Utilizing Acid Patents (Class 423/626)
  • Patent number: 11091396
    Abstract: A method of producing high strength shaped alumina by feeding alumina power into an agglomerator having a shaft with mixers able to displace the alumina power along the shaft, spraying a liquid binder onto the alumina power as it is displaced along the shaft to form a shaped alumina, and calcining the shaped alumina. The shaped alumina produced having a loose bulk density of greater than or equal to 1.20 g/ml, a surface area less than 10 m2/g, impurities of less than 5 ppm of individual metals and less than 9 ppm of impurities in total, and/or crush strength of greater than 12,000 psi.
    Type: Grant
    Filed: May 20, 2017
    Date of Patent: August 17, 2021
    Assignee: Sasol (USA) Corporation
    Inventors: David A. Barclay, Mark M. Chavez
  • Patent number: 11078367
    Abstract: A method of producing a hydrophobic porous alumina by: i) providing a slurry comprising an alumina compound, the slurry having a pH equal to or greater than 7; ii) adding an organic composition comprising carboxylic acids with alkyl hydrocarbon chains having a carbon length less than 14 to the slurry to form an acidic modified slurry; the acidic modified slurry having a pH of between 3 and less than 7; iii) hydrothermally aging the acidic modified slurry to form a hydrothermally aged slurry; and iv) drying the hydrothermally aged slurry.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 3, 2021
    Assignee: Sasol (USA) Corporation
    Inventors: Maria Roberta Rabaioli, Anthony Mai, Ryan Loscutova
  • Patent number: 9735030
    Abstract: The present disclosure relates to polishing compositions that can polish Cobalt (Co) films in semiconductor substrates containing a multitude of films including Co, metals, metal oxides and dielectrics. These polishing compositions comprise an abrasive, a weak acid acting as a removal rate enhancer (RRE), a pH adjuster, and an azole-containing corrosion inhibitor (CI). The RRE, pH adjuster and CI have a pKa in the 1-18 range (1 (pKamin)<pKa<18 (pKamax)). The pKa values of the individual components are related to the pH of the polishing composition/slurry (pHslurry) by the following equation: pKamin+6<pHslurry<pKamax?6. The polishing composition also has less than about 100 parts per million (ppm) of sulfate ions and less than about 100 ppm of halide ions, and operates in the 7-12 pH range.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: August 15, 2017
    Assignee: FUJIFILM PLANAR SOLUTIONS, LLC
    Inventors: Luling Wang, Abhudaya Mishra, Deepak Mahulikar, Richard Wen
  • Patent number: 9735031
    Abstract: The present disclosure relates to polishing compositions that can polish Cobalt (Co) films in semiconductor substrates containing a multitude of films including Co, metals, metal oxides and dielectrics. These polishing compositions comprise an abrasive, a weak acid acting as a removal rate enhancer (RRE), a pH adjuster, and an azole-containing corrosion inhibitor (CI). The RRE, pH adjuster and CI have a pKa in the 1-18 range (1 (pKamin)<pKa<18 (pKamax)). The pKa values of the individual components are related to the pH of the polishing composition/slurry (pHslurry) by the following equation: pKamin+6<pHslurry<pKamax?6. The polishing composition also has less than about 100 parts per million (ppm) of sulfate ions and less than about 100 ppm of halide ions, and operates in the 7-12 pH range.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: August 15, 2017
    Assignee: FUJIFILM PLANAR SOLUTIONS, LLC
    Inventors: Luling Wang, Abhudaya Mishra, Deepak Mahulikar, Richard Wen
  • Patent number: 9714201
    Abstract: Process for preparing isononylamines starting out from 2-ethylhexanol, characterized in that (a) 2-ethylhexanol is dehydrated in the presence of a catalyst to form octene; (b) the octene obtained in step a) is reacted with carbon monoxide and hydrogen in the presence of a transition metal compound of group VIII of the Periodic Table of the Elements to form isononanal; and (c) the isononanal obtained in step b) is converted into isononylamines.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: July 25, 2017
    Assignee: OXEA GMBH
    Inventors: Jens Theuerkauf, Guido D. Frey, Matthias Eisenacher, Kristina Kockrick, Heinz Strutz
  • Patent number: 9539188
    Abstract: A method of making an antiperspirant active composition and the use of a heating step at elevated temperature to convert Al13 polyhydroxyoxoaluminum cations in the species detectable by 27Al NMR within an aqueous aluminum salt solution into Al30 polyhydroxyoxoaluminum cations in the species detectable by 27Al NMR without increasing a SEC Peak 3 area in the SEC chromatogram of the aluminum salt.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: January 10, 2017
    Assignee: Colgate-Palmolive Company
    Inventors: Iraklis Pappas, Long Pan
  • Patent number: 9295976
    Abstract: A catalyst for F-T synthesis which exhibits high activity, long life, and high water resistance without deteriorating strength and attrition resistance is disclosed. A method for producing such a catalyst, a method for regenerating such a catalyst, and a method for producing a hydrocarbon by using such as catalyst are also disclosed. Specifically, a catalyst for producing a hydrocarbon from a syngas, wherein cobalt metal, or cobalt metal and cobalt oxides; and zirconium oxides are supported by a catalyst support mainly composed of silica, is disclosed. This catalyst is characterized in that the content of impurities of the catalyst 0.01 mass % to 0.15 mass %. Specifically, a method for producing such a catalyst, a method for regenerating such a catalyst, and a method for producing a hydrocarbon by using such a catalyst are also disclosed.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: March 29, 2016
    Assignee: NIPPON STEEL ENGINEERING CO., LTD
    Inventors: Kenichiro Fujimoto, Noriyuki Yamane
  • Patent number: 9045349
    Abstract: The present invention relates to a method for preparing a porous alumina which may be suitably used as a catalyst carrier, an adsorbent, and various surface coating agents and has a boehmite or pseudoboehmite structure having a fine and uniform particle size distribution and a large pore volume.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: June 2, 2015
    Assignees: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY, ZEOBUILDER CO., LTD.
    Inventors: Jeong Kwon Suh, Beom Sik Kim, You In Park, Hong Chan Ahn, Yun Ho Jeong, Byung Ki Park, Hak Jun Kim, Jong An Kim, Ji Sook Hong, Won Young Lee, Hyo Sang Yun
  • Patent number: 8895468
    Abstract: Provided are methods of making dehydrogenation catalyst supports containing bayerite and silica. Silica-stabilized alumina powder, prepared by spray drying of bayerite powder, precipitating silica in a bayerite slurry with an acid, or impregnation or co-extrusion of bayerite with sodium silicate solution was found to be a superior catalyst support precursor. Catalysts prepared with these silica containing support materials have higher hydrothermal stability than current CATOFIN® catalysts. Also provided is a dehydrogenation catalyst comprising Cr2O3, an alkali metal oxide, SiO2 and Al2O3, and methods of using said catalyst to make an olefin and/or dehydrogenate a dehydrogenatable hydrocarbon.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 25, 2014
    Assignee: BASF Corporation
    Inventors: Wolfgang Ruettinger, Richard Jacubinas
  • Patent number: 8808657
    Abstract: A process for the preparation of amorphous aluminum phosphate or polyphosphate-based pigment by reacting aluminum phosphate and sodium aluminate is provided. The amorphous aluminum phosphate or polyphosphate is characterized by a skeletal density of less than 2.50 grams per cubic centimeter and a phosphorus to aluminum mole ratio of greater than 0.8. In one embodiment, the composition is useful in paints as a substitute for titanium dioxide.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 19, 2014
    Assignee: Bunge Amorphic Solutions LLC
    Inventors: Fernando Galembeck, Joao de Brito, Ádamo César Mastrângelo Amaro dos Santos, Renato Rosseto
  • Publication number: 20140161716
    Abstract: The present invention relates to a method for preparing a porous alumina which may be suitably used as a catalyst carrier, an adsorbent, and various surface coating agents and has a boehmite or pseudoboehmite structure having a fine and uniform particle size distribution and a large pore volume.
    Type: Application
    Filed: July 12, 2012
    Publication date: June 12, 2014
    Applicants: ZEOBUILDER CO., LTD. a corporation, KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY a Institute
    Inventors: Jeong Kwon Suh, Beom Sik Kim, You In Park, Hong Chan Ahn, Yun Ho Jeong, Kyung Ki Park, Hak Jun Kim, Jong An Kim, Ji Sook Hong, Won Young Lee, Hyo Sang Yun
  • Patent number: 8679427
    Abstract: A process for neutralization is provided which can maintain a high solid content of a bauxite dissolution residual substance slurry even after a neutralization treatment is completed and the stabilize pH within a short time of the neutralization treatment. Such a process for neutralizing a bauxite dissolution residual substance containing a desiliconizing product which is generated in the production process of aluminum hydroxide using Bayer process, includes: mixing a bauxite dissolution residual substance or a bauxite dissolution residual substance slurry with sulfuric acid in an amount ranging from 0.6 to 1.2 equivalence to the total amount of sodium contained in the bauxite dissolution residual substance or a bauxite dissolution residual substance slurry, such that the solid content after mixing becomes 400 to 700 g/l to gelate the mixture, and thereafter obtaining a bauxite dissolution residual substance neutralized slurry.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: March 25, 2014
    Assignee: Showa Denko K.K.
    Inventor: Isao Ishikawa
  • Patent number: 8633130
    Abstract: The invention relates to chemical compositions that can be used for hydrocarbon catalytic cracking processes with vanadium as a contaminant, including an active phase formed by different pyrophosphates M2P2O7 (M=Ba or Ca) supported on a mixture of magnesium and aluminum oxide, preferably magnesium aluminate in the spinel phase. The composition captures the metals originating from the charge, particularly vanadium, and thus protects the catalyst. Said composition is preferably used in the form of a separated particle in order to the control the addition thereof to the unit according to the metal content of the charge. The invention also relates to the method for preparing said composition, including synthesis of pyrophosphates, formation of a suspension of boehmite alumina, magnesium oxide or magnesium hydroxide, together with oxides M2P2O7, spray drying and calcination of the microspheres without generating any loss in the crystalline structure of oxides M2P2O7.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: January 21, 2014
    Assignee: Ecopetrol S.A.
    Inventors: Luis Oswaldo Almanza Rubiano, Luis Javier Hoyos Marin, Cesar Augusto Vergel Hernández
  • Patent number: 8633129
    Abstract: The invention relates to a method for preparing a chemical composition obtained by co-impregnating water-soluble salts Ba/Mg and phosphoric acid H3PO4 on boehmite alumina which has been calcined in the presence of water vapor. Said chemical composition is used as an additive in the catalytic cracking process in order to capture metals originating from the charge, particularly vanadium, in the presence of SO2 and thus to protect the activity and selectivity of the catalytic cracking catalyst.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: January 21, 2014
    Assignee: Ecopetrol S.A.
    Inventors: Luis Oswaldo Almanza Rubiano, Luis Javier Hoyos Marin, Cesar Vergel Hernández
  • Publication number: 20130289133
    Abstract: A method for producing particles containing a metal oxide is provided, and the method includes: feeding a metal oxide sol having a pH of 7 or higher and containing metal oxide colloidal particles as dispersoids and water as a dispersion medium, into a liquid containing a solvent having a solubility in 20° C. water of 0.05 g/100 ml or more and having a relative permittivity of 30 or lower (protic solvent) or of 40 or lower (aprotic solvent) at 20° C., and thereby forming aggregates of the metal oxide colloidal particles in the liquid; and subjecting the aggregates to a treatment such as drying and heating, and thereby converting the aggregates into particles that are insoluble in water. By appropriately selecting the solvent, particles can be obtained in the form of flakes, fibers, spheres, and the like.
    Type: Application
    Filed: January 11, 2012
    Publication date: October 31, 2013
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Kazuhiro Doshita, Toshitaka Furuichi
  • Publication number: 20130052124
    Abstract: The present invention relates to a method for preparing high-purity aluminum, the method comprising: a mother liquor preparing step for preparing a mother liquor by dissolving and aging ordinary aluminum hydroxide; a refining step for adding pulp to absorb impurities from the prepared mother liquor after the mother liquor preparing step; and an obtaining step for obtaining high-purity alumina by adding a seed into the mother liquor and precipitating a precipitate, and filtering, washing, and recrystallizing the precipitate, and calcining the precipitate. Thus, the present invention enables an environmentally-friendly and low-cost preparation of high-purity alumina.
    Type: Application
    Filed: April 15, 2011
    Publication date: February 28, 2013
    Inventor: Jae Hoon Hu
  • Publication number: 20130045333
    Abstract: Alumina particles and compositions containing alumina particles are disclosed. Methods of making alumina particles and methods of using alumina particles are also disclosed.
    Type: Application
    Filed: September 12, 2012
    Publication date: February 21, 2013
    Inventor: DEMETRIUS MICHOS
  • Publication number: 20130040801
    Abstract: A process for preparing aluminum oxide with a low calcium content, in which (1) crude alpha- and/or gamma-aluminum oxide with a total calcium content in the range from 50 to 2000 ppm, based on the crude alpha- and/or gamma-aluminum oxide, is mixed with an aqueous solution or suspension comprising the compounds selected from the group of inorganic acid, organic acid and complexing agent, (2) the mixture from step (1) is admixed with a flocculating aid, (3) in the mixture of step (2), the solids are separated from the liquid, (4) the solids separated are mixed with water in the presence or in the absence of a flocculating aid, (5) in the mixture of step (4), the solids are separated from the liquid, (6) optionally, steps (4) and (5) are repeated once or more than once, (7) optionally, the solids separated optionally after addition of further compounds, are dried.
    Type: Application
    Filed: March 6, 2012
    Publication date: February 14, 2013
    Applicant: BASF SE
    Inventors: Marcus Georg Schrems, Anna Katharina Dürr, Günther Huber, Jesus Enrique Zerpa Unda, Katrin Freitag, Christian Eichholz, Franky Ruslim
  • Publication number: 20120288438
    Abstract: The invention is directed towards methods and compositions for treating slurry to better dewater alumina trihydrate precipitated from the Bayer process. The method comprises using a product comprising the combination of at least two surfactants together with an optional coupling agent to treat the alkaline slurry with certain amount of alumina trihydrate present. Synergistic effects between binary combinations of nonionic and anionic surfactants result in more efficient dewatering aids for alumina trihydrate slurry when combinations of such surfactants are applied. A coupling agent may be used in formulations to reduce viscosity of such surfactant combinations, allowing the practical application of such products.
    Type: Application
    Filed: September 7, 2011
    Publication date: November 15, 2012
    Inventors: Paul Qi WANG, Steven Qun DONG
  • Patent number: 8242181
    Abstract: An aluminum oxide dispersion comprising from 30 to 99.9% (w/w) of a solvent; and from 0.1 to 70% (w/w) of aluminum oxide nanofibers suspended in the solvent, wherein the nanofibers comprise from 0 to 99.99% (w/w) of ?-AlO(OH) and from 0.01 to 100% (w/w) of ?-Al2O3; and a method of preparing the aluminum oxide dispersion.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: August 14, 2012
    Assignee: Dow Corning Corporation
    Inventor: Bizhong Zhu
  • Publication number: 20120189833
    Abstract: Materials and associated processes for making the materials. For example the material may include alpha alumina crystalline whiskers. The process may include conducting the process as hydrothermal, and producing the whiskers to have a length to diameter aspect ratio of at least two.
    Type: Application
    Filed: February 11, 2009
    Publication date: July 26, 2012
    Applicant: Sawyer Technical Materials LLC
    Inventors: Wojciech L. Suchanek, Juan M. Garces
  • Patent number: 8216546
    Abstract: A crystallized solid, referred to by the name IM-14, which has an X-ray diffraction diagram as provided below, is described. Said solid has a chemical composition that is expressed according to the formula GeO2:nY2O3:pR:qF:wH2O, where R represents one or more organic radical(s), Y represents at least one trivalent element, and F is fluorine.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: July 10, 2012
    Assignee: IFP Energies Nouvelles
    Inventors: Yannick Lorgouilloux, Jean Louis Paillaud, Philippe Caullet, Joel Patarin, Nicolas Bats
  • Patent number: 8119707
    Abstract: A composite material includes a polymer matrix and a particulate material dispersed within the polymer matrix. The particulate material includes metal oxide coated alumina hydrate. The particulate material has a 500 psi Compaction Volume Ratio of at least about 4.0 cc/cc. The metal oxide coating may include precipitated silica. The particulate material may have a Hg Cumulative Pore Volume of at least 1.65 cc/g.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: February 21, 2012
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Olivier Guiselin, Nathalie Pluta, Yves Boussant-Roux, Doruk O. Yener
  • Patent number: 8088355
    Abstract: An alumina particulate material is disclosed, including particles comprising transitional alumina having an aspect ratio of not less than 3:1 and an average particle size of not less than about 75 nm. Also disclosed are fabrication techniques based on seeded processing pathways.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: January 3, 2012
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Ralph Bauer, Doruk O. Yener, Margaret L. Skowron, Martin Barnes
  • Patent number: 8084387
    Abstract: The present invention relates to a cobalt/phosphorus-alumina catalyst in which cobalt is supported as an active component on a phosphorus-alumina support wherein phosphorus is supported on alumina surface. With a bimodal pore structure of pores of relatively different pore sizes, the catalyst provides superior heat- and matter-transfer performance and excellent catalytic reactivity. Especially, when Fischer-Tropsch (F-T) reaction is performed using the catalyst, deactivation by the water produced during the F-T reaction is inhibited and, at the same time, the dispersion and reducing property of cobalt and other active component are improved. Therefore, the cobalt/phosphorus-alumina catalyst for F-T reaction in accordance with the present invention provides good carbon monoxide conversion and stable selectivity for liquid hydrocarbons.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: December 27, 2011
    Assignees: Korea Research Institute of Chemical Technology, Daelim Industrial Co., Ltd., Korea National Oil Corporation
    Inventors: Ki-won Jun, Jong-Wook Bae, Seung-Moon Kim, Yun-Jo Lee
  • Publication number: 20110275511
    Abstract: A method of preparing a catalyst support is described comprising washing a precipitated metal oxide material with water and/or an aqueous solution of acid and/or base such that contaminant levels in said precipitated metal oxide are reduced. The method may be applied to precipitated alumina materials to reduce contaminants selected from sulphur, chlorine, Group 1A and Group 2A metals. The catalyst supports may be used to prepare catalysts for the Fischer-Tropsch synthesis of hydrocarbons.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 10, 2011
    Applicant: Johnson Matthey PLC
    Inventors: John L. Casci, Elizabeth M. Holt, Adel F. Neale
  • Publication number: 20110142749
    Abstract: An aluminum hydroxide gel particle having high purity and extremely high acid reactivity and a production method thereof. The aluminum hydroxide gel particle has an iron (Fe) content of 1 to 10 ppm.
    Type: Application
    Filed: August 7, 2009
    Publication date: June 16, 2011
    Inventors: Takafumi Suzuki, Shinjiro Tamagawa
  • Patent number: 7906097
    Abstract: There is provided a process for preparing aluminium chloride comprising leaching aluminium dross residues with H2SO4 so as to obtain a leachate; and hydrochlorinating the leachate so as to obtain aluminium chloride. If desired, aluminium chloride can then be converted into alumina.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 15, 2011
    Assignee: Groupe Conseil Procd Inc.
    Inventors: Martin Beaulieu, Stéphane Chabot, Yves Charest, Jean-François Savard
  • Patent number: 7829619
    Abstract: The invention relates to a flame-retardant filler based on aluminium hydroxide, its use in polymers and a method for its production, in which aluminium hydroxide in the form of bayerite or a bayerite/gibbsite mixture is modified under pressure at temperatures of at least 170° C. in the presence of water and crystal growth regulator, the aluminium hydroxide used as starting material having an average particle size d50 from 0.1 to 4 ?m.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: November 9, 2010
    Assignee: Albemarle Corporation
    Inventors: Thomas Dittmar, Bernhard Hentschel, Genoveva Bilandzic, Mario Neuenhaus, Rene Herbiet
  • Publication number: 20100267881
    Abstract: Acicular boehmite nanoparticles, methods of making acicular boehmite nanoparticles, and composite materials that contain acicular boehmite nanoparticles are described. The acicular boehmite nanoparticles are prepared in a continuous hydrothermal reactor from a feedstock solution containing a soluble aluminum-containing precursor.
    Type: Application
    Filed: December 17, 2008
    Publication date: October 21, 2010
    Inventors: Grant F. Tiefenbruck, Brant U. Kolb, Thomas E. Wood
  • Publication number: 20100266485
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a lactate or thiolactate anion, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) lactic or thiolactic acid, a lactate or thiolactate salt of a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Application
    Filed: December 16, 2008
    Publication date: October 21, 2010
    Inventor: Timothy D. Dunbar
  • Patent number: 7803347
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 28, 2010
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Publication number: 20100183808
    Abstract: Alumina particles and compositions containing alumina particles are disclosed. Methods of making alumina particles and methods of using alumina particles are also disclosed.
    Type: Application
    Filed: May 22, 2008
    Publication date: July 22, 2010
    Inventor: Demetrius Michos
  • Publication number: 20100159226
    Abstract: A hydrothermal process for making Alpha Alumina (?-Al2O3) crystalline nano-sized powders in the form of at least one of nano-sheets and nano-fibers, the process includes making the Alpha Alumina with an aspect ratio of diameter to thickness ratio of at least two, and with at least one dimension of diameter or thickness being less than 100 nm. A composition in accordance with the process. A porous ceramic that includes the composition.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 24, 2010
    Applicant: Sawyer Technical Materials LLC
    Inventors: Wojciech L. Suchanek, Juan M. Garcés
  • Publication number: 20100152354
    Abstract: The present invention relates to a process for producing aluminum hydroxide flame retardants from an organic acid containing aluminum hydroxide slurry.
    Type: Application
    Filed: June 21, 2007
    Publication date: June 17, 2010
    Applicant: MARTINSWERK GMBH
    Inventors: Rene Gabriel Erich Herbiet, Winfried Toedt
  • Publication number: 20100150820
    Abstract: The present invention provides an essentially dry method for preparation of enhanced alumina powders. The first step involves rapid calcination of an aluminum compound to produce alumina powder. The alumina powder is mixed with solid ammonium carbonate and a small amount of water. This mixture heats itself although some external heat is helpful to produce ammonium aluminum hydroxycarbonate (dawsonite-type) NH4AlCO3(OH)2 upon curing which is then decomposed to produce enhanced alumina having a specific desired morphology and nano-sized dimensions.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Inventor: Vladislav I. Kanazirev
  • Patent number: 7691775
    Abstract: A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: April 6, 2010
    Assignee: The Regents of The University of Michigan
    Inventors: Levi T. Thompson, Chang Hwan Kim, Shyamal K. Bej
  • Patent number: 7674525
    Abstract: The present invention provides a process for producing fine ?-alumina particles, which comprises sintering a mixture of ?-alumina precursor particles and seed crystal particles, wherein a center particle diameter of the seed crystal particles is 40 nm or less, and a ratio of the number of coarse particles having a particle diameter greater than 100 nm to the number of the total particles is 1% or less.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 9, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hajime Maki, Yoshiaki Takeuchi, Yuzuru Saitou
  • Patent number: 7651676
    Abstract: There is provided a process for preparing aluminium chloride comprising: leaching aluminium dross residues with HCl so as to obtain a mixture comprising a solid and a liquid; and hydrochlorinating the liquid obtained from the mixture, so as to form a precipitate comprising aluminium chloride. Such a sequence can also be used for preparing alumina. In such a case, the process can further comprise the step of converting the so-obtained aluminium chloride into alumina. In the processes previously defined, the solid so-obtained can also be leached with H2SO4, thereby generating a leachate. The leachate can also eventually be hydrochlorinated so as to increase the yield of the desired product obtained i.e. alumina or aluminium chloride.
    Type: Grant
    Filed: November 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Groupe Conseil Procd Inc.
    Inventors: Martin Beaulieu, Stéphane Chabot, Yves Charest, Jean-François Savard
  • Patent number: 7638455
    Abstract: A process for the preparation of a catalyst, which process comprises the steps of: i) mixing an alumina precursor with combustible carbon-containing fibers with a diameter in the range of from 0.5 to 5 ?m and a length of no greater than 100 ?m in an amount in the range of from 20 to 40 wt % based on the total dry mixture; ii) adding nitric acid and water to form an extrudable mass; iii) extruding the mixture to form shaped particles; iv) drying the shaped particles; v) heating the particles in an atmosphere comprising no more than 5 vol % oxygen at a temperature in the range of from 350 to 600° C.; and vi) then heating the particles in a gas mixture comprising at least 12 vol % oxygen at a temperature in the range of from 450 to 600° C.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: December 29, 2009
    Assignee: Shell Oil Company
    Inventors: Peter Birke, Frank Heinz Goerlitz, Wigbert Gerhard Himmel, Jürgen Hunold, Hans-Heino John
  • Publication number: 20090277828
    Abstract: Disclosed is a novel adsorbent for use in a 99Mo/99mTc generator, which is a medical diagnostic radioisotope generator, and in a 188W/188Re generator, which is a therapeutic radioisotope generator. The adsorbent composed of sulfated alumina or alumina-sulfated zirconia exhibits adsorption capacity superior to that of conventional adsorbents, and is stable and is thus loaded in a dry state in an adsorption column so that the radioisotope 99Mo or 188W can be adsorbed. Thus, it is possible to miniaturize the column, and such a miniaturized column is small, convenient to use, and highly efficient, and extracts a radioisotope satisfying the requirements for pharmaceuticals, and thus can be useful for radioisotope generators extracting 99mTc or 188Re.
    Type: Application
    Filed: May 8, 2008
    Publication date: November 12, 2009
    Applicant: KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Jun Sig LEE, Hyon Soo HAN, Ul Jae PARK, Kwang Jae SON, Hyeon Young SHIN, Soon Bog HONG, Kang Duk JANG, Jong Sub LEE
  • Publication number: 20090232727
    Abstract: A method for producing a particulate alumina composition includes the steps of preparing a wet particulate in a gas-liquid-solid three-phase system containing air by adding water and/or one or more compounds selected from an inorganic compound and an oxygen-containing organic compound to one or more alumina sources selected from an alumina hydrate and an alumina being rehydratable in the temperature range of 70 to 250° C., and to carry out a hydrothermal reaction in a temperature range of 70° C. to 250° C. Filtration and washing are carried out after the particulate alumina composition is preliminarily brought into contact with an alkaline component when an acid component is removed from the particulate alumina composition. The particulate alumina composition obtained by the method has a specific surface area in a dried product at 200° C. in the range of 40 to 300 m2/g and contains crystalline boehmite having an aspect ratio of 10 or less.
    Type: Application
    Filed: May 18, 2007
    Publication date: September 17, 2009
    Applicant: SATO RESEARCH CO. LTD.
    Inventors: Goro Sato, Masayoshi Sato
  • Publication number: 20090148692
    Abstract: Alumina particles and compositions containing alumina particles are disclosed. Methods of making alumina particles and methods of using alumina particles are also disclosed.
    Type: Application
    Filed: December 12, 2006
    Publication date: June 11, 2009
    Applicant: W. R. GRACE & CO.-CONN.
    Inventor: Demetrius Michos
  • Publication number: 20090104108
    Abstract: The present invention relates to a method for preparing boehmite and ?-alumina with high surface area, and more particularly, to a method comprising hydrolysis of aluminum alkoxides to produce boehmite and calcination to produce ?-alumina, wherein an alcohol is used as a reaction solvent and a small amount of water and a particular organic carboxylic acid are added so that not only the reaction solvent is easily recovered and energy required for drying is significantly reduced but also it provides boehmite having nano-sized particles, high surface area, and high purity. Further, the prepared ?-alumina may be suitable for high value added industrial applications such as manufacture of adsorbents, catalysts, catalyst supports and chromatography materials.
    Type: Application
    Filed: January 25, 2006
    Publication date: April 23, 2009
    Inventors: Ki-Won Jun, Yun-Jo Lee, Seung-Moon Kim, Jeong Yeon Kim
  • Publication number: 20090081117
    Abstract: A static ion-exchange process for the preparation of a polynuclear Al species comprising the treatment of an aqueous aluminium chloride solution with a hydroxide-form ion-exchange resin at a temperature of from 5° C. to 60° C. for a period of at least 30 minutes.
    Type: Application
    Filed: March 22, 2006
    Publication date: March 26, 2009
    Inventors: Olivier Deschaume, Carole Celia Perry, Kirill Shafran
  • Publication number: 20080279761
    Abstract: A process for producing a low-soda alumina comprising calcining aluminum hydroxide in a calciner in the presence of a soda-removal agent, wherein the alumina dust produced in the calciner is sorted by particle size and collected in a dust collector and at least a portion of the collected alumina dust is subjected to a soda-removal process and is then returned to the calciner. An apparatus for producing a low-soda alumina, comprising a calciner for calcining aluminum hydroxide in the presence of a soda-removal agent, by which alumina dust is produced; a unit connected to the calciner for collecting, by particle size, the alumina dust; a unit for removing soda from a slurry containing at least a portion of the collected alumina dust; and a circuit for returning the soda-removed alumina dust back into the calciner.
    Type: Application
    Filed: June 16, 2005
    Publication date: November 13, 2008
    Inventors: Kiichi Kimura, Takayoshi Komiya
  • Patent number: 7307033
    Abstract: A method for producing an ?-alumina particulate is described. The method for producing an ?-alumina particulate comprises steps of (Ia) and (Ib), or a step of (II): (Ia) removing water from a mixture containing water, a seed crystal and a hydrolysate obtained by hydrolysis of an aluminum compound under conditions of a pH of 5 or less and a temperature of 60° C. or less, (Ib) calcining the resulted powder, (II) calcining a mixed powder containing 75-1 wt % of an ?-alumina precursor (in terms of Al2O3) and 25-99 wt % of a seed crystal (in terms of oxide of metal component).
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: December 11, 2007
    Assignee: Sumitomo Chemical Company, Limited.
    Inventors: Hajime Maki, Yoshiaki Takeuchi
  • Patent number: 7150862
    Abstract: A method of manufacturing a powder, by which it is possible to adjust the strength of the obtained powder is provided. The manufacturing method of a powder involves a step of preparing a slurry containing agglomerated particles of a synthetic material which is produced by reacting a first material and a second material under agitation, and a step of drying the slurry to obtain a powder of the synthetic material. The method has a feature that the particle size of the agglomerated particles is adjusted by, in the step of preparing a slurry, controlling agitation power for agitating the slurry. In the step of preparing a slurry, it is preferable that the slurry is initially agitated at a first agitation power, and at the time when the viscosity of the slurry approaches its maximum value, or at the time when the pH value of the slurry reaches the vicinity of the isoelectric point of the synthetic material, the agitation power is lowered from the first agitation power to a second agitation power.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: December 19, 2006
    Assignee: PENTAX Corporation
    Inventors: Tsuyoshi Ishikawa, Masanori Nakasu, Takatoshi Kudou, Yoshiyuki Ogawara, Tsutomu Takahashi, Katsumi Kawamura
  • Patent number: 7101528
    Abstract: A process for producing nano sized boehmite aluminas which are stable at alkaline pH values wherein an aqueous medium of a peptized boehmite alumina is treated with a water dispersible polycarboxylic acid polymer and optionally with an organic water dispersible base having a molecular weight ranging from 500 to 3000 and having no more than three basic groupings to produce a treated boehmite alumina which forms a stable sol at a pH of greater than 6, the treated boehmite alumina having a dispersed particle size of less than 500 nm in the sol.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: September 5, 2006
    Assignee: Sasol North America Inc.
    Inventors: Thomas J. Martin, Dave S. Pope
  • Patent number: 7090825
    Abstract: The invention relates to alumina agglomerates of the type obtained by dehydrating an aluminium oxyhydroxide or hydroxide, agglomerating the alumina thus obtained, hydrothermally treating the agglomerates and calcinating same. Said agglomerates are characterised in that: the V37 ? thereof is greater than or equal to 75 ml/100 g, preferably greater than or equal to 80 ml/100 g and, better still, greater than or equal to 85 ml/100 g; the V0.1 ?m thereof is less than or equal to 31 ml/100 g; and the V0.2 ?m thereof is less than or equal to 20 ml/100 g, preferably less than or equal to 15 ml/100 g and, better still, less than or equal to 10 ml/100 g. The invention also relates to a catalyst carrier, an intrinsic catalyst or an absorbent, in particular for use in the petroleum and petrochemical industry, comprising such alumina agglomerates. Moreover, the invention relates to methods for preparing said agglomerates.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: August 15, 2006
    Assignee: Axens
    Inventors: Jean-Luc Le Loarer, Christophe Nedez