, a bulk density of more than 600 g/dm.sup.3, an abrasion of less than 1%, and a caking index of at most 4. The granulates can be prepared by fluidized bed spray granulation involving spraying an aqueous solution containing alkali metal cyanide onto alkali metal cyanide nuclei in a fluidized bed and evaporating the water.
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: June 22, 1999
    Assignee: Degussa Aktiengesellschaft
    Inventors: Herbert Riemenschneider, Christian Alt, Martina Claus, Juergen Loroesch, Josef Leutner, Heinz Moench, Ruediger Schuette, Stefan Schulze
  • Patent number: 5756410
    Abstract: A submicrometer transition metal carbonitride is produced having the formula:M.sub.a M'.sub.b M".sub.(1-a-b) (C.sub.1-x) N.sub.x).sub.zwherein M is Ti, Zr or Hf; M' is V, Nb or Ta; M" is Cr, Mo or W; a ranges from 0 to 1; b ranges from 0 to 1 with the proviso that (a +b) is less than or equal to 1; x ranges from about 0.02 to about 0.95 and z ranges from about 0.9 to about 2. The transition metal carbonitride is produced by mixing (a) a transition metal oxide source of a transition metal in the above formula and (b) a carbon source such as carbon black.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: May 26, 1998
    Assignee: The Dow Chemical Company
    Inventors: Stephen D. Dunmead, Alan W. Weimer
  • Patent number: 5683663
    Abstract: A method of treating sodium cyanide in spent carbonaceous and/or refractory material, i.e., spent potlining, from an electrolytic cell for producing aluminum from alumina dissolved in a sodium-containing electrolyte, wherein sodium cyanide forms in the carbonaceous material during operation of the cell. The method comprises grinding the spent carbonaceous and/or refractory material containing sodium cyanide to provide particles of spent carbonaceous material and adding a reactive material capable of reacting with the sodium cyanide to provide a mixture of reactive material and spent potlining material. Thereafter, the mixture is heated to a temperature effective in reacting the reactive material with the sodium cyanide to destroy the sodium cyanide in the spent potlining.
    Type: Grant
    Filed: June 12, 1996
    Date of Patent: November 4, 1997
    Inventors: Rudolph Keller, C. Norman Cochran, David B. Stofesky
  • Patent number: 5674617
    Abstract: New alkali metal cyanide granulates based on sodium cyanide or potassium cyanide and a method for their preparation are disclosed. Commercially available alkali metal cyanide granulates consist of irregular particles; disadvantages are in particular the tendencies to form dust and to cake. The disclosed alkali metal cyanide granulates demonstrate a reduced tendency to cake and virtually no abrasion. The granulates are characterized by essentially spherical particles with particle diameters in the range 0.1 to 20 mm, a bulk density of more than 600 g/dm.sup.3, an abrasion of less than 1%, and a caking index of at most 4. The granulates can be prepared by fluidized bed spray granulation involving spraying an aqueous solution containing alkali metal cyanide onto alkali metal cyanide nuclei in a fluidized bed and evaporating the water.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: October 7, 1997
    Assignee: Degussa Aktiengesellschaft
    Inventors: Herbert Riemenschneider, Christian Alt, Martina Claus, Jurgen Lorosch, Josef Leutner, Heinz Monch
  • Patent number: 5484751
    Abstract: Metal and/or metalloid nitride and/or carbide powders, e.g., amorphous or crystalline spherical particulates having a mean diameter greater than 0.2 .mu.m 90% of which being less than 0.4 .mu.m in size, well suited for the production of ceramic shaped articles exhibiting good thermomechanical properties and useful, for example, in the automotive and aeronautic fields, are prepared by flash pyrolyzing coarse drops of a precursor compound convertible into such nitride and/or carbide, at an elevated temperature and for such period of time as to convert the precursor compound into said amorphous or crystalline powder.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: January 16, 1996
    Assignee: Elf Atochem S.A.
    Inventors: Christian Colombier, Jean-Pierre Disson, Jean-Pierre Cuer
  • Patent number: 5476530
    Abstract: This invention relates to submicron carbonitride powders of titanium and, optionally, other transition metals of the fifth (Me.sup.(5)) and sixth (Me.sup.(6)) secondary group of the periodic system of elements which have the following general molar composition: (Ti.sub.L Me.sub.M.sup.(5) Me.sup.(6).sub.1-L-M) (C.sub.1-y N.sub.y).sub.z with 0.50.ltoreq.L.ltoreq.1; 0.ltoreq.m.ltoreq.0.15; 0.ltoreq.(1-L-M).ltoreq.0.50; 0.10.ltoreq.y.ltoreq.0.95 and z.gtoreq.0.90, to a process for the production of these powders and to their use.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: December 19, 1995
    Assignee: Hermann C. Starck GmbH & Co. KG
    Inventors: Benno Gries, Gerhard Gille, Mario Salvadori
  • Patent number: 5370853
    Abstract: This invention relates to inorganic microporous solids having a framework structure of AX.sub.4 -tetrahedrons linked by their corners, wherein A denotes at least one electropositive element selected from the group consisting of Be, B, Al, Ga, C, Si, Ge, P, As and S, and at least 10 of the X atoms are nitrogen. The invention also relates to a process for the preparation of these solids.
    Type: Grant
    Filed: January 11, 1993
    Date of Patent: December 6, 1994
    Assignee: Bayer AG
    Inventors: Wolfgang Schnick, Jan Lucke
  • Patent number: 5290525
    Abstract: Processes are provided for substantially removing base metals and/or cyanide from gold-barren solutions resulting from gold ore processing.
    Type: Grant
    Filed: September 14, 1992
    Date of Patent: March 1, 1994
    Assignee: Ortech Corporation
    Inventor: Vaikuntam I. Lakshmanan
  • Patent number: 5264192
    Abstract: A method for treating cyanide-contaminated water in order to remove dissolved (e.g. free) cyanide (HCN and/or CN.sup.-) therefrom. Cyanide-contaminated water is a significant problem in the gold processing industry wherein cyanide compounds are used to remove gold from ore. The remaining cyanide solution after gold extraction is treated to reduce free cyanide levels therein by combining the solution with a crystalline waste by-product of the metal galvanizing industry having the following formula: (Fe.multidot.Zn)SO.sub.4 .multidot.7H.sub.2 O. This material preferably has a zinc content of about 1-14% by weight, and is added to the water in an amount equal to about 1-5 pounds per ton of ore being processed. As a result, a stable, solid, non-toxic complex is produced from the toxic free cyanide materials. This is accomplished without the generation of harmful acids, heavy metals, excessive iron levels or other undesired by-products.
    Type: Grant
    Filed: May 21, 1992
    Date of Patent: November 23, 1993
    Inventors: Thomas C. Shutt, Richard H. Eaman
  • Patent number: 5215945
    Abstract: A powdered admixture of a boron, carbon, nitrogen or silicon derivative of a first metal is combined with a source of a second metal and, optionally, a source of a third metal or an iron-group metal, subjected to densification conditions (heat and pressure), partially reacted and converted to a hard, wear resistant material. The wear resistant material contains an amount of the first metal derivative as well as a material of varying stoichiometry which is the partial reaction product of components of the powdered admixture The material may also contain residual, unreacted portions of components other than the first metal derivative. Articles formed from this material can be useful as, for example, nozzles in abrasive or nonabrasive waterjet cutting machines and various parts of wire drawing apparatus.
    Type: Grant
    Filed: December 13, 1991
    Date of Patent: June 1, 1993
    Assignee: The Dow Chemical Company
    Inventors: Ellen M. Dubensky, Edward E. Timm, Ann M. McCombs, Julie L. Board
  • Patent number: 5171557
    Abstract: Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: December 15, 1992
    Assignee: Ford Motor Company
    Inventors: Gary M. Crosbie, Ronald L. Predmesky, John M. Nicholson
  • Patent number: 5071813
    Abstract: An eta phase composition in powder form, prepared in the absence of sulfur or sulfur bearing compounds, having a surface area greater than about 2m.sup.2 /g and consisting of X.sub.6 Y.sub.6 Z.sub.a wherein X is at least one element selected from the group consisting of Mo and W, Y is at least one element selected from the group consisting of Fe, Co, Ni, Mo and W, Z is at least one element selected from the group consisting of C, N and combinations thereof such that when Z is N, a is greater than or equal to 1 but less than or equal to 2 and when Z is C, a is greater than 1 but less than or equal to 2 except when Z is C and Y is Fe, then a is greater than or equal to 1 but less than or equal to 2. The eta phase may be a carbide, nitride or carbonitride. A method for producing the eta-phase composition includes providing a precursor compound including at least two eta-phase forming metals, and a ligand containing carbon, nitrogen or combinations thereof.
    Type: Grant
    Filed: April 20, 1990
    Date of Patent: December 10, 1991
    Assignee: Exxon Research & Engineering Company
    Inventors: Edwin L. Kugler, Larry E. McCandlish, Allan J. Jacobson, Russell R. Chianelli