Sulfide Of Cd, Zn, Or Hg Patents (Class 423/566.1)
  • Patent number: 7022303
    Abstract: Polycrystalline materials of macroscopic size exhibiting Single-Crystal-Like properties are formed from a plurality of Single-Crystal Particles, having Self-Aligning morphologies and optionally ling morphology, bonded together and aligned along at least one, and up to three, crystallographic directions.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: April 4, 2006
    Assignee: Rutgers, The State University
    Inventors: Richard E. Riman, Larry E. McCandlish
  • Patent number: 7018605
    Abstract: A method of sulfidation removal of zinc using hydrogen sulfide is provided, desirably at a temperature at 60° C. or lower, wherein in a container that is pressurized at 0.1 MPa or less with respect to atmospheric pressure, by making the pH of the solution 1.5 to 4.0, and the concentration of hydrogen sulfide in gas 2 volume % or greater in equilibrium with the hydrogen sulfide dissolved in the solution, the zinc in solution is removed by sulfidation to 1 mg/liter or less.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: March 28, 2006
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroshi Kobayashi, Yoshitomo Ozaki, Masaki Imamura
  • Patent number: 7001583
    Abstract: A product and method for the removal of pollutant heavy metals from aqueous solutions which precludes the end user from storing, handling, feeding and controlling hazardous soluble sulfide materials. The product is a slurry which includes a mixture of a liquid medium and an essentially insoluble salt wherein the salt is the reaction product of heavy metal ions, preferably selected from Mn++ ions, Fe++ ions, and Fe+++ ions, and sulfide ions derived from soluble sulfide sources such as sodium sulfide, hydrogen sulfide, and sodium hydrosulfide. Addition of the subject slurry to a wastewater stream will effect the precipitation of heavy metals with lesser equilibrium sulfide ion concentrations than that of the essentially insoluble salt. Solids collected by this method may be returned to subsequent wastewater streams for additional removal of heavy metals by any excess heavy metal sulfide salt.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: February 21, 2006
    Assignee: Southern Water Treatment
    Inventor: Gregory S. Bowers
  • Patent number: 6972120
    Abstract: A method of removing metallic mercury and ionic mercury from flue gases, especially of a power plant, is provided. A gas that contains sulfur dioxide, or other adequate amounts of sulfur in the form of H2S or COS, and a gas that contains hydrogen, are conveyed to a catalyzer for producing a gas that contains elemental sulfur and hydrogen sulfide. This gas is conveyed to flue gas upstream of a separator, wherein mercury in the flue gas reacts with the sulfur and ionic sulfur in the gas and is separated out in the separator.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: December 6, 2005
    Assignee: FISIA Deutschland GmbH
    Inventors: Reinhard Holste, Wolfgang Fey
  • Patent number: 6896817
    Abstract: A product and method for the removal of pollutant heavy metals from aqueous solutions which precludes the end user from storing, handling, feeding and controlling hazardous soluble sulfide materials. The product is a slurry which includes a mixture of a liquid medium and an essentially insoluble salt wherein the salt is the reaction product of heavy metal ions, preferably selected from Mn++ ions, Fe++ ions, and Fe+++ ions, and sulfide ions derived from soluble sulfide sources such as sodium sulfide, hydrogen sulfide, and sodium hydrosulfide. Addition of the subject slurry to a wastewater stream will effect the precipitation of heavy metals with lesser equilibrium sulfide ion concentrations than that of the essentially insoluble salt. Solids collected by this method may be returned to subsequent wastewater streams for additional removal of heavy metals by any excess heavy metal sulfide salt.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: May 24, 2005
    Inventor: Gregory S. Bowers
  • Patent number: 6869545
    Abstract: The present invention provides new compositions containing colloidal nanocrystals with high photoluminescence quantum yields, new synthetic methods for the preparation of highly luminescent colloidal nanocrystals, as well as methods to control the photoluminescent properties of colloidal nanocrystals. The new synthetic methods disclosed herein allow photoemission brightness (quantum yield) to be correlated with certain adjustable nanocrystal growth parameters associated with a given synthetic scheme.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: March 22, 2005
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Lianhua Qu
  • Patent number: 6855859
    Abstract: Chlorine and sulfide species are separately introduced to a flue gas passing through a scrubber in order to remove the elemental and oxidized mercury from the gas through the precipitation of mercuric sulfide at near 100% efficiency.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: February 15, 2005
    Assignees: The Babcock & Wilcox Company, McDermott Technology Inc.
    Inventors: Paul S. Nolan, Ralph T. Bailey, William Downs
  • Patent number: 6841142
    Abstract: Nanotubes of transition metal chalcogenides as long as 0.2-20 microns or more, perfect in shape and of high crystallinity, are synthesized from a transition metal material, e.g. the transition metal itself or a substance comprising a transition metal such as an oxide, water vapor and a H2X gas or H2 gas and X vapor, wherein X is S, Se or Te, by a two-step or three-step method including first producing nanoparticles of the transition metal as long as 0.3 microns, and then annealing in a mild reducing atmosphere of the aforementioned gas or gas mixture. The transition metal chalcogenide is preferably WS2 or WSe2. Tips for scanning probe microscopy can be prepared from said long transition metal chalcogenide nanotubes.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: January 11, 2005
    Assignee: Yeda Research and Development Co., Ltd.
    Inventors: Reshef Tenne, Aude Rothschild, Moshe Homyonfer
  • Publication number: 20040091410
    Abstract: A process of preparing an inorganic compound is disclosed, comprising the steps of (a) allowing at least an inorganic raw material compounds (A) and an inorganic raw material compound (B) which are different in solubility in water to react with each other in the presence of a reaction solvent with stirring to deposit an inorganic compound (C), while allowing a part of each of the compound (A) and compound (B) to exist as a solid; and
    Type: Application
    Filed: October 29, 2003
    Publication date: May 13, 2004
    Applicant: Konica Minolta Holdings, Inc.
    Inventors: Hiroki Nakane, Syoji Matsuzaka
  • Patent number: 6733739
    Abstract: Sulphides are prepared by combining a dithionite compound with an aqueous alkaline solution of an appropriate cation or mixture of cations. On heating the corresponding sulphides are precipitated. The dithionite compound may be a dithionite dianion which is produced as an intermediary when thiourea dioxide is used as a starting material in the solution. Examples of appropriate cations are zinc (as zinc acetate) and copper (as copper acetate). The precipitate is dried and subsequently fired to produce high quality sulphides which may be used as phosphors or other optoelectronic materials.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: May 11, 2004
    Inventors: Aron Vecht, Dominic Andrew Davies
  • Publication number: 20040052673
    Abstract: A method for producing fine or ultra fine powder particles comprising mixing a metal alkoxide with a non-metallic hydride in an organic solvent, agitating the mixed solution, and then burning the mixed solution. The burning process comprises igniting the solution directly or burning the solution in situ. A self-sustaining flame will result. When the precursor solution burns, the metallic compound will be co-fired with the organic solvent. As a result, fine or ultra fine particles of mixed metal will burst from the flame, or thrust through the flame and be synthesized.
    Type: Application
    Filed: July 17, 2003
    Publication date: March 18, 2004
    Inventor: Fukuo Huang
  • Publication number: 20030172868
    Abstract: This invention relates to a method for preparing a Zinc Sulfide powder, and provides a method for preparing a single crystalline powder of Zinc Sulfide (ZnS) a high crystallinity comprising a step of conducting a hydrothermal reaction of a) Zinc Oxide or Zinc acetate as Zinc source and b) thioacetamide or thiourea as Sulfur source at a temperature of 180 to 230° C. and a fluorescent substance using the same as a source.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 18, 2003
    Inventors: Jun-Seok Nho, Seung-Beom Cho, Chang-Seok Ryoo, Kwang-Hee Lee, Tae-Hyun Kwon
  • Publication number: 20030059354
    Abstract: A method of manufacturing fine particles of the invention includes introducing a reactive gas flow containing a fine particle source material into a reactor from one side, growing fine particles in a gas phase by heating the fine particle source material in the reactive gas flow, introducing a diluting gas flow into the reactor from another side being almost counter-flow to the reactive gas flow, equalizing flow rates of the reactive gas flow and the diluting gas flow substantially with respect to a cross section of a flow channel, and then stopping growth of the fine particles by merging the reactive gas flow and the diluting gas flow.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 27, 2003
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Isao Matsui
  • Patent number: 6436183
    Abstract: Shaped parts made of synthetic organic polymers have a good transparency in the range of visible light, good fire-proofing properties and a good remission from infrared radiation if they contain 1 to 45% by volume transparent zinc sulphide pigment with a mean particle size d50 in the range from 1 to 14 &mgr;m.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: August 20, 2002
    Assignee: Lurgi AG Abtellung Patente, A-VRP
    Inventors: Djamschid Amirzadeh, Jochen Winkler
  • Patent number: 6403044
    Abstract: The present invention is directed to a system and method for converting hazardous speciated and elemental mercury-containing wastes to environmentally acceptable wastes by mixing the wastes in the presence of a polysulfide, water, and an mercury-reactive material, such as elemental sulfur.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: June 11, 2002
    Assignee: ADA Technologies, Inc.
    Inventors: John E. Litz, Thomas Broderick, Robin M. Stewart
  • Patent number: 6379635
    Abstract: A process for preparing a nanocrystalline material comprising at least a first ion and at least a second ion different from the first ion, and wherein at least the first ion is a metal ion, is described. The process comprises contacting a metal complex comprising the first ion and the second ion with a dispersing medium suitable to form the nanocrystalline material and wherein the dispersing medium is at a temperature to allow formation by pyrolysis of the nanocrystalline material when contacted with the metal complex.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: April 30, 2002
    Assignee: Imperial College of Science, Technology & Medicine
    Inventors: Paul O'Brien, Tito Trin Dade
  • Patent number: 6379585
    Abstract: Sulphides and selenides are prepared by dissolving sulphur or selenium in an aqueous or non-aqueous solution of hydrazine hydrate. The solution is combined with a solution of an appropriate cation to precipitate the corresponding sulphide or selenide. Solutions of two or more cations may be used to produce ternary compounds of sulphur and selenium, for example thio-gallates. Likewise both sulphur and selenium can be used together to produce sulpho-selenides. The method is particularly applicable to the production of doped phosphors by the inclusion of solutions containing the appropriate dopant.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: April 30, 2002
    Inventors: Aron Vecht, David William Smith
  • Publication number: 20010008622
    Abstract: The machinability of water-clear zinc sulfide articles produced by chemical vapor deposition and high temperature, high isostatic pressure (HIP) treatment is enhanced by extending the time over which the article is cooled following the HIP treatment. The resulting low stress, water-clear zinc sulfide articles can be more accurately finished/machined to precise shapes, such as are required in optical applications, than was previously possible.
    Type: Application
    Filed: January 13, 2001
    Publication date: July 19, 2001
    Applicant: CVD Inc.
    Inventor: Jitendra S. Goela
  • Publication number: 20010005495
    Abstract: A process for preparing a nanocrystalline material comprising at least a first ion and at least a second ion different from the first ion, and wherein at least the first ion is a metal ion, is described. The process comprises contacting a metal complex comprising the first ion and the second ion with a dispersing medium suitable to form the nanocrystalline material and wherein the dispersing medium is at a temperature to allow formation by pyrolysis of the nanocrystalline material when contacted with the metal complex.
    Type: Application
    Filed: September 9, 1998
    Publication date: June 28, 2001
    Applicant: Paul O'Brien
    Inventors: PAUL O'BRIEN, TITO TRINDADE
  • Patent number: 6193908
    Abstract: Electroluminescent phosphor powders and a method for making phosphor powders. The phosphor powders have a small particle size, narrow particle size distribution and are substantially spherical. The method of the invention advantageously permits the economic production of such powders. The invention also relates to improved devices, such as electroluminescent display devices, incorporating the phosphor powders.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: February 27, 2001
    Assignee: Superior MicroPowders LLC
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, James Caruso, Daniel J. Skamser, Quint H. Powell, Klaus Kunze