By Decomposing Hydrocarbon Patents (Class 423/650)
  • Patent number: 8128717
    Abstract: An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: March 6, 2012
    Assignee: Gas Technology Institute
    Inventors: Martin Brendan Linck, Phillip Vann Bush
  • Patent number: 8124049
    Abstract: A high thermal efficiency process for hydrogen recovery is provided. The present invention includes combusting a first fuel stream to a reforming furnace, producing reforming heat and a hot exhaust stream. Then exchanging heat indirectly between the hot exhaust stream and a first feed water stream, producing a first steam stream. Then providing a hydrocarbon containing stream and a feed steam stream to the reforming furnace, utilizing the reforming heat and producing a hot raw syngas stream. Then exchanging heat indirectly between the hot raw syngas stream and second feedwater stream, producing a second steam stream and a cooled, raw syngas stream. Then introducing the cooled, raw syngas stream to a CO shift converter, producing a shifted syngas stream. Then introducing the shifted syngas stream into a pressure swing adsorption unit, producing a hydrogen product stream and a tail gas stream.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 28, 2012
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bhadra S. Grover
  • Patent number: 8123827
    Abstract: The present invention provides processes for making syngas-derived products. For example, one aspect of the present invention provides a process for making a syngas-derived product, the process comprising (a) providing a carbonaceous feedstock; (b) converting the carbonaceous feedstock in a syngas formation zone at least in part to a synthesis gas stream comprising hydrogen and carbon monoxide; (c) conveying the synthesis gas stream to a syngas reaction zone; (d) reacting the synthesis gas stream in the syngas reaction zone to form the syngas-derived product and heat energy, a combustible tail gas mixture, or both; (e) recovering the syngas-derived product; and (f) recovering the heat energy formed from the reaction of the synthesis gas stream, burning the combustible tail gas mixture to form heat energy, or both.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: February 28, 2012
    Assignee: Greatpoint Energy, Inc.
    Inventor: Earl T. Robinson
  • Patent number: 8118892
    Abstract: A gasification system method and apparatus to convert a feed stream containing at least some organic material into synthesis gas having a first region, a second region, a gas solid separator, and a means for controlling the flow of material from the first region to the second region. The feed stream is introduced into the system, and the feed stream is partially oxidized in the first region thereby creating a solid material and a gas material. The method further includes the steps of separating at least a portion of the solid material from the gas material with the gas solid separator, controlling the flow of the solid material into the second region from the first region, and heating the solid material in the second region with an electrical means.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: February 21, 2012
    Assignee: InEnTec LLC
    Inventors: Jeffrey E. Surma, James A. Batdorf
  • Patent number: 8114174
    Abstract: A reaction device 10 is used for producing water gas from polyhydric alcohol and water. The reaction device 10 includes a reactor 13 which has a reaction field 14 where a catalyst is provided inside and a reaction fluid flows. The catalyst 17 has a surface extending in a direction of flow of the reaction fluid.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: February 14, 2012
    Assignee: Kao Corporation
    Inventors: Takeshi Shirasawa, Yasukazu Kumita
  • Patent number: 8110174
    Abstract: Disclosed is a reactive working material for use in a process of producing hydrogen by splitting water based on a two-step thermochemical water-splitting cycle through the utilization of solar heat, industrial waste heat or the like, which comprises a ferrite fine powder and a cubic zirconia supporting the ferrite fine powder. This reactive working material makes it possible to prevent scaling off of the ferrite fine powder from the zirconia fine powder due to volumetric changes of the ferrite fine powder during repeated use, and suppress growth of FeO grains due to repetition of melting and solidification when used as a reactive working material for a cyclic reaction under a high temperature of 1400° C. or more.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: February 7, 2012
    Assignee: Krosakiharima Corporation
    Inventor: Tatsuya Kodama
  • Patent number: 8105402
    Abstract: A steam reformer is use in a fuel processor system to create a water gas shift reaction between a hydrocarbon fuel and water. A hydrocarbon fuel and water are provided. The water is heated to superheated steam. The hydrocarbon fuel is mixed with the superheated steam to produce a vaporized fuel/steam mixture. The vaporized fuel/steam mixture is directed into a gap space between separate surfaces. The gap space between the separate surfaces is very small. Within this confined gap space, at least one of the separate surfaces is heated to maintain a reaction temperature range that induces the water gas shift reaction. The water gas shift reaction produces reactant gases that include hydrogen gas and contaminant gases. At least some of the contaminant gases are burned to heat the gap space.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: January 31, 2012
    Inventor: Peter R. Bossard
  • Patent number: 8105403
    Abstract: A novel method of combining the CTL fuel plant and IGCC electrical plant by sharing the systems of coal intake, coal preparation, gas separation, and water units is described herein. This configuration allows for the combined facility to offer advantages in efficiencies of production, operational flexibility, scalability, and reliability by a multi-path integration of the processing units.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: January 31, 2012
    Assignee: Rentech, Inc.
    Inventors: Joseph A. Regnery, Richard O. Sheppard
  • Patent number: 8101141
    Abstract: A unified fuel processing reactor for a solid oxide fuel cell can reform hydrocarbon-based fuel into hydrogen-rich gas, remove a sulfur component, and convert non-converted fuel and a low carbon (C2˜C5) hydrocarbon compound into hydrogen and methane in a single reactor. The reactor comprises a primary-reformer which reforms a hydrocarbon-base fuel and generates hydrogen-rich reformed gas, a desulfurizer which removes a sulfur component from the reformed gas, and a post-reformer which selectively decomposes a low carbon (C2˜C5) hydrocarbon in the desulfurized reformed gas into hydrogen and methane. The primary-reformer, desulfurizer and post-reformer are in the unified reactor and isolated, except for a fluid passage, from each other by internal partition walls. The primary-reformer is disposed at a center portion of the reactor. The post-reformer and the desulfurizer are concentrically disposed outside of the primary-reformer.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: January 24, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Joongmyeon Bae, Sangho Yoon, Sunyoung Kim
  • Patent number: 8100994
    Abstract: The invention relates to a process for co-generating electricity and hydrogen that comprises a stage a for steam reforming in the presence of water and oxygen of a hydrocarbon feedstock in which the O2/C molar ratio is to be between 0.003 and 0.2, and the H2O/C molar ratio is to be between 2 and 5, followed by a stage b for the production of electricity in a fuel cell that uses the hydrogen-rich gas that is obtained from stage a as a power source.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: January 24, 2012
    Assignee: IFP Energies Nouvelles
    Inventors: Dominique Casanave, Fabrice Giroudiere, Nicolas Boudet
  • Patent number: 8100996
    Abstract: This invention relates to a process for converting a carbonaceous material to a desired product comprising one or more hydrocarbons or one or more alcohols, the process comprising: (A) gasifying the carbonaceous material at a temperature in excess of about 700° C. to form synthesis gas; and (B) flowing the synthesis gas in a microchannel reactor in contact with a catalyst to convert the synthesis gas to the desired product.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: January 24, 2012
    Assignee: Velocys, Inc.
    Inventors: Wayne W. Simmons, Robert Dwayne Litt, Anna Lee Tonkovich, Laura J. Silva, Daniel Francis Ryan, Bruce Stangeland, John Brophy, Jeffrey S. McDaniel
  • Patent number: 8092559
    Abstract: Disclosed are strategies for the economical microbial generation of hydrogen, useful as an alternative energy source, from hydrocarbon-rich deposits such as coal, oil and/or gas formations, oil shale, bitumen, tar sands, carbonaceous shale, peat deposits and sediments rich in organic matter through the management of the metabolism of microbial consortia.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: January 10, 2012
    Assignee: Luca Technologies, Inc.
    Inventors: Roland P. DeBruyn, James B. Dodson, Robert S. Pfeiffer, Eric L. Szaloczi, Glenn A. Ulrich, Jeffrey L. Weber
  • Patent number: 8092778
    Abstract: A method for producing a hydrogen enriched fuel and carbon nanotubes includes the steps of providing a flow of methane gas, and providing a catalyst mixture comprising a Fe based catalyst and carbon. The method also includes the steps of pretreating the catalyst mixture using microwave irradiation and exposure to CH4, heating the catalyst mixture and the methane gas using microwave irradiation at a selected microwave power, directing the flow of methane gas over the catalyst mixture, and controlling the microwave power to produce a product gas having a selected composition and the carbon nanotubes. For producing multi walled carbon nanotubes (MWNTs) only a flow of methane gas into the reactor is required. For producing single walled carbon nanotubes (SWNTs), a combination of hydrogen gas and methane gas into the reactor is required.
    Type: Grant
    Filed: March 1, 2008
    Date of Patent: January 10, 2012
    Assignee: Eden Energy Ltd.
    Inventors: Zhonghua John Zhu, Jiuling Chen, Gaoqing Max Lu, Gregory Solomon
  • Patent number: 8083996
    Abstract: Provided are a thermal siphon reactor and a hydrogen generator including the same. The hydrogen generator including the thermal siphon reactor includes: a housing; a reaction source container disposed in the housing; a reactor tube connected to the reaction source container in which a catalytic reaction of a reaction source provided from the reaction source container occurs; a catalyst layer which is porous, facilitates gas generation by being contacted with the reaction source, and is disposed in the reactor tube; and a product container which is connected to the reactor tube and collects a reaction product generated in the reactor tube, wherein in the reactor tube, a convection channel through which the reaction product is discharged passes through the reactor tube in the lengthwise direction of the reactor tube. The thermal siphon reactor and the hydrogen generator including the same have a self-operating ability, operate at low costs, and have small installment volume.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: December 27, 2011
    Assignee: Samsung Engineering Co., Ltd.
    Inventors: Myong Hoon Lim, Tae Hee Park, Jae Hoi Gu, Yongho Yu
  • Patent number: 8083819
    Abstract: Hydrogen-producing fuel processing assemblies and fuel cell systems with at least one temperature-responsive valve assembly, and methods for feedback regulation of the hydrogen-producing region. The temperature-responsive valve assembly responds automatically to the temperature of a gas stream of interest to regulate the flow of a subject gas stream therethrough. In some embodiments, these streams are the same streams, while in others, they are different streams. The streams may include at least the reformate stream from a hydrogen-producing region of the fuel processing assembly, the byproduct stream from a purification region, and the product gas stream from the purification region. In some embodiments, the subject gas stream may be the byproduct stream, which is in fluid communication for delivery as a combustible fuel stream for a burner or other heating assembly that produces an exhaust stream to heat the hydrogen-producing region of the fuel processing assembly.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: December 27, 2011
    Assignee: Idatech, LLC
    Inventors: John R. Arnold, James A. Givens, Arne LaVen
  • Patent number: 8080070
    Abstract: A method of hydrogenation of unsaturated hydrocarbons for syngas production is presented. A hydrogenation feed reactor stream is introduced into a hydrogenation reactor, thereby producing a reformer feed stream. The reformer feed stream is introduced into a reformer, thereby producing a crude syngas stream. The crude syngas stream is introduced into a water gas shift converter, thereby producing a hydrogen-rich stream. The hydrogen-rich stream is separated in a separation means, thereby producing a carbon dioxide-rich stream and a hydrogen product stream. At least a portion of the hydrogen product stream is combined with a refinery fuel gas stream, and a natural gas stream, to form the hydrogenation reactor feed stream.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: December 20, 2011
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bhadra S. Grover
  • Patent number: 8080232
    Abstract: In a process for obtaining CO2, desulfurized natural gas or gas which accompanies mineral oil is reformed autothermally with addition of oxygenous gas at a temperature of from 900 to 1200° C. and a pressure of from 40 to 100 bar (a) by partial catalytic oxidation to give a crude synthesis gas, and then converted catalytically to H2 and CO2 at a temperature of from 75 to 110 DEG C. and a pressure of from 50 to 75 bar (a) of CO, CO2 is scrubbed out of the synthesis gas obtained with methanol at a pressure of from 15 to 100 bar (a) and a temperature of from +10 to ?80° C., and the absorbed CO2 is recovered by decompression. A further possible use of the process consists in converting the recovered CO2 to the supercritical state.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: December 20, 2011
    Assignee: Lurgi GmbH
    Inventor: Ulrich Koss
  • Patent number: 8075870
    Abstract: The invention relates to a process for obtaining hydrogen from natural gas which comprises (a) reacting the natural gas with a mixture of air and steam in a single reactor to obtain a gas comprising H2 and CO, (b) reacting the CO produced at a high temperature with steam to obtain a gas comprising H2 and CO2, and (c) reacting the CO which has not reacted in step (b) at a low temperature with steam to obtain a gas comprising H2 and CO2, characterized in that in step (a) the natural gas, the air and the steam are fed simultaneously and react on the same catalyst and in that the pressure used in steps (a) to (c) varies between 1 and 8 atm, as well as to a H2 production plant for carrying out the mentioned process.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: December 13, 2011
    Assignee: Universidad Del Pais Vasco Euskal Herriko Unibertsitatea
    Inventors: José Francisco Cambra Ibañez, Pedro Luis Arias Ergueta, María Belén Güemez Bilbao, Victoria Laura Barrio Cagigal
  • Patent number: 8075869
    Abstract: A method for producing a hydrogen enriched fuel includes the steps of providing a flow of methane gas, and providing a catalyst. The method also includes the steps of heating the catalyst instead of the reactor walls and the methane gas using microwave irradiation at a selected microwave power, directing the flow of methane gas over the catalyst, and controlling the microwave power to produce a product gas having a selected composition. A system for producing a hydrogen enriched fuel includes a methane gas source, a reactor containing a catalyst, and a microwave power source configured to heat the catalyst.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: December 13, 2011
    Assignee: Eden Energy Ltd.
    Inventors: Zhonghua John Zhu, Jiuling Chen, Gaoqing Max Lu, Gregory Solomon
  • Patent number: 8071045
    Abstract: A reformer includes first and second reforming units which are stacked together. A first hole is formed at the center of a first receiver member of the first reforming unit, and a plurality of holes are formed in a peripheral portion of a second receiver member of the second reforming unit. In the structure, a reforming channel having a serpentine pattern going through the first and second holes is formed. In each of the first and second receiver members, a single layer of catalyst pellets is provided. Both end surfaces of the catalyst pellets substantially contact the first and second receiver members.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: December 6, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Tomio Miyazaki
  • Patent number: 8061120
    Abstract: By using catalytic partial oxidation or autothermal reforming process, a catalytic oxidizer installed in the engine's Exhaust Gas Recycle (EGR) line can be used to produce from fossil fuels or bio-fuels a reformate gas containing H2 and CO for an IC engine or a gas turbine. Thus, a system consisting of an EGR Oxidizer and an IC engine/gas turbine can be used by itself as a driving device, or can be combined with an electric generator and a battery bank to produce, store and transmit electricity to be used in stationary or mobile power generation, transportation and utility etc. The Oxidizer can also be used to provide reducing gases to regenerate the NOx or diesel particulate traps, so that the traps can continuously be used for reducing emissions from IC engine, diesel truck, gas turbine, power plant etc.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: November 22, 2011
    Inventor: Herng Shinn Hwang
  • Patent number: 8057773
    Abstract: The invention described herein relates to a novel process that eliminates the need for post combustion CO2 capture from fired heaters (at atmospheric pressure and in dilute phase) in a petroleum refinery to achieve environmental targets by capturing CO2 in a centralized facility and providing fuel gas low in carbon to the fired heaters. It combines the pre-combustion capture of carbon dioxide with production of a hydrogen fuel source within a refinery to drastically reduce the carbon dioxide emissions of the plant. The hydrogen fuel is utilized for the process fired heaters and the fuel quality (carbon content) can be set to meet the refinery's emissions objectives. Moreover, the carbon dioxide captured can be sequestered and/or utilized for enhanced oil recovery (EOR).
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: November 15, 2011
    Assignee: Institute Francais du Pétrole
    Inventors: James B. MacArthur, James J. Colyar
  • Patent number: 8048178
    Abstract: A process for producing a purified synthesis gas stream from a carbonaceous feedstock, the process comprising (a) oxidizing a carbonaceous feedstock to obtain syngas containing hydrogen sulphide, (b) mixing the synthesis gas with methanol, reducing the temperature of said mixture and separating a liquid methanol-water mixture from a cooled syngas, (c) contacting the cooled syngas with methanol to decrease the content of hydrogen sulphide and carbon dioxide thereby obtaining a rich methanol stream comprising hydrogen sulphide and carbon dioxide, (d) regenerating the rich methanol stream by separating from the rich methanol a carbon dioxide fraction and a hydrogen sulphide fraction to obtain lean methanol, wherein part of the methanol in the methanol-water mixture obtained in step (b) is isolated and reused in step (b) and/or (c) and wherein another part of the methanol in the methanol-water mixture obtained in step (b) is recycled to step (a).
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: November 1, 2011
    Assignee: Shell Oil Company
    Inventors: Cornelis Jacobus Smit, Jan Volkert Zander
  • Patent number: 8043530
    Abstract: A fuel reformer catalyst includes a substrate, and disposed thereon a carrier and combination of at least two metals selected from the group consisting of Rh, Ni, Ir, Pd, Pt, Au, and combinations thereof. Rh is present in the catalyst in an amount not exceeding about 0.5 wt. %, based on the total combined weight of the metals and carrier.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: October 25, 2011
    Assignee: Umicore G & Co. KG
    Inventors: Laiyuan Chen, Jeffrey G. Weissman
  • Patent number: 8043576
    Abstract: A reformer module (10) comprises a hollow support member (12) having at least one passage (14) extending longitudinally therethrough. The hollow support member (14) has an external surface (20), a barrier layer (22) arranged on at least a portion of the external surface (20) of the hollow support member (12), a catalyst layer (24) arranged on the barrier layer (22) and a sealing layer (26) arranged on the catalyst layer (24) and the external surface (20) of the hollow support member (12) other than the at least a portion of the external surface of the hollow support member (12). By providing the barrier layer (22) and the catalyst layer (24) on the exterior surface (20) of the hollow support member (12), the distribution of the barrier layer (22) and/or the catalyst layer (24) may be more precisely controlled and thus a non-uniform distribution of barrier layer (22) and/or catalyst layer (24) may be achieved.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 25, 2011
    Assignee: Rolls-Royce plc
    Inventors: Gerard D Agnew, Robert H Cunningham, Philip D Butler, Robert D Collins
  • Patent number: 8043390
    Abstract: A method for controlling the output composition from a gasification device for use in the gasification of biomass using a gasifier in which the biomass and gas both flow in a downward direction. The method combines the use of steam and oxygen as a mixed oxidation stream to control the processes occurring within the gasifier. The oxidants are introduced into the gasifier using a number of injection rings. Each injection ring is comprised of a number of injection nozzles each radially distributed at the same vertical height and possibly connected to the same supply source. Particularly satisfactory results can be achieved through the use of three injection rings, one at the top of the gasifier, one at the interface of the oxidation and reduction zone and one a small distance below the grate assembly. The produced syngas also contains extremely low concentrations of tar and low molecular weight hydrocarbons.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 25, 2011
    Assignee: ZeroPoint Clean Tech, Inc.
    Inventor: Philip D. Leveson
  • Patent number: 8043600
    Abstract: A process for the hydrotreating of fuels with co-production of hydrogen during operation of the process, which enables i.e. reduced need of make-up hydrogen in the hydrotreating stage. The hydrocarbon fuel introduced to the hydrotreatment stage is a fuel containing renewable organic material which generates carbon monoxide during operation of the process. The carbon monoxide is then converted to hydrogen in the recycle loop by a water gas shift stage.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: October 25, 2011
    Assignee: Haldor Topsøe A/S
    Inventors: Kim Grøn Knudsen, Kim Hedegaard Andersen, Rasmus Breivik, Rasmus Gottschalck Egeberg, Poul Erik Højlund Nielsen
  • Patent number: 8038743
    Abstract: A supercritical water reformer (SCWR) and methods for using supercritical water to convert hydrocarbons, particularly hydrocarbon fuels such as diesel fuel or gasoline, into carbonaceous gases and hydrogen. The synthesis gas stream generated by the fuel reforming reaction can then be further refined to increase hydrogen content, and the resultant hydrogen can be utilized to power fuel cells.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: October 18, 2011
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: John R. Wootton, Sunggyu Lee, Asdrubal Garcia-Ortiz
  • Patent number: 8038906
    Abstract: A process for the adjustment of the composition of a synthesis gas produced in a high temperature black liquor gasifier.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: October 18, 2011
    Assignee: Haldor Topsøe A/S
    Inventors: Poul Erik Højlund Nielsen, Bodil Voss
  • Patent number: 8038748
    Abstract: Combustion-based heating assemblies and hydrogen-producing fuel processing assemblies that include at least a reforming region adapted to be heated by the heating assemblies. The heating assembly may include at least one fuel chamber and at least one heating and ignition source. The at least one fuel chamber may be adapted to receive at least one fuel stream at a first temperature. The fuel stream may include a liquid, combustible, carbon-containing fuel having an ignition temperature greater than the first temperature at which the fuel stream is delivered to the fuel chamber. The at least one heating and ignition source may be adapted to heat at least a portion of the fuel chamber to raise the temperature of at least a portion of the carbon-containing fuel to a second temperature at least as great as the ignition temperature and to ignite the carbon-containing fuel. Methods of use are also disclosed.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: October 18, 2011
    Assignee: Idatech, LLC
    Inventor: David J. Edlund
  • Patent number: 8038981
    Abstract: Complex metal oxide-containing pellets and their use for producing hydrogen. The complex metal oxide-containing pellets are suitable for use in a fixed bed reactor due to sufficient crush strength. The complex metal oxide-containing pellets comprise one or more complex metal oxides and at least one of in-situ formed calcium titanate and calcium aluminate. calcium titanate and calcium aluminate are formed by reaction of suitable precursors in a mixture with one or more complex metal carbonates. The complex metal oxide-containing pellets optionally comprise at least one precious metal.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: October 18, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Robert Quinn, Frederick Carl Wilhelm, Gokhan Alptekin, Margarita Dubovik, Matthew Schaefer
  • Patent number: 8034134
    Abstract: A design for a microchannel steam microreformer has been developed to provide power in conjunction with a micro fuel cell for a portable, low-power device. The design is optimized for low pumping power and rapid operation as well as thermal efficiency, overall size, and complete generation of the available hydrogen. The design includes at least one microchannel having a grooved surface with a continuous groove oriented in a spiral configuration.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: October 11, 2011
    Assignee: William Marsh Rice University
    Inventors: Yildiz Bayazitoglu, Jeremy Gernand
  • Patent number: 8025862
    Abstract: The invention concerns a process for producing synthesis gas, SG, from hydrocarbons and/or recycled compounds. In the process: a stream comprising a first feed F1 supplemented with steam undergoes steam reforming in a multi-tube reactor-exchanger R having a shell and reaction tubes containing a steam reforming catalyst within the shell; the reaction tubes are heated by convection by circulating in the shell, in overall counter-current mode, a heating fluid HF external to the tubes, which fluid comprises a first combustion gas stream of a second feed F2, then fluid HF is mixed, in 1 to 4 complementary combustion zones internal to the shell, with a third feed F3 and a gas comprising oxygen, to increase the temperature of the HF, and then the mixture obtained circulates in R to heat the reaction tubes in a complementary manner; and SG is produced from the steam reforming effluent from F1 and optionally part or all of the HF.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: September 27, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandre Rojey, Stephane Bertholin, Fabrice Giroudiere, Eric Lenglet
  • Patent number: 8007569
    Abstract: The invention relates to a method for removing hydrogen sulphide and other acidic gas components from pressurized technical gases by means of a physical detergent and for obtaining sulphur from hydrogen sulphide by using a Claus system. The hydrogen sulphide and the other acidic gas components are removed in an absorbent manner from the physical detergent, the physical detergent undergoes multi-step regeneration, said multi-step regeneration comprising at least one device for CO enrichment, a device for H2S enrichment, a device for CO2 stripping and a device for thermal regeneration. The various regeneration steps consist of various pressure steps and have a lower pressure than that of the absorption. A hydrogen sulphide rich Claus gas is withdrawn from one of the regeneration steps and is guided to a Claus system where sulphur is produced. The residual gas exiting from the Claus system is hydrated and is condensed under pressure, corresponding to one of the regeneration steps.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: August 30, 2011
    Assignee: Uhde GmbH
    Inventors: Georg Saecker, Johannes Menzel
  • Patent number: 8007761
    Abstract: Carbon dioxide emissions within a refinery are reduced by reforming a hydrocarbon containing feed at low pressure to enhance the conversion of methane to hydrogen and carbon monoxide and thereby reduce methane slip. The hydrocarbon containing feed is composed entirely or at least in part of a refinery off gas. The resulting reformed stream is then subjected to water-gas shift conversion to form a shifted stream from which carbon dioxide is separated. As a result of the separation and the low pressure reforming, hydrogen containing fuel gas streams, that are thereby necessary lean in carbon dioxide and methane, are used in firing the steam methane reformer and other fuel uses within the refinery to reduce carbon dioxide emissions. The carbon dioxide that is separated can be sequestered or used in other processes such as enhanced oil recovery.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: August 30, 2011
    Assignee: Praxair Technology, Inc.
    Inventors: Raymond Francis Drnevich, Minish Mahendra Shah, Vasilis Papavassiliou
  • Patent number: 8002854
    Abstract: A novel process and apparatus are disclosed for sustainable CO2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 23, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 7998456
    Abstract: The present invention provides a process for the production of hydrogen from the catalytic partial oxidation of a hydrocarbonaceous feedstock (3) with molecular oxygen (4) over a partial oxidation catalyst (6), which process comprises: during a reaction time interval contacting a first mixture of the hydrocarbonaceous feedstock and molecular oxygen with an overall oxygen-to-carbon ratio in the range of from 0.3 to 0.8 with the partial oxidation catalyst to convert the feedstock to a hydrogen-comprising gas and during a regeneration time interval contacting a second mixture of the hydrocarbonaceous feedstock and molecular oxygen with an oxygen-to-carbon ratio in the range of from 1.0 to 10 with the partial oxidation catalyst, in which process the regeneration time interval is in the range of from 2 to 10 seconds and the ratio of the reaction time interval to the regeneration time interval is at most 40.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 16, 2011
    Assignee: Shell Oil Company
    Inventors: Haroldus Adrianus Johannes Van Dijk, Stephan Montel, Wayne G. Wnuck
  • Patent number: 7998455
    Abstract: A method for producing hydrogen from a plant source is disclosed. The method includes contacting a crude carbohydrate material obtained from the plant source with water and a catalyst at a temperature and pressure sufficient to decompose at least a portion of the crude carbohydrate material to form a vapor mixture of gases including hydrogen, and separating hydrogen from other gases present in the vapor mixture.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: August 16, 2011
    Assignee: Archer Daniels Midland Company
    Inventors: Charles A. Abbas, Thomas P. Binder, Leif P. Solheim, Mark Matlock
  • Patent number: 7988753
    Abstract: An apparatus and method for recovering and recycling hydrogen from a reforming process raises the pressure of at least one hydrogen-rich gas stream from at least one catalyst lock hopper and delivers at least a portion of the pressurized hydrogen-rich gas stream to at least one predetermined downstream location. At least another portion of the pressurized hydrogen-rich gas is used to maintain the desired pressure within the hydrogen recovery and recycling process and apparatus.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: August 2, 2011
    Assignee: Marathon Petroleum Co. LP
    Inventors: Edward P. Fox, Dennis W. Keppers, Daniel M. Barrett, Larry L. Holt, Edward A. Bullerdiek, James H. Miller
  • Patent number: 7985399
    Abstract: A hydrogen production method and facility in which a synthesis gas stream produced by the gasification of a carbonaceous substance is processed within a synthesis gas processing unit in which the carbon monoxide content is reacted with steam to produce additional hydrogen that is removed by a pressure swing adsorption unit. The tail gas from the pressure swing adsorption unit is further reformed with the addition of a hydrocarbon containing stream in a steam methane reforming system, further shifted to produce further additional hydrogen. The further hydrogen is then separated in another pressure swing adsorption unit.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 26, 2011
    Assignee: Praxair Technology, Inc.
    Inventors: Raymond F. Drnevich, Ramchandra M. Watwe
  • Patent number: 7981172
    Abstract: Systems and methods for producing hydrogen gas with a fuel processing system that includes a hydrogen-producing region that produces hydrogen gas from a feed stream and a heating assembly that consumes a fuel stream to produce a heated exhaust stream for heating the hydrogen-producing region. In some embodiments, the heating assembly heats the hydrogen-producing region to at least a minimum hydrogen-producing temperature. In some embodiments, the rate at which an air stream is delivered to the heating assembly is controlled to selectively increase or decrease the temperature of the heated exhaust stream. In some embodiments, the feed stream and the fuel stream both contain a carbon-containing feedstock and at least 25 wt % water. In some embodiments, the feed and fuel streams have the same composition.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: July 19, 2011
    Assignee: Idatech, LLC
    Inventors: David J. Edlund, Darrell J. Elliott, Alan E. Hayes, William A. Pledger, Curtiss Renn, Redwood Stephens, R. Todd Studebaker
  • Patent number: 7981397
    Abstract: A process of catalytic partial oxidation of hydrocarbons, particularly methane and/or natural gas to form a product containing hydrogen and carbon monoxide where the first catalyst at the inlet has a higher thermal conductivity than that of a second catalyst closer to the outlet. The second catalyst closer to the outlet has a higher surface area than that of the first catalyst at the inlet.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: July 19, 2011
    Inventor: Bang-Cheng Xu
  • Publication number: 20110171117
    Abstract: A method and system for capturing hydrogen gas in a refinery is disclosed. The system comprises a first membrane and pre-reformer. The membrane is suitable for separating a refinery fuel gas feed, which includes hydrogen gas and hydrocarbon gases, into a hydrogen gas depleted retentate stream and a hydrogen gas enriched permeate stream. The pre-reformer receives the retentate stream from the first membrane and catalytically converts the retentate stream into an outlet stream of hydrogen and methane gases. The system may further include a reformer which receives at least a portion of the outlet stream and catalytically converts the methane gas into hydrogen and carbon oxides. A second membrane may be used for separating the outlet stream into a second hydrogen depleted retentate stream and second hydrogen enriched permeate stream. The reformer, in this case, receives the second hydrogen depleted retentate stream to provide methane for steam reforming.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 14, 2011
    Inventors: Alan Gorski, Oluwasijibomi Okeowo, Ming Wang
  • Patent number: 7976786
    Abstract: A device for generating gas by placing a liquid reactant in contact with a solid element, including: a liquid reactant tank, a reaction chamber configured to contain the solid element, an injector configured to inject the liquid reactant onto the solid element, and an outlet port configured to collect the gas generated in the reaction chamber, wherein the tank and the reaction chamber are separated in a sealed manner by a mobile wall, the mobile wall including an outlet port for collecting the gas generated in the reaction chamber, and wherein the injector passes through the mobile wall and configured to move into the solid element.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: July 12, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Emmanuel Damery, Jerome Delmas, Jean-Yves Laurent, Bruno Valon
  • Patent number: 7976592
    Abstract: In a plate type reformer and a fuel cell system including the plate type reformer, the plate type reformer includes: a plate type combustion reactor including a distributing plate having a distributing chamber with a plurality of distributing holes adapted to supply an oxidizing agent, and a combustion plate having a combustion chamber with an oxidizing catalyst layer adapted to generate heat energy in response to the oxidizing agent supplied through the distributing holes of the distributing plate reacting with fuel; a plate type preheater including a channel adapted to introduce a mixed fuel of fuel and water is introduced, the plate type preheater adapted to preheat the mixed fuel with the heat energy generated in the plate type combustion reactor; and a plate type reforming reactor with a reforming catalyst layer adapted to generate hydrogen gas from the mixed fuel preheated by the plate type preheater, the plate type reforming reactor effecting a reforming reaction using the heat energy of the plate type
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: July 12, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Jun Kong, Zin Park, Dong-Myung Suh
  • Patent number: 7976595
    Abstract: A method of gasification burner online feeding for a coal-water slurry gasifier, where a coal-water slurry line and an oxidizer line are both protected by shield gas. The method may realize online, pressurized and continuous feeding of the gasification burners which are fixed after they stalled for other reasons than their own, thus greatly reducing the probability of accidental shutdown of gasifiers and improving the reliability of long-term service of the multi-nozzle opposed gasifier.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 12, 2011
    Assignee: Yankuang Group Corporation Limited
    Inventors: Xin Wang, Minglin Zhang, Qingrui Zhu, Min Zhu, Jiyong Zhang, Xinfang Jiang, Yifei Zhang, Yongkui Sun, Mei Han, Weihua Zhang
  • Patent number: 7972587
    Abstract: Briefly described, methods of generating (H2) from a biomass and the like, are disclosed.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: July 5, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Christopher W. Jones, Pradeep K. Agrawal
  • Patent number: 7972394
    Abstract: A method of operating a methanation reactor to reduce carbon monoxide concentration in a reformate stream in a fuel cell reformer. The reactor includes a flowpath with a noble metal catalyst supported by a ceramic support such that the reactor preferentially converts carbon monoxide via methanation over that of carbon dioxide. The reduced level of carbon monoxide present in the reformate stream after passing through the methanation reactor reduces the likelihood of poisoning of the catalyst used on the fuel cell anode.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: July 5, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark Robert Feaviour, Julia Margaret Rowe
  • Patent number: 7972585
    Abstract: In operating the carbon monoxide removal reactor or the fuel reforming system, there is provided a technique for removing carbon monoxide in a stable manner for an extended period of time. In a method of removing carbon monoxide including an introducing step of introducing a reactant gas including mixture gas and an oxidizer added thereto to a carbon monoxide removal reactor forming in its casing a catalyst layer comprising a carbon monoxide removal catalyst for removing carbon monoxide contained in the mixture gas and a removing step of removing the carbon monoxide by causing the oxidizer to react with the mixture gas on the carbon monoxide removal catalyst, in said introducing step, the reactant gas of 100° C. or lower is introduced to the carbon monoxide removal reactor.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Mitsuaki Echigo, Takeshi Tabata, Osamu Yamazaki
  • Patent number: 7959897
    Abstract: This invention relates to a process and apparatus for the production of pure hydrogen by steam reforming. The process integrates the steam reforming and shift reaction to produce pure hydrogen with minimal production of CO and virtually no CO in the hydrogen stream, provides for CO2 capture for sequestration, employs a steam reforming membrane reactor, and is powered by heat from the convection section of a heater.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: June 14, 2011
    Assignee: Shell Oil Company
    Inventors: Jingyu Cui, Mahendra Ladharam Joshi, Scott Lee Wellington