Manganese (e.g., Manganate, Etc.) Patents (Class 423/599)
  • Publication number: 20150105246
    Abstract: The effect of aging temperature on oxygen storage materials (OSM) substantially free from platinum group (PGM) and rare earth (RE) metals is disclosed. Samples of ZPGM-ZRE metals OSM, hydrothermally aged at a plurality of high temperatures are found to have significantly high oxygen storage capacity (OSC) and phase stability than conventional PGM catalysts with Ce-based OSM. ZPGM-ZRE metals OSM includes a formulation of Cu—Mn stoichiometric spinel structure deposited on Nb—Zr oxide support and may be converted into powder to be used as OSM application or coated onto catalyst substrate. ZPGM-ZRE metals OSM, after aging condition, presents enhanced level of thermal stability and OSC property which shows improved catalytic activity than conventional PGM catalysts including Ce-based OSM. ZPGM-ZRE metals OSM may be suitable for a vast number of applications, and more particularly in underfloor catalyst systems.
    Type: Application
    Filed: July 17, 2014
    Publication date: April 16, 2015
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 8992794
    Abstract: A method for preparing a layered oxide cathode using a two step calcination procedure, wherein the first step includes pre-calcination utilizing a rotary calciner.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: March 31, 2015
    Assignee: BASF Corporation
    Inventors: Ivan Petrovic, Anthony Thurston, Stephen Sheargold
  • Patent number: 8980475
    Abstract: Process for preparing lithium mixed metal oxides which comprise essentially lithium, manganese, cobalt and nickel as metal atoms and have a stoichiometric ratio of lithium to the total transition metals of greater than 1, which comprises a) the preparation of a mixture designated as intermediate (B) which comprises essentially lithium-comprising mixed metal hydroxides and lithium-comprising mixed metal oxide hydroxides, where manganese, cobalt and nickel are comprised in the ratio (1-a-b):a:b and the oxidation state averaged over all ions of manganese, cobalt and nickel is at least 4-1.75a-1.75b, where 0?a?0.5 and 0.1?b?0.8, by a thermal treatment carried out with continual mixing and in the presence of oxygen of a mixture (A) comprising at least one transition metal compound and at least one lithium salt (L), during which L does not melt, and b) the thermal treatment carried out without mixing and in the presence of oxygen of the intermediate (B).
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: March 17, 2015
    Assignee: BASF SE
    Inventors: Simon Schroedle, Hartmut Hibst, Jordan Keith Lampert, Mark Schweter, Ivan Petrovic
  • Patent number: 8974764
    Abstract: A composition is described that includes a perovskite of the formula LaMO3, where M is at least one element selected from among iron, aluminum or manganese, in the form of particles dispersed on an alumina or aluminum oxyhydroxide substrate, wherein after calcination at 700° C. for 4 hours, the perovskite is in the form of a pure crystallographic phase, and in that the size of the perovskite particles does not exceed 15 nm. The described composition can be used in the field of catalysis.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: March 10, 2015
    Assignee: Rhodia Operations
    Inventors: Simon Ifrah, Olivier Larcher, Rui Jorge Coelho Marques, Michael Lallemand, Julien Hernandez
  • Publication number: 20150037678
    Abstract: Provided are a cathode active material including polycrystalline lithium manganese oxide and a sodium-containing coating layer on a surface of the polycrystalline lithium manganese oxide, and a method preparing the same. Since the cathode active material according to an embodiment of the present invention may prevent direct contact between the polycrystalline lithium manganese oxide and an electrolyte solution by including the sodium-containing coating layer on the surface of the polycrystalline lithium manganese oxide, the cathode active material may prevent side reactions between the cathode active material and the electrolyte solution. In addition, since limitations, such as the Jahn-Teller distortion and the dissolution of Mn2+, may be addressed by structurally stabilizing the polycrystalline lithium manganese oxide, tap density, life characteristics, and charge and discharge capacity characteristics of a secondary battery may be improved.
    Type: Application
    Filed: October 15, 2014
    Publication date: February 5, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Ick Soon Kwak, Seung Beom Cho, Hwa Seok Chae
  • Publication number: 20150034861
    Abstract: In at least one embodiment, a rechargeable battery is provided comprising an anode having an active material including MSb2O4 having a purity level of greater than 93 percent by weight, wherein M is a metal. The metal may have an oxidation state of 2+ and may include transition metals and/or alkali-earth metals. The anode active material may be synthesized using metal acetates or metal oxides. The synthesis may include heating at a first temperature to remove oxygen and water and reacting at a second temperature to form the MSb2O4 structure, which may be a spinel crystal structure.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: Ford Global Technologies, LLC
    Inventor: Kevin James Rhodes
  • Patent number: 8932545
    Abstract: A method is provided for the synthesis of a mesoporous lithium transition metal compound, the method comprising the steps of (i) reacting a lithium salt with one or more transition metal salts in the presence of a surfactant, the surfactant being present in an amount sufficient to form a liquid crystal phase in the reaction mixture (ii) heating the reaction mixture so as to form a sol-gel and (iii) removing the surfactant to leave a mesoporous product. The mesoporous product can be an oxide, a phosphate, a borate or a silicate and optionally, an additional phosphate, borate or silicate reagent can be added at step (i). The reaction mixture can comprise an optional chelating agent and preferably, the reaction conditions at steps (i) and (ii) are controlled so as to prevent destabilization of the liquid crystal phase. The invention is particularly suitable for producing mesoporous lithium cobalt oxide and lithium iron phosphate.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: January 13, 2015
    Assignee: Qinetiq Limited
    Inventors: Gary Owen Mepsted, Emmanuel Imasuen Eweka
  • Patent number: 8926860
    Abstract: The present invention relates to a cathode active material with whole particle concentration gradient for a lithium secondary battery, a method for preparing same, and a lithium secondary battery having same, and more specifically, to a composite cathode active material, a method for manufacturing same, and a lithium secondary battery having same, the composite cathode active material having excellent lifetime characteristics and charge/discharge characteristics through the stabilization of crystal structure as the concentration of a metal comprising the cathode active material shows concentration gradient in the whole particle, and having thermostability even in high temperatures.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Industry-University Cooperation Foundation Hanyang University
    Inventors: Yang-Kook Sun, Hyung Joo Noh
  • Patent number: 8906553
    Abstract: A cathode electrode material for use in rechargeable Li-ion batteries, based on the integration of two Li-based materials of NASICON- and Spinel-type structures, is described in the present invention. The structure and composition of the cathode can be described by a core material and a surface coating surrounding the core material, wherein the core of the cathode particle is of the formula LiMn2-xNixO4?? (0.5?x?0 & 0???1) and having a spinel crystal structure, the surface coating is of the formula Li1+xMxTi2-x(PO4)3 (M: is a trivalent cation, 0.5?x?0) having a NASICON-type crystal structure.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: December 9, 2014
    Assignee: NEI Corporation
    Inventors: Nader Marandian Hagh, Farid Badway, Ganesh Skandan
  • Publication number: 20140353547
    Abstract: Provided is a new spinel type lithium manganese transition metal oxide for use in lithium batteries, which can increase the capacity retention ratio during cycling, and can increase the power output retention ratio during cycling. Disclosed is a spinel type lithium manganese transition metal oxide having an angle of repose of 50° to 75°, and having an amount of moisture (25° C. to 300° C.) measured by the Karl Fischer method of more than 0 ppm and less than 400 ppm.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 4, 2014
    Inventors: Tetsuya Mitsumoto, Hitohiko Ide, Shinya Kagei, Yoshimi Hata, Natsumi Shibamura
  • Patent number: 8900752
    Abstract: A lead manganese-based cathode material is provided. Furthermore, a lithium or lithium ion rechargeable electrochemical cell is provided incorporating lead manganese-based cathode material in a positive electrode. In addition, a process for preparing a stable lead manganese-based cathode material is provided.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 2, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Terrill B. Atwater, Arek Suszko
  • Patent number: 8900537
    Abstract: A template-free reverse micelle (RM) based method is used to synthesize pyrochlore nanostructures having photocatalytic activity. In one embodiment, the method includes separately mixing together a first acid stabilized aqueous solution including pyrochlore precursor A and a second acid stabilized aqueous solution including pyrochlore precursor B with an organic solution including a surfactant to form an oil-in-water emulsion. Next, equimolar solutions of the first and second acid stabilized oil-in-water emulsions are mixed together. Then, the mixture of the first and second acid stabilized oil-in-water emulsion is treated with a base to produce a precipitate including pyrochlore precursors A and B. After which, the precipitate is dried to remove volatiles. The precipitate is then calcined in the presence of oxygen to form a pyrochlore nanostructure, such as a bismuth titanate (Bi2Ti2O7) pyrochlore nanorod. The method of synthesizing the pyrochlore nanorod is template-free.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: December 2, 2014
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Vaidyanathan Subramanian, Sankaran Murugesan
  • Patent number: 8900756
    Abstract: A fluorine-modified lithium manganese-based AB2O4 spinel cathode material is provided. Furthermore, a lithium or lithium ion rechargeable electrochemical cell is provided incorporating fluorine-modified lithium manganese-based AB2O4 spinel cathode material in a positive electrode. In addition, a process for preparing a stable fluorine-modified lithium manganese-based AB2O4 spinel cathode material is provided.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: December 2, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Terrill B. Atwater, Paula C. Tavares
  • Publication number: 20140332715
    Abstract: To increase the amount of lithium ions that can be received and released in and from a positive electrode active material to achieve high capacity and high energy density of a secondary battery. A composite material of crystallites of LiMn2O4 (crystallites with a spinel crystal structure) and crystallites of Li2MnO3 (crystallites with a layered rock-salt crystal structure) is used as a positive electrode active material. The lithium manganese oxide composite has high structural stability and high capacity.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takahiro KAWAKAMI, Shuhei Yoshitomi, Teruaki Ochiai, Satoshi Seo, Yohei Momma, Yumiko Saito
  • Publication number: 20140326918
    Abstract: A system and method thereof are provided for multi-stage processing of one more precursor compounds into a battery material. The system includes a mist generator, a drying chamber, one or more gas-solid separators, and one or more in-line reaction modules comprised of one or more gas-solid feeders, one or more gas-solid separators, and one or more reactors. Various gas-solid mixtures are formed within the internal plenums of the drying chamber, the gas-solid feeders, and the reactors. In addition, heated air or gas is served as the energy source within the processing system and as the gas source for forming the gas-solid mixtures to facilitate reaction rate and uniformity of the reactions therein. Precursor compounds are continuously delivered into the processing system and processed in-line through the internal plenums of the drying chamber and the reaction modules into final reaction particles useful as a battery material.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 6, 2014
    Inventor: LIang-Yuh Chen
  • Patent number: 8877381
    Abstract: A composite oxide is produced via the following: a raw-material mixture preparation step of preparing a raw-material mixture by mixing a metallic-compound raw material and a molten-salt raw material with each other, the metallic-compound raw material at least including one or more kinds of Mn-containing metallic compounds being selected from the group consisting of oxides, hydroxides and metallic salts that include one or more kinds of metallic elements in which Mn is essential, the molten-salt raw material including lithium hydroxide and lithium nitrate, and exhibiting a proportion of the lithium hydroxide with respect to the lithium nitrate (i.e., (Lithium Hydroxide)/(Lithium Nitrate)) that falls in a range of from 0.05 or more to less than 1 by molar ratio; a molten reaction step of reacting said raw-material mixture at from 300° C. or more to 550° C. or less by melting it: and a recovery step of recovering said composite oxide being generated from said raw-material mixture that has undergone the reaction.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Naoto Yasuda, Hitotoshi Murase, Ryota Isomura
  • Patent number: 8877382
    Abstract: A method for preparing a positive active material for a rechargeable lithium battery includes: a) providing a furnace and a crucible that is included in the furnace; b) putting a mixture of a composite metal precursor and a lithium compound into the crucible; and c) preparing a positive active material for a rechargeable lithium battery by firing the mixture in the crucible, wherein during the process b), the mixture in the crucible is positioned so that a minimum distance from a predetermined position inside the mixture to an exterior of the mixture in the crucible is about 5 cm or less. A rechargeable lithium made by this method is disclosed.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 4, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Han Kim, Do-Hyung Park, Seon-Young Kwon, Yu-Mi Song, Ji-Hyun Kim, Kyoung-Hyun Kim
  • Patent number: 8853116
    Abstract: A method of forming composition-modified barium titanate ceramic particulate includes mixing a plurality of precursor materials and a precipitant solution to form an aqueous suspension. The plurality of precursors include barium nitrate, titanium chelate, and a metal or oxometal chelate. The precipitant solution includes tetraalkylammonium hydroxide and tetraalkylammonium oxalate. The method further includes treating the aqueous suspension at a temperature of at least 150° C. and a pressure of at least 200 psi, and separating particulate from the aqueous suspension after treating.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: October 7, 2014
    Assignee: EEStor, Inc.
    Inventors: Richard D. Weir, Carl W. Nelson
  • Patent number: 8852811
    Abstract: According to the present invention, there is provided a process for producing lithium manganate particles having a high output and an excellent high-temperature stability. The present invention relates to a process for producing lithium manganate particles comprising the steps of mixing a lithium compound, a manganese compound and a boron compound with each other; and calcining the resulting mixture in a temperature range of 800 to 1050° C., wherein an average particle diameter (D50) of the boron compound is not more than 15 times an average particle diameter (D50) of the manganese compound, and wherein the lithium manganate particles have a composition represented by the following chemical formula: Li1+xMn2-x-yY1yO4+B in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti, and x and y satisfy the conditions of 0.03?x?0.15 and 0?y?0.20, respectively.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: October 7, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Kazumichi Koga, Masayuki Uegami, Hiroaki Masukuni, Kazutoshi Matsumoto
  • Publication number: 20140271388
    Abstract: Optimized Cu—Mn spinel compositions, with optimal spinel phase formation and phase stability properties, for a plurality of ZPGM catalysts in underfloor and closed-loop coupled catalyst applications are disclosed. Plurality of Cu—Mn spinel compositions are prepared with variations of molar ratios. Effect of calcination temperature is analyzed to determine spinel phase formation and phase stability, as well as the effect of calcination temperature on lattice parameter of spinel, as correlated to spinel phase formation and phase stability of optimal Cu—Mn spinel compositions disclosed. Disclosed Cu—Mn spinels with enhanced spinel phase formation and phase stability may be suitable for ZPGM catalyst systems used in a vast number of TWC applications.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140272579
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: PERFECT LITHIUM CORP.
    Inventor: Teresita Frianeza-Kullberg
  • Publication number: 20140274677
    Abstract: It is an object of the present disclosure, to provide an oxygen storage material which may include optimum composition and structure of Cu—Mn spinel as OSM, with a suitable doped zirconia, including Niobium-Zirconia support oxide for OSM applications, which may include a chemical composition substantially free from rare metals. The OSC properties of Cu—Mn spinel with a suitable doped zirconia, including Niobium-Zirconia support oxide as OSM may be determined by comparing variations of Cu—Mn composition for determination of the optimum structure of spinel to achieve optimal OSC properties and thermal stability, which may be particularly useful for treating exhaust gases produced by internal combustion engines, where lean/rich fluctuations in operating conditions may produce high variation in exhaust contaminants that may be removed, achieving optimal OSC property of spinel at different temperatures, as well as thermal stability behavior of OSM.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Patent number: 8821766
    Abstract: The present invention aims at providing lithium manganate having a high output and an excellent high-temperature stability. The above aim can be achieved by lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of kinetic particles of not less than 1 ?m and not more than 10 ?m, which are substantially in the form of single crystal particles and have a composition represented by the following chemical formula: Li1+xMn2-x-yYyO4 in which Y is at least one element selected from the group consisting of Al, Mg and Co; x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, wherein the Y element is uniformly dispersed within the respective particles, and an intensity ratio of I(400)/I(111) thereof is not less than 33% and an intensity ratio of I(440)/I(111) thereof is not less than 16%.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: September 2, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Patent number: 8815204
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: August 26, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Patent number: 8815767
    Abstract: Mixed oxides catalysts usable in particular in the full oxidation to CO2 and H2O of volatile organic compounds (VOC), in the decomposition of nitrogen protoxide to nitrogen and oxygen and the combustion of CO, H2 and CH4 off gases in fuel cells, comprising oxides of manganese, copper and La2O3 and/or Nd2O3, having a percentage composition by weight expressed as MnO, CuO, La2O3 and/or Nd2O3 respectively of 35-56%, 19-31% and 20-37%. The oxides are supported on inert porous inorganic oxides, preferably alumina.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: August 26, 2014
    Assignee: Sued-Chemie Catalysts Italia S.R.L.
    Inventors: Alberto Cremona, Marvin Estenfelder, Edoardo Vogna
  • Publication number: 20140225031
    Abstract: A lithium-rich lithium metal complex oxide contains at least 50 mol % of Mn with respect to a total amount of metals other than lithium, and at least one other metal. The lithium metal complex oxide has a tapped density in a range of 1.0 g/ml to 2.0 g/ml.
    Type: Application
    Filed: September 26, 2012
    Publication date: August 14, 2014
    Inventors: Taiki Yasuda, Takaaki Masukawa
  • Publication number: 20140227925
    Abstract: A novel metal polyoxide is a compound in which a plurality of oxygen elements are coupled to a transition metal element, and shows surface electrical resistance in addition to antibacterial and deodorizing activities. More specifically, the metal polyoxide contains manganese (III) molybdate and cobalt (III) molybdate having a novel structure. A preparation method thereof and a preparation method of a functional fiber or textile prepared using the same are provided.
    Type: Application
    Filed: August 24, 2012
    Publication date: August 14, 2014
    Inventors: Seung Won Kook, Alexandru Botar
  • Patent number: 8801960
    Abstract: Because of the composition represented by General Formula: Li1+x+?Ni(1?x?y+?)/2Mn(1?x?y??)/2MyO2 (where 0?x?0.05, ?0.05?x+??0.05, 0?y?0.4; ?0.1???0.1 (when 0?y?0.2) or ?0.24???0.24 (when 0.2<y?0.4); and M is at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn), a high-density lithium-containing complex oxide with high stability of a layered crystal structure and excellent reversibility of charging/discharging can be provided, and a high-capacity non-aqueous secondary battery excellent in durability is realized by using such an oxide for a positive electrode.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: August 12, 2014
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Atsushi Ueda, Kazutaka Uchitomi, Shigeo Aoyama
  • Patent number: 8795897
    Abstract: Provided is a cathode active material containing a Ni-based lithium mixed transition metal oxide. More specifically, the cathode active material comprises the lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification, which is prepared by a solid-state reaction of Li2CO3 with a mixed transition metal precursor under an oxygen-deficient atmosphere, and has a Li2CO3 content of less than 0.07% by weight of the cathode active material as determined by pH titration. The cathode active material in accordance with the present invention and substantially free of water-soluble bases such as lithium carbonates and lithium sulfates and therefore has excellent high-temperature and storage stabilities and a stable crystal structure.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: August 5, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Patent number: 8784770
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 22, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Publication number: 20140196412
    Abstract: The invention provides a food decay odor controller which includes a mercaptan remover.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: Multisorb Technologies, Inc.
    Inventor: George E. McKedy
  • Publication number: 20140186706
    Abstract: A method is presented for fabricating an anode preloaded with consumable metals. The method provides a material (X), which may be one of the following materials: carbon, metals able to be electrochemically alloyed with a metal (Me), intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. The method loads the metal (Me) into the material (X). Typically, Me is an alkali metal, alkaline earth metal, or a combination of the two. As a result, the method forms a preloaded anode comprising Me/X for use in a battery comprising a M1YM2Z(CN)N·MH2O cathode, where M1 and M2 are transition metals. The method loads the metal (Me) into the material (X) using physical (mechanical) mixing, a chemical reaction, or an electrochemical reaction. Also provided is preloaded anode, preloaded with consumable metals.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Long Wang, Yuhao Lu, Jong-Jan Lee
  • Patent number: 8765305
    Abstract: The present invention relates to a cathode active material for a lithium secondary battery and a process for preparing the same. In accordance with the present invention, the cathode active material having a high packing density was designed and synthesized and thus provided is a cathode active material for a lithium secondary battery exhibiting structural stability such as improved characteristics for charge/discharge, service life and high-rate and thermal stability, by modifying surface of the electrode active material with amphoteric or basic compounds capable of neutralizing acid produced around the cathode active material.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: July 1, 2014
    Assignee: Industry-University Cooperation Foundation, Hanyang University
    Inventors: Yang Kook Sun, Myoung Hun Lee, Yoon Jung Kang, Gil Ho Kim
  • Publication number: 20140141331
    Abstract: The present invention relates to a cathode active material for a lithium secondary battery, a method for preparing the same, and a lithium secondary battery including the same. Provided is a cathode active material composed of a lithium-excess lithium metal composite compound including Li2MnO3 having a layered structure, and doped with a fluoro compound, wherein an FWHM (half value width) value is within a range from 0.164 degree to 0.185 degree.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicant: SAMSUNG FINE CHEMICALS CO., LTD
    Inventors: Misun Lee, Jongseok Moon, Taehyeon Kim, Shin Jung Choi
  • Publication number: 20140127398
    Abstract: This invention relates to methods of preparing positive electrode materials for electrochemical cells and batteries. It relates, in particular, to a method for fabricating lithium-metal-oxide electrode materials for lithium cells and batteries. The method comprises contacting a hydrogen-lithium-manganese-oxide material with one or more metal ions, preferably in an acidic solution, to insert the one or more metal ions into the hydrogen-lithium-manganese-oxide material; heat-treating the resulting product to form a powdered metal oxide composition; and forming an electrode from the powdered metal oxide composition.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Sun-Ho KANG, Mahalingam BALASUBRAMANIAN, Jason CROY
  • Publication number: 20140127125
    Abstract: The present invention relates to a method for preparing lithium manganese oxide used as a lithium adsorbent and, more particularly, to a method for preparing lithium manganese oxide by a solid-phase reaction. According to the preparation method of the present invention, since the entire reaction is carried out only by the solid-phase reaction, it is possible to solve the problem of waste fluids produced during a conventional liquid-phase reaction, and the preparation method of the present invention is a single process, which is suitable for mass production.
    Type: Application
    Filed: May 4, 2012
    Publication date: May 8, 2014
    Applicant: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES (KIGAM)
    Inventors: Kang-Sup Chung, Tae Gong Ryu, Byoung Gyu Kim, Jung Ho Ryu
  • Patent number: 8703341
    Abstract: With the object of providing a positive electrode active material for lithium battery that can increase the filling density, can increase the output characteristics, and furthermore, with a small voltage decrease during conservation at high temperature in a charged state, a positive electrode active material for lithium battery is proposed, containing a spinel type (Fd3-m) lithium transition metal oxide represented by general formula Li1+xM2?xO4?? (where M represents a transition metal including Mn, Al and Mg, x represents 0.01 to 0.08 and 0??) and a boron compound, the inter-the atomic distance Li—O of the spinel type lithium transition metal oxide being 1.971 ? to 2.006 ?, and the amount of magnetic substance measured for the positive electrode active material for lithium battery being 600 ppb or less.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 22, 2014
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Shinya Kagei, Keisuke Miyanohara, Yoshimi Hata, Yasuhiro Ochi, Kenji Sasaki
  • Publication number: 20140077127
    Abstract: Electrode materials such as LixMnO2 where 0.2<x?2 compounds for use with rechargeable lithium ion batteries can be formed by mixing LiMn2O4 compounds or manganese dioxide compounds with lithium metal or stabilized and non-stabilized lithium metal powders.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Inventors: Yuan Gao, Marina Yakovleva, Kenneth Brian Fitch
  • Patent number: 8663847
    Abstract: It is an object of the present invention to provide a positive electrode material having a large ratio of the discharge capacity around 4 V to the total discharge capacity including the discharge capacity at 4V or lower while making the discharge capacity around 4 V sufficient, for the purpose of providing a lithium secondary battery using a lithium transition metal phosphate compound excellent in thermal stability, utilizing the discharge potential around 4V (vs. Li/Li+) that is higher than the discharge potential of LiFePO4, and being advantageous with respect to the detection of the end of discharge state, and a lithium secondary battery using the same. The present invention uses a positive active material for a lithium secondary battery containing a lithium transition metal phosphate compound represented by LiMn1-x-yFexCoyPO4(0.1?x?0.2, 0<y?0.2).
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: March 4, 2014
    Assignee: GS Yuasa International Ltd.
    Inventors: Yuta Kashiwa, Mariko Kohmoto, Toru Tabuchi, Tokuo Inamasu, Toshiyuki Nukuda
  • Patent number: 8658125
    Abstract: The present invention relates to a positive electrode active material comprising a lithium-containing composite oxide containing nickel with an oxidation state of 2.0 to 2.5 and manganese with an oxidation state of 3.5 to 4.0, the oxidation state determined by the shifts of energy at which absorption maximum is observed in the X-ray absorption near-K-edge structures, and to a non-aqueous electrolyte secondary battery using the same, the positive electrode active material being characterized in having a high capacity, a long storage life and excellent cycle life.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: February 25, 2014
    Assignees: Panasonic Corporation, Osaka City University
    Inventors: Tsutomu Ohzuku, Hiroshi Yoshizawa, Masatoshi Nagayama
  • Patent number: 8647771
    Abstract: The present invention provides electrode-electrolyte composite particles for a fuel cell, which have either electrode material particles uniformly dispersed around electrolyte material particles or electrolyte material particles uniformly dispersed around electrode material particles, to enhance the electrode performance characteristics and electrode/electrolyte bonding force, as well as thermal, mechanical and electrochemical properties of the fuel cell, in a simple method without using expensive starting materials and a high temperature process.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: February 11, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Ho Lee, Hae Weon Lee, Hue Sup Song, Joo Sun Kim, Ji Won Son, Hae Ryoung Kim, Hwa Young Jung
  • Publication number: 20140008568
    Abstract: Processes and compositions for multi-transition metal-containing cathode materials for lithium ion batteries. Processes encompass providing a composition which can be a mixture of molecular precursor compounds having the formulas [LiM(x+)(OR)1+x] and [Li2M(x+)(OR)2+x]. The metal atoms, M, can be Ni, V, Co, Mn, or Fe, and the —OR groups can be alkoxy, aryloxy, heteroaryloxy, alkenyloxy, siloxy, phosphinate, phosphonate, and phosphate. The compositions can be converted and annealed to provide cathode materials.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 9, 2014
    Inventors: Kyle L. Fujdala, Zhongliang Zhu, Paul R. Markoff Johnson
  • Publication number: 20140011085
    Abstract: Lithium-manganese-containing molecular precursor compounds, compositions and processes for making cathodes for lithium ion batteries. The molecular precursor compounds are soluble and provide processes to make cathode materials with controlled stoichiometry in a solution-based processes. The cathode material can be, for example, a lithium manganese oxide, a lithium manganese phosphate, or a lithium manganese silicate. Cathodes can be made as bulk material in a solid form or in solution, or in various forms including thin films.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 9, 2014
    Inventors: Kyle L. Fujdala, Zhongliang Zhu, Paul R. Markoff Johnson
  • Publication number: 20130336871
    Abstract: A cosmetic material that exhibits sufficient shielding effects against UV-A and UV-B, does not color a resultant cosmetic product even when blended in cosmetic materials, and will not result in a non-powdery finish when applied to the skin, and a method for producing such a cosmetic material are provided. It is a cosmetic material with at least part of InTaO4 substituted with at least one element of Sc, Ti, V, Cr, Mn, Co, Cu, Ga, Ge, As, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Sn, Sb, Hf, W, Re, Os, Ir, Pt, Au, and Hg.
    Type: Application
    Filed: November 9, 2011
    Publication date: December 19, 2013
    Applicant: IHI CORPORATION
    Inventors: Haruki Eguchi, Kenji Fuchigami
  • Publication number: 20130317238
    Abstract: The present disclosure generally relates to processes, apparatuses and custom catalysts designed to depolymerize a polymer. In one embodiment, the present invention relates to a de-polymerizing apparatus, catalysts and reaction schemes to obtain useful monomers including fuel products by “in situ” reactions using coupled electromagnetic induction.
    Type: Application
    Filed: December 8, 2011
    Publication date: November 28, 2013
    Inventors: Pravansu S. Mohanty, Swaminathan Ramesh
  • Patent number: 8574541
    Abstract: The present invention provides for a process of making a Ni-based lithium transition metal oxide cathode active materials used in lithium ion secondary batteries. The cathode active materials are substantially free of Li2CO3 impurity and soluble bases.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: November 5, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jens M. Paulsen, Hong-Kyu Park, Yong Hoon Kwon
  • Patent number: 8568684
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: October 29, 2013
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Nobuyuki Kambe, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern
  • Patent number: 8546298
    Abstract: An odor filtration media having a chemical reagent which removes odor causing fluid contaminants from a fluid stream through the use of granular or shaped media have a chemical composition including permanganate is provided. A method of producing the odor absorbing media having a chemical reagent is also provided and comprises the steps of mixing H2O, KMnO4, and at least one salt adding ions or ionic compounds selected from the group consisting of Na+, Li+, K+, NH4+, Cl?, SO42?, BO32?, CO32?, PO43?, NO3? and combinations thereof, or from the group consisting of Na+, Li+, K+, NH4+, Mg2+, Ca2+, Cl?, BO32?, NO3? and combinations thereof, forming an impregnating solution. The impregnating solution is heated and combined with a support material to form a coherent mass.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 1, 2013
    Assignee: AAF-McQuay Inc.
    Inventors: Michael W Osborne, Zhong C. He, Ng Cheah Wei
  • Publication number: 20130251623
    Abstract: The present invention refers to a continuous process for in secco nanomaterial synthesis from the emulsification and detonation of an emulsion. The said process combines the simultaneous emulsification and detonation operations of the emulsion, thus assuring a production yield superior to 100 kg/h. When guaranteeing that the sensitization of the emulsion occurs mainly upon its feeding into the reactor, it is possible to avoid the accumulation of any class-1 substances along the entire synthesis process, thus turning it into an intrinsically safe process. Afterwards, dry collection of the nanomaterial avoids the production of liquid effluents, which are very difficult to process. Given that there's neither accumulation nor resort to explosive substances along the respective stages, the process of the present invention becomes a safe way of obtaining nanomaterial, thus allowing it to be implemented in areas wherein processes with hazardous substance aid are not allowed.
    Type: Application
    Filed: October 18, 2011
    Publication date: September 26, 2013
    Applicant: INNOVNANO-MATERIAIS AVANÇADOS, S.A.
    Inventors: Sílvio Manuel Pratas Da Silva, João Manuel Calado Da Silva
  • Patent number: 8540961
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: September 24, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun Sik Shin, Sin Young Park, Ho Suk Shin, Jens M. Paulsen